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Introduction

• In network and hierarchical DBMSs, low-level procedural
query language is generally embedded in high-level
programming language.

• Programmer’s responsibility to select most appropriate
execution strategy.

• With declarative languages such as SQL, user specifies what
data is required rather than how it is to be retrieved.

• Relieves user of knowing what constitutes good execution
strategy.
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Introduction

• Also gives DBMS more control over system performance.

• Two main techniques for query optimization:

• heuristic rules that order operations in a query; 

• comparing different strategies based on relative costs, and 
selecting one that minimizes resource usage. 

• Disk access tends to be dominant cost in query processing 
for centralized DBMS.
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Query Processing 

Activities involved in retrieving data from the database.

• Aims of QP:

• transform query written in high-level language (e.g. SQL), into
correct and efficient execution strategy expressed in low-level
language (implementing RA);

• execute strategy to retrieve required data.
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Why is it important?
• Now that we know about the benefits of 

indexes, how does the DBMS know when to use 
them?

• An SQL query can be implemented in many 
ways, but which one is best?
• Perform selection before or after join etc.

• Many ways of physically implementing a join (or other 
relational operator), how to choose the right one?

• The DBMS does this automatically, but we need 
to understand it to know what performance to 
expect
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Query Evaluation

• SQL query is implemented by a query plan

• Tree of relational operators
• Each internal node operates on its children

• Can choose different operator implementations

• Two main issues in query optimization:

• For a given query, what plans are considered?

• Algorithm to search plan space for cheapest (estimated) plan.

• How is the cost of a plan estimated?

• Ideally: Want to find best plan.
• Practically: Avoid worst plans! 6



Query Optimization

Activity of choosing an efficient execution strategy
for processing query.

• As there are many equivalent transformations of
same high-level query, aim of QO is to choose one
that minimizes resource usage.

• Generally, reduce total execution time of query.

• May also reduce response time of query.

• Problem computationally intractable with large
number of relations, so strategy adopted is
reduced to finding near optimum solution.
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Query to Query Plan 

Find all Managers who work at a London branch.

SELECT *

FROM Staff s, Branch b

WHERE s.branchNo = b.branchNo AND

(s.position = ‘Manager’ AND b.city = ‘London’);
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Different Strategies

• Three equivalent RA queries are:

(1) (position='Manager')  (city='London') 

(Staff.branchNo=Branch.branchNo) (Staff  X Branch) 

(2) (position='Manager')  (city='London')(
Staff Staff.branchNo=Branch.branchNo Branch)

(3) (position='Manager'(Staff))     
Staff.branchNo=Branch.branchNo

(city='London' (Branch))
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Phases of Query Processing

• QP has four main phases:

• decomposition (consisting of parsing and validation);

• optimization;

• code generation;

• execution.
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Analysis

• Analyze query lexically and syntactically using compiler
techniques.

• Verify relations and attributes exist.

• Verify operations are appropriate for object type.
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Analysis - Example

SELECT staffNumber

FROM Staff

WHERE position > 10;

• This query would be rejected on two grounds:

• staffNumber is not defined for Staff relation (should be
staffNo).

• Comparison ‘>10’ is incompatible with type position, which is
variable character string.

• Rejection due: properly structured SQL statement, incorrect
field name, type incompatibility etc.
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Analysis

• Finally, query transformed into some internal representation
more suitable for processing.

• Some kind of query tree is typically chosen, constructed as
follows:

• Leaf node created for each base relation.

• Non-leaf node created for each intermediate relation produced
by RA operation.

• Root of tree represents query result.

• Sequence is directed from leaves to root.
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Relational Algebra Tree
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Tree of relational operators

SELECT sid

FROM Sailors NATURAL JOIN Reserves

WHERE bid = 100 AND rating > 5; 

sid (bid=100 AND rating>5 (Sailors       Reserves))

15

sid

bd=100 AND rating>5

Sailors Reserves

RA expressions are 
represented by an 

expression tree.

An algorithm is chosen 
for each node in the 

expression tree.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: date, rname: string)



Query Evaluation Plan

• Query evaluation plan is an 
extended RA tree, with 
additional annotations:
• access method for each relation; 

• implementation method for each 
relational operator.

• Cost:  500+500*1000 I/Os

• Misses several opportunities: 

• Selections could have been 
`pushed’ earlier. 

• No use is made of any available 
indexes.

• More efficient join algorithm…

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

(File scan)(File scan)



Pipelined Evaluation

• Materialization: Output of an op is saved in a 
temporary relation for uses (multiple scans) by 
the next op.

• Pipelining: No need to create a temporary 
relation. Avoid the cost of writing it out and 
reading it back. Can occur in two cases:
• Unary operator: when the input is pipelined into it, the 

operator is applied on-the-fly, e.g. selection on-the-fly, 
project on-the-fly.

• Binary operator: e.g., the outer relation in indexed 
nested loops join.
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Iterator Interface for Execution
• A query plan, i.e., a tree of relational ops, is executed by 

calling operators in some (possibly interleaved) order.

• Iterator Interface for simple query execution: 
• Each operator typically implemented using a uniform interface: 

open, get_next, and close.

• Query execution starts top-down (pull-based). When an operator is 
`pulled’ for the next output tuples, it 

1. `pulls’ on its inputs (opens each child node if not yet, gets next from 
each input, and closes an input if it is exhausted),  

2. computes its own results.

• Encapsulation 

• Encapsulated in the operator-specific code: access methods, join 
algorithms, and materialization vs. pipelining… 

• Transparent to the query executer.
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Approaches to Query Evaluation 

• Algorithms for evaluating relational operators use some 
simple ideas extensively:

• Indexing: Can use WHERE conditions to retrieve small set of 
tuples (selections, joins)

• Iteration: Sometimes, faster to scan all tuples even if there is an 
index. (And sometimes, we can scan the data entries in an index 
instead of the table itself.)

• Partitioning: By using sorting or hashing, we can partition the 
input tuples and replace an expensive operation by similar 
operations on smaller inputs.

* Watch for these techniques as we discuss query 
evaluation during this lecture
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Statistics and Information Schema

• Need information about the relations and indexes 
involved. Catalog typically contains:

• #tuples (NTuples) and #pages (NPages) for each relation.

• #distinct key values (NKeys), INPages index pages, and low/high 
key values (ILow/IHigh) for each index.

• Index height (IHeight) for each tree index.

• Catalog data stored in tables; can be queried

• Catalogs updated periodically.
• Updating whenever data changes is too expensive; costs are 

approximate anyway, so slight inconsistency expected.

• More detailed information (e.g., histograms of the 
values in some field) sometimes stored.
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Access Paths: Method for retrieval

• Access path = way of retrieving tuples:

• File scan, or index that matches a selection (in the query)

• Cost depends heavily on access path selected

• A tree index matches (a conjunction of) conditions that involve only 
attributes in a prefix of the search key.

• A hash index matches (a conjunction of) conditions that has a term 
attribute = value for every attribute in the search key of the index.

• Selection conditions are first converted to conjunctive normal form 
(CNF):

• E.g., (day<8/9/94 OR bid=5 OR sid=3 ) AND (rname=‘Paul’ OR bid=5 OR 
sid=3)
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Matching an index 

Search key <a, b, c>

1. a=5 and b= 3?

2. a > 5 and b < 3

3. b=3

4. a=7 and b=5 and c=4 and 
d>4

5. a=7 and c=5
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Tree Index 

1. Yes

2. Yes

3. No 

4. Yes

5. Yes

Hash Index

1. No

2. No

3. No 

4. Yes

5. No

Index matches (part of) a predicate if:
Conjunction of terms involving only attributes (no disjunctions)
Hash: only equality operation, predicate has all index attributes.
Tree: Attributes are a prefix of the search key, any ops.



Selectivity of access path

• Selectivity = #pages retrieved (index + data pages)

• Find the most selective access path, retrieve tuples using it, and 
apply any remaining terms that don’t match the index:

• Most selective path – fewer I/O

• Terms that match the index reduce the number of tuples retrieved

• Other terms are used to discard some retrieved tuples, but do not 
affect number of tuples fetched.

• Consider “day < 8/9/94 AND bid=5 AND sid=3”.

• Can use B+ tree index on day; then check bid=5 and sid=3 for each 
retrieved tuple

• Could similarly use a hash index on <bid,sid>; then check day < 8/9/94
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Relational Operations

• We will consider how to implement:

• Selection (     )    Selects a subset of rows from relation.

• Projection (     )   Deletes unwanted columns from relation.

• Join (        )  Allows us to combine two relations.

• Set-difference (     )  Tuples in reln. 1, but not in reln. 2.

• Union (     )  Tuples in reln. 1 and in reln. 2.

• Aggregation (SUM, MIN, etc.) and GROUP BY

• Order By Returns tuples in specified order.

• Since each op returns a relation, ops can be composed. After we 
cover the operations, we will discuss how to optimize queries formed 
by composing them.
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Relational Operators to 
Evaluate
• Evaluation of joins

• Evaluation of selections

• Evaluation of projections
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Schema for Examples

• Sailors:

• Each tuple is 50 bytes long,  

• 80 tuples per page

• 500 pages. ~40,000 tuples

• Reserves:

• Each tuple is 40 bytes long, 

• 100 tuples per page, 

• 1000 pages. ~100,000 tuples
26

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: date, rname: string)



Equality Joins With One Join Column

• In algebra: R⋈ S,  natural join, common operation 

• R X S is large; R X S followed by a selection is inefficient.

• Must be carefully optimized. 

• Assume: M pages in R, pR tuples per page, N pages in S, pS tuples 
per page.

• Cost metric:  # of I/Os.  Ignore output cost in analysis.
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SELECT  *
FROM    Reserves R, Sailors S
WHERE  R.sid = S.sid



Page-Oriented Nested Loops 
Join

• How can we improve Simple Nested Loop Join?

• For each page of R, get each page of S, and write out matching pairs 
of tuples <r, s>, where r is in R-page and S is in S-page.

• Cost:  M + M  * N = 1000 + 1000*500 = 501,000 I/Os.

• If each I/O takes 10 ms, the join will take 1.4 hours.

• Which relation should be the outer? 

• The smaller relation (S) should be the outer: 

cost = 500 + 500*1000 = 500,500 I/Os.  

• How many buffers do we need?
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Block Nested Loops Join

• How can we utilize additional buffer pages?

• If the smaller relation fits in memory, use it as outer, read the inner only 
once.

• Otherwise, read a big chunk of it each time, resulting in reduced # times of 
reading the inner. 

• Block Nested Loops Join: 

• Take the smaller relation, say R, as outer, the other as inner.

• Buffer allocation: one buffer for scanning the inner S, one buffer for 
output, all remaining buffers for holding a ``block’’ of outer R.
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Block Nested Loops Join 
Diagram
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. . .

. . .

R & S
Hash table for block of R
(block size k < B-1 pages)

Input buffer for S Output buffer

. . .

Join Result

foreach block  in R do
build a hash table on R-block
foreach S page

for each matching tuple r in R-block, s in S-page do
add <r, s> to result



Index Nested Loops Join

• If there is an index on the join column of one relation (say S), can 
make it the inner and exploit the index.

• Cost:  M + ( (M*pR) * cost of finding matching S tuples) 

• For each R tuple, cost of probing S index is about 1.2 for hash index, 
2-4 for B+ tree.  Cost of then finding S tuples depends on clustering.

• Clustered index:  1 I/O (typical). 

• Unclustered: up to 1 I/O per matching S tuple.
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foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result



Sort-Merge Join  (R     S)

• Sort R and S on join column using external sorting. 

• Merge R and S on join column, output result tuples.

Repeat until either R or S is finished:

• Scanning: 

• Advance scan of R until current R-tuple >=current S tuple, 

• Advance scan of S until current S-tuple>=current R tuple; 

• Do this until current R tuple = current S tuple.

• Matching: 

• Match all R tuples and S tuples with same value;  output <r, s> for all pairs of 
such tuples.

• Data access patterns for R and S?
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
i=j

R is scanned once, each S partition scanned once per matching R tuple 



Refinement of Sort-Merge Join

• Idea:

• Sorting of R and S has respective merging phases

• Join of R and S also has a merging phase

• Combine all these merging phases!

• Two-pass algorithm for sort-merge join:

• Pass 0: sort subfiles of R, S individually

• Pass 1: merge sorted runs of R, merge sorted runs of S, 
and merge the resulting R and S files as they are 
generated by checking the join condition.
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 Idea: Partition both R and S using a hash function such that R tuples 
will only match S tuples in partition i.

Hash-Join

• Partitioning: 
Partition both 
relations using 
hash fn h:  Ri
tuples will only 
match with Si 
tuples.

 Probing: Read in 
partition i of R, build 
hash table on Ri
using h2 (<> h!). Scan 
partition i of S, search 
for matches.

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffersDisk

Output 
buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original 
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .



Hash Join Memory Requirement

• Partitioning: # partitions in memory ≤ B-1, 

Probing: size of largest partition (to fit in memory) ≤ B-2. 

• A little more memory is needed to build hash table, but ignored here. 

• Assuming uniformly sized partitions, L = min(M, N): 
• L / (B-1) < (B-2)   B >

• Hash-join works if the smaller relation satisfies above size restriction

• What if hash fn h does not partition uniformly and one or 
more R partitions does not fit in memory? 

• Can apply hash-join technique recursively to do the join of this R-
partition with the corresponding S-partition.
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Cost of Hash-Join

• Partitioning reads+writes both relations; 2(M+N). 

Probing reads both relations; M+N I/Os. 

Total cost = 3(M+N).
• In our running example, a total of 4,500 I/Os using hash join, less than 

1 min (compared to 1.4 hours w. Page Nested Loop Join).

• Sort-Merge Join vs. Hash Join:
• Given a minimum amount of memory both have a cost of 3(M+N) I/Os.  

• Hash Join superior if relation sizes differ greatly

• Hash Join is  shown to be highly parallelizable.

• Sort-Merge less sensitive to data skew; result is sorted.
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General Join Conditions
• Equalities over several attributes (e.g.,  R.sid=S.sid AND

R.rname=S.sname):

• For Index Nested Loop, build index on <sid, sname> (if S is inner); or use 
existing indexes on sid or sname and check the other join condition on 
the fly.

• For Sort-Merge and Hash Join, sort/partition on combination of the two 
join columns.

• Inequality conditions (e.g.,  R.rname < S.sname):

• For Index Nested Loop, need B+ tree index.

• Range probes on inner; # matches likely to be much higher than for equality 
joins (clustered index is much preferred).

• Hash Join, Sort Merge Join not applicable.

• Block Nested Loop quite likely to be a winner here.
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Relational Operators to 
Evaluate
• Evaluation of joins

• Evaluation of selections

• Evaluation of projections
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Using an Index for Selections
• Cost depends on # qualifying tuples, and clustering.

• Cost of finding data entries (often small) + cost of retrieving records 
(could be large w/o clustering).

• For gpa > 3.0, if 10% of tuples qualify (100 pages, 10,000 tuples), cost 
100 I/Os with a clustered index; otherwise, up to 10,000 I/Os!

• Important refinement for unclustered indexes:  

1. Find qualifying data entries.

2. Sort the rid’sof the data records to be retrieved.

3. Fetch rids in order.  

Each data page is looked at just once, although # of such pages 
likely to be higher than with clustering.
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Approach 1 to General Selections
• (1) Find the most selective access path, retrieve tuples using it, and 

(2) apply any remaining terms that don’t match the index on the fly.

• Most selective access path: An index or file scan that is expected to 
require the smallest # I/Os.

• Terms that match this index reduce the number of tuples retrieved; 

• Other terms are used to discard some retrieved tuples, but do not affect 
I/O cost.

• Consider day<8/9/94 AND bid=5 AND sid=3.

• A B+ tree index on day can be used; then, bid=5 and sid=3 must be 
checked for each retrieved tuple.  

• A hash index on <bid, sid> could be used; day<8/9/94 must then be 
checked on the fly.
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Approach 2: Intersection of Rids

• If we have 2 or more matching secondary indexes:

• Get sets of rids of data records using each matching index.

• Intersect these sets of rids.

• Retrieve the records and apply any remaining terms.

• Consider day<8/9/94 AND bid=5 AND sid=3. If we have a B+ tree index on day
and an index on sid, both using Alternative (2), we can:

• retrieve rids of records satisfying day<8/9/94 using the first, rids of records 
satisfying sid=3 using the second, 

• intersect these rids, 

• retrieve records and check bid=5.
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Relational Operators to Evaluate

• Evaluation of joins

• Evaluation of selections

• Evaluation of projections

42



The Projection Operation

• Projection consists of two steps:
• Remove unwanted attributes (i.e., those not specified in the 

projection).

• Eliminate any duplicate tuples that are produced, if DISTINCT is 
specified.

• Algorithms: single relation sorting and hashing based on all 
remaining attributes.
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SELECT   DISTINCT R.sid, R.bid
FROM     Reserves R



Discussion of Projection

• Sort-based approach is the standard; better handling of 
skew and result is sorted.  

• If an index on the relation contains all wanted attributes in 
its search key, can do index-only scan.

• Apply projection techniques to index entries (much smaller!)

• If a tree index contains all wanted attributes as prefix of 
search key can do even better:

• Retrieve data entries in order (index-only scan), discard 
unwanted fields, compare adjacent tuples to check for 
duplicates.

• E.g. projection on <sid, age>, search key on <sid, age, rating>.
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Cost Estimates for Single-Relation Plans
• Index I on primary key matches selection:

• Cost of lookup = Height(I)+1 for a B+ tree,  1.2 for hash index.

• Cost of record retrieval = 1

• Clustered index I matching one or more selections:
• Cost of lookup + (INPages’(I)+NPages(R)) * product of RF’s of matching 

selections. (Treat INPages’ as the number of leaf pages in the index.)

• Non-clustered index I matching one or more selections:
• Cost of lookup + (INPages’(I)+NTuples(R)) * product of RF’s of matching 

selections.

• Sequential scan of file:

• NPages(R).

• May add extra costs for GROUP BY and duplicate elimination 
in projection (if a query says DISTINCT).
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Example

• If we have an index on rating (1  rating  10):

• NTuples(R) /NKeys(I) = 40,000/10 tuples retrieved.

• Clustered index: (1/NKeys(I)) * (NPages’(I)+NPages(R)) = (1/10) * 
(50+500) pages retrieved, plus lookup cost.

• Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R)) = (1/10) 
* (50+40,000) pages retrieved, plus lookup cost.

• If we have an index on sid:

• Would have to retrieve all tuples/pages.  With a clustered index, 
the cost is 50+500, with unclustered index, 50+40000.

• Doing a file scan:

• We retrieve all file pages (500).

SELECT S.sid

FROM Sailors S

WHERE S.rating=8
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Queries Over Multiple Relations

• As the number of joins increases, the number of alternative plans 
grows rapidly.

BA

C

D

Left-deep

 System R:  (1) use only left-deep join 
trees, where the inner is a base relation, 
(2) avoid cartesian products. 
 Allow pipelined plans; intermediate results not written 

to temporary files.

 Not all left-deep trees are fully pipelined! 

• Sort-Merge join (the sorting phase)

• Two-phase hash join (the partitioning 
phase)
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Cost Estimation for Multi-relation Plans

• Consider a query block:

• Reduction factor (RF) is associated with each term. 

• Max number tuples in result = the product of the cardinalities of 

relations in the FROM clause.

• Result cardinality = max # tuples * product of all RF’s.

• Multi-relation plans are built up by joining one new relation at a 
time.

• Cost of join method, plus estimate of join cardinality gives us both cost 
estimate and result size estimate.

SELECT attribute list

FROM relation list

WHERE term1 AND ... AND termk
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Summary
• A virtue of relational DBMSs: queries are composed of a few 

basic operators; the implementation of these operators can be 
carefully tuned.

• Algorithms for evaluating relational operators use some simple 
ideas extensively:
• Indexing: Can use WHERE conditions to retrieve small set of tuples 

(selections, joins)

• Iteration: Sometimes, faster to scan all tuples even if there is an 
index. (And sometimes, we can scan the data entries in an index 
instead of the table itself.)

• Partitioning: By using sorting or hashing, we can partition the input 
tuples and replace an expensive operation by similar operations on 
smaller inputs.
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Summary: Query plan

• Many implementation techniques for each 
operator; no universally superior technique for 
most operators.  

• Must consider available alternatives for each 
operation in a query and choose best one based 
on:

• system state (e.g., memory) and 

• statistics (table size, # tuples matching value k).  

• This is part of the broader task of optimizing a 
query composed of several ops. 50



Summary: Optimization

• Query optimization is an important task in relational DBMS.

• Must understand optimization in order to understand the 
performance impact of a given database design (relations, 
indexes) on a workload (set of queries).

• Two parts to optimizing a query:

• Consider a set of alternative plans.

• Must prune search space; typically, left-deep plans only.

• Must estimate cost of each plan that is considered.

• Must estimate size of result and cost for each plan node.

• Key issues: Statistics, indexes, operator implementations.
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