
Evaluation of relational
operators
and query optimization
Kathleen Durant PhD

CS 3200

1

Introduction

• In network and hierarchical DBMSs, low-level procedural
query language is generally embedded in high-level
programming language.

• Programmer’s responsibility to select most appropriate
execution strategy.

• With declarative languages such as SQL, user specifies what
data is required rather than how it is to be retrieved.

• Relieves user of knowing what constitutes good execution
strategy.

Pearson Education © 2014 2

Introduction

• Also gives DBMS more control over system performance.

• Two main techniques for query optimization:

• heuristic rules that order operations in a query;

• comparing different strategies based on relative costs, and
selecting one that minimizes resource usage.

• Disk access tends to be dominant cost in query processing
for centralized DBMS.

Pearson Education © 2014 3

Query Processing

Activities involved in retrieving data from the database.

• Aims of QP:

• transform query written in high-level language (e.g. SQL), into
correct and efficient execution strategy expressed in low-level
language (implementing RA);

• execute strategy to retrieve required data.

Pearson Education © 2014 4

Why is it important?
• Now that we know about the benefits of

indexes, how does the DBMS know when to use
them?

• An SQL query can be implemented in many
ways, but which one is best?
• Perform selection before or after join etc.

• Many ways of physically implementing a join (or other
relational operator), how to choose the right one?

• The DBMS does this automatically, but we need
to understand it to know what performance to
expect

5

Query Evaluation

• SQL query is implemented by a query plan

• Tree of relational operators
• Each internal node operates on its children

• Can choose different operator implementations

• Two main issues in query optimization:

• For a given query, what plans are considered?

• Algorithm to search plan space for cheapest (estimated) plan.

• How is the cost of a plan estimated?

• Ideally: Want to find best plan.
• Practically: Avoid worst plans! 6

Query Optimization

Activity of choosing an efficient execution strategy
for processing query.

• As there are many equivalent transformations of
same high-level query, aim of QO is to choose one
that minimizes resource usage.

• Generally, reduce total execution time of query.

• May also reduce response time of query.

• Problem computationally intractable with large
number of relations, so strategy adopted is
reduced to finding near optimum solution.

Pearson Education © 2014 7

Query to Query Plan

Find all Managers who work at a London branch.

SELECT *

FROM Staff s, Branch b

WHERE s.branchNo = b.branchNo AND

(s.position = ‘Manager’AND b.city = ‘London’);

Pearson Education © 2014 8

Different Strategies

• Three equivalent RA queries are:

(1) (position='Manager') (city='London')

(Staff.branchNo=Branch.branchNo) (Staff X Branch)

(2) (position='Manager') (city='London')(
Staff Staff.branchNo=Branch.branchNo Branch)

(3) (position='Manager'(Staff))
Staff.branchNo=Branch.branchNo

(city='London' (Branch))

Pearson Education © 2014 9

Phases of Query Processing

• QP has four main phases:

• decomposition (consisting of parsing and validation);

• optimization;

• code generation;

• execution.

Pearson Education © 2014 10

Analysis

• Analyze query lexically and syntactically using compiler
techniques.

• Verify relations and attributes exist.

• Verify operations are appropriate for object type.

Pearson Education © 2014 11

Analysis - Example

SELECT staffNumber

FROM Staff

WHERE position > 10;

• This query would be rejected on two grounds:

• staffNumber is not defined for Staff relation (should be
staffNo).

• Comparison ‘>10’ is incompatible with type position, which is
variable character string.

• Rejection due: properly structured SQL statement, incorrect
field name, type incompatibility etc.

Pearson Education © 2014 12

Analysis

• Finally, query transformed into some internal representation
more suitable for processing.

• Some kind of query tree is typically chosen, constructed as
follows:

• Leaf node created for each base relation.

• Non-leaf node created for each intermediate relation produced
by RA operation.

• Root of tree represents query result.

• Sequence is directed from leaves to root.

Pearson Education © 2014 13

Relational Algebra Tree

Pearson Education © 2014 14

Tree of relational operators

SELECT sid

FROM Sailors NATURAL JOIN Reserves

WHERE bid = 100 AND rating > 5;

sid (bid=100 AND rating>5 (Sailors Reserves))

15

sid

bd=100 AND rating>5

Sailors Reserves

RA expressions are
represented by an

expression tree.

An algorithm is chosen
for each node in the

expression tree.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: date, rname: string)

Query Evaluation Plan

• Query evaluation plan is an
extended RA tree, with
additional annotations:
• access method for each relation;

• implementation method for each
relational operator.

• Cost: 500+500*1000 I/Os

• Misses several opportunities:

• Selections could have been
`pushed’ earlier.

• No use is made of any available
indexes.

• More efficient join algorithm…

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

(File scan)(File scan)

Pipelined Evaluation

• Materialization: Output of an op is saved in a
temporary relation for uses (multiple scans) by
the next op.

• Pipelining: No need to create a temporary
relation. Avoid the cost of writing it out and
reading it back. Can occur in two cases:
• Unary operator: when the input is pipelined into it, the

operator is applied on-the-fly, e.g. selection on-the-fly,
project on-the-fly.

• Binary operator: e.g., the outer relation in indexed
nested loops join.

17

Iterator Interface for Execution
• A query plan, i.e., a tree of relational ops, is executed by

calling operators in some (possibly interleaved) order.

• Iterator Interface for simple query execution:
• Each operator typically implemented using a uniform interface:

open, get_next, and close.

• Query execution starts top-down (pull-based). When an operator is
`pulled’ for the next output tuples, it

1. `pulls’ on its inputs (opens each child node if not yet, gets next from
each input, and closes an input if it is exhausted),

2. computes its own results.

• Encapsulation

• Encapsulated in the operator-specific code: access methods, join
algorithms, and materialization vs. pipelining…

• Transparent to the query executer.

18

Approaches to Query Evaluation

• Algorithms for evaluating relational operators use some
simple ideas extensively:

• Indexing: Can use WHERE conditions to retrieve small set of
tuples (selections, joins)

• Iteration: Sometimes, faster to scan all tuples even if there is an
index. (And sometimes, we can scan the data entries in an index
instead of the table itself.)

• Partitioning: By using sorting or hashing, we can partition the
input tuples and replace an expensive operation by similar
operations on smaller inputs.

* Watch for these techniques as we discuss query
evaluation during this lecture

19

Statistics and Information Schema

• Need information about the relations and indexes
involved. Catalog typically contains:

• #tuples (NTuples) and #pages (NPages) for each relation.

• #distinct key values (NKeys), INPages index pages, and low/high
key values (ILow/IHigh) for each index.

• Index height (IHeight) for each tree index.

• Catalog data stored in tables; can be queried

• Catalogs updated periodically.
• Updating whenever data changes is too expensive; costs are

approximate anyway, so slight inconsistency expected.

• More detailed information (e.g., histograms of the
values in some field) sometimes stored.

20

Access Paths: Method for retrieval

• Access path = way of retrieving tuples:

• File scan, or index that matches a selection (in the query)

• Cost depends heavily on access path selected

• A tree index matches (a conjunction of) conditions that involve only
attributes in a prefix of the search key.

• A hash index matches (a conjunction of) conditions that has a term
attribute = value for every attribute in the search key of the index.

• Selection conditions are first converted to conjunctive normal form
(CNF):

• E.g., (day<8/9/94 OR bid=5 OR sid=3) AND (rname=‘Paul’ OR bid=5 OR
sid=3)

21

Matching an index

Search key <a, b, c>

1. a=5 and b= 3?

2. a > 5 and b < 3

3. b=3

4. a=7 and b=5 and c=4 and
d>4

5. a=7 and c=5

22

Tree Index

1. Yes

2. Yes

3. No

4. Yes

5. Yes

Hash Index

1. No

2. No

3. No

4. Yes

5. No

Index matches (part of) a predicate if:
Conjunction of terms involving only attributes (no disjunctions)
Hash: only equality operation, predicate has all index attributes.
Tree: Attributes are a prefix of the search key, any ops.

Selectivity of access path

• Selectivity = #pages retrieved (index + data pages)

• Find the most selective access path, retrieve tuples using it, and
apply any remaining terms that don’t match the index:

• Most selective path – fewer I/O

• Terms that match the index reduce the number of tuples retrieved

• Other terms are used to discard some retrieved tuples, but do not
affect number of tuples fetched.

• Consider “day < 8/9/94 AND bid=5 AND sid=3”.

• Can use B+ tree index on day; then check bid=5 and sid=3 for each
retrieved tuple

• Could similarly use a hash index on <bid,sid>; then check day < 8/9/94

23

Relational Operations

• We will consider how to implement:

• Selection () Selects a subset of rows from relation.

• Projection () Deletes unwanted columns from relation.

• Join () Allows us to combine two relations.

• Set-difference () Tuples in reln. 1, but not in reln. 2.

• Union () Tuples in reln. 1 and in reln. 2.

• Aggregation (SUM, MIN, etc.) and GROUP BY

• Order By Returns tuples in specified order.

• Since each op returns a relation, ops can be composed. After we
cover the operations, we will discuss how to optimize queries formed
by composing them.

24

Relational Operators to
Evaluate
• Evaluation of joins

• Evaluation of selections

• Evaluation of projections

25

Schema for Examples

• Sailors:

• Each tuple is 50 bytes long,

• 80 tuples per page

• 500 pages. ~40,000 tuples

• Reserves:

• Each tuple is 40 bytes long,

• 100 tuples per page,

• 1000 pages. ~100,000 tuples
26

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: date, rname: string)

Equality Joins With One Join Column

• In algebra: R⋈ S, natural join, common operation

• R X S is large; R X S followed by a selection is inefficient.

• Must be carefully optimized.

• Assume: M pages in R, pR tuples per page, N pages in S, pS tuples
per page.

• Cost metric: # of I/Os. Ignore output cost in analysis.

27

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

Page-Oriented Nested Loops
Join

• How can we improve Simple Nested Loop Join?

• For each page of R, get each page of S, and write out matching pairs
of tuples <r, s>, where r is in R-page and S is in S-page.

• Cost: M + M * N = 1000 + 1000*500 = 501,000 I/Os.

• If each I/O takes 10 ms, the join will take 1.4 hours.

• Which relation should be the outer?

• The smaller relation (S) should be the outer:

cost = 500 + 500*1000 = 500,500 I/Os.

• How many buffers do we need?

28

Block Nested Loops Join

• How can we utilize additional buffer pages?

• If the smaller relation fits in memory, use it as outer, read the inner only
once.

• Otherwise, read a big chunk of it each time, resulting in reduced # times of
reading the inner.

• Block Nested Loops Join:

• Take the smaller relation, say R, as outer, the other as inner.

• Buffer allocation: one buffer for scanning the inner S, one buffer for
output, all remaining buffers for holding a ``block’’ of outer R.

29

Block Nested Loops Join
Diagram

30

. . .

. . .

R & S
Hash table for block of R
(block size k < B-1 pages)

Input buffer for S Output buffer

. . .

Join Result

foreach block in R do
build a hash table on R-block
foreach S page

for each matching tuple r in R-block, s in S-page do
add <r, s> to result

Index Nested Loops Join

• If there is an index on the join column of one relation (say S), can
make it the inner and exploit the index.

• Cost: M + ((M*pR) * cost of finding matching S tuples)

• For each R tuple, cost of probing S index is about 1.2 for hash index,
2-4 for B+ tree. Cost of then finding S tuples depends on clustering.

• Clustered index: 1 I/O (typical).

• Unclustered: up to 1 I/O per matching S tuple.

31

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

Sort-Merge Join (R S)

• Sort R and S on join column using external sorting.

• Merge R and S on join column, output result tuples.

Repeat until either R or S is finished:

• Scanning:

• Advance scan of R until current R-tuple >=current S tuple,

• Advance scan of S until current S-tuple>=current R tuple;

• Do this until current R tuple = current S tuple.

• Matching:

• Match all R tuples and S tuples with same value; output <r, s> for all pairs of
such tuples.

• Data access patterns for R and S?

32

i=j

R is scanned once, each S partition scanned once per matching R tuple

Refinement of Sort-Merge Join

• Idea:

• Sorting of R and S has respective merging phases

• Join of R and S also has a merging phase

• Combine all these merging phases!

• Two-pass algorithm for sort-merge join:

• Pass 0: sort subfiles of R, S individually

• Pass 1: merge sorted runs of R, merge sorted runs of S,
and merge the resulting R and S files as they are
generated by checking the join condition.

33

 Idea: Partition both R and S using a hash function such that R tuples
will only match S tuples in partition i.

Hash-Join

• Partitioning:
Partition both
relations using
hash fn h: Ri
tuples will only
match with Si
tuples.

 Probing: Read in
partition i of R, build
hash table on Ri
using h2 (<> h!). Scan
partition i of S, search
for matches.

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

Hash Join Memory Requirement

• Partitioning: # partitions in memory ≤ B-1,

Probing: size of largest partition (to fit in memory) ≤ B-2.

• A little more memory is needed to build hash table, but ignored here.

• Assuming uniformly sized partitions, L = min(M, N):
• L / (B-1) < (B-2) B >

• Hash-join works if the smaller relation satisfies above size restriction

• What if hash fn h does not partition uniformly and one or
more R partitions does not fit in memory?

• Can apply hash-join technique recursively to do the join of this R-
partition with the corresponding S-partition.

L

Cost of Hash-Join

• Partitioning reads+writes both relations; 2(M+N).

Probing reads both relations; M+N I/Os.

Total cost = 3(M+N).
• In our running example, a total of 4,500 I/Os using hash join, less than

1 min (compared to 1.4 hours w. Page Nested Loop Join).

• Sort-Merge Join vs. Hash Join:
• Given a minimum amount of memory both have a cost of 3(M+N) I/Os.

• Hash Join superior if relation sizes differ greatly

• Hash Join is shown to be highly parallelizable.

• Sort-Merge less sensitive to data skew; result is sorted.
36

General Join Conditions
• Equalities over several attributes (e.g., R.sid=S.sid AND

R.rname=S.sname):

• For Index Nested Loop, build index on <sid, sname> (if S is inner); or use
existing indexes on sid or sname and check the other join condition on
the fly.

• For Sort-Merge and Hash Join, sort/partition on combination of the two
join columns.

• Inequality conditions (e.g., R.rname < S.sname):

• For Index Nested Loop, need B+ tree index.

• Range probes on inner; # matches likely to be much higher than for equality
joins (clustered index is much preferred).

• Hash Join, Sort Merge Join not applicable.

• Block Nested Loop quite likely to be a winner here.
37

Relational Operators to
Evaluate
• Evaluation of joins

• Evaluation of selections

• Evaluation of projections

38

Using an Index for Selections
• Cost depends on # qualifying tuples, and clustering.

• Cost of finding data entries (often small) + cost of retrieving records
(could be large w/o clustering).

• For gpa > 3.0, if 10% of tuples qualify (100 pages, 10,000 tuples), cost
100 I/Os with a clustered index; otherwise, up to 10,000 I/Os!

• Important refinement for unclustered indexes:

1. Find qualifying data entries.

2. Sort the rid’sof the data records to be retrieved.

3. Fetch rids in order.

Each data page is looked at just once, although # of such pages
likely to be higher than with clustering.

39

Approach 1 to General Selections
• (1) Find the most selective access path, retrieve tuples using it, and

(2) apply any remaining terms that don’t match the index on the fly.

• Most selective access path: An index or file scan that is expected to
require the smallest # I/Os.

• Terms that match this index reduce the number of tuples retrieved;

• Other terms are used to discard some retrieved tuples, but do not affect
I/O cost.

• Consider day<8/9/94 AND bid=5 AND sid=3.

• A B+ tree index on day can be used; then, bid=5 and sid=3 must be
checked for each retrieved tuple.

• A hash index on <bid, sid> could be used; day<8/9/94 must then be
checked on the fly.

40

Approach 2: Intersection of Rids

• If we have 2 or more matching secondary indexes:

• Get sets of rids of data records using each matching index.

• Intersect these sets of rids.

• Retrieve the records and apply any remaining terms.

• Consider day<8/9/94 AND bid=5 AND sid=3. If we have a B+ tree index on day
and an index on sid, both using Alternative (2), we can:

• retrieve rids of records satisfying day<8/9/94 using the first, rids of records
satisfying sid=3 using the second,

• intersect these rids,

• retrieve records and check bid=5.

41

Relational Operators to Evaluate

• Evaluation of joins

• Evaluation of selections

• Evaluation of projections

42

The Projection Operation

• Projection consists of two steps:
• Remove unwanted attributes (i.e., those not specified in the

projection).

• Eliminate any duplicate tuples that are produced, if DISTINCT is
specified.

• Algorithms: single relation sorting and hashing based on all
remaining attributes.

43

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

Discussion of Projection

• Sort-based approach is the standard; better handling of
skew and result is sorted.

• If an index on the relation contains all wanted attributes in
its search key, can do index-only scan.

• Apply projection techniques to index entries (much smaller!)

• If a tree index contains all wanted attributes as prefix of
search key can do even better:

• Retrieve data entries in order (index-only scan), discard
unwanted fields, compare adjacent tuples to check for
duplicates.

• E.g. projection on <sid, age>, search key on <sid, age, rating>.
44

Cost Estimates for Single-Relation Plans
• Index I on primary key matches selection:

• Cost of lookup = Height(I)+1 for a B+ tree, 1.2 for hash index.

• Cost of record retrieval = 1

• Clustered index I matching one or more selections:
• Cost of lookup + (INPages’(I)+NPages(R)) * product of RF’s of matching

selections. (Treat INPages’ as the number of leaf pages in the index.)

• Non-clustered index I matching one or more selections:
• Cost of lookup + (INPages’(I)+NTuples(R)) * product of RF’s of matching

selections.

• Sequential scan of file:

• NPages(R).

• May add extra costs for GROUP BY and duplicate elimination
in projection (if a query says DISTINCT).

45

Example

• If we have an index on rating (1 rating 10):

• NTuples(R) /NKeys(I) = 40,000/10 tuples retrieved.

• Clustered index: (1/NKeys(I)) * (NPages’(I)+NPages(R)) = (1/10) *
(50+500) pages retrieved, plus lookup cost.

• Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R)) = (1/10)
* (50+40,000) pages retrieved, plus lookup cost.

• If we have an index on sid:

• Would have to retrieve all tuples/pages. With a clustered index,
the cost is 50+500, with unclustered index, 50+40000.

• Doing a file scan:

• We retrieve all file pages (500).

SELECT S.sid

FROM Sailors S

WHERE S.rating=8

46

Queries Over Multiple Relations

• As the number of joins increases, the number of alternative plans
grows rapidly.

BA

C

D

Left-deep

 System R: (1) use only left-deep join
trees, where the inner is a base relation,
(2) avoid cartesian products.
 Allow pipelined plans; intermediate results not written

to temporary files.

 Not all left-deep trees are fully pipelined!

• Sort-Merge join (the sorting phase)

• Two-phase hash join (the partitioning
phase)

47

Cost Estimation for Multi-relation Plans

• Consider a query block:

• Reduction factor (RF) is associated with each term.

• Max number tuples in result = the product of the cardinalities of

relations in the FROM clause.

• Result cardinality = max # tuples * product of all RF’s.

• Multi-relation plans are built up by joining one new relation at a
time.

• Cost of join method, plus estimate of join cardinality gives us both cost
estimate and result size estimate.

SELECT attribute list

FROM relation list

WHERE term1 AND ... AND termk

48

Summary
• A virtue of relational DBMSs: queries are composed of a few

basic operators; the implementation of these operators can be
carefully tuned.

• Algorithms for evaluating relational operators use some simple
ideas extensively:
• Indexing: Can use WHERE conditions to retrieve small set of tuples

(selections, joins)

• Iteration: Sometimes, faster to scan all tuples even if there is an
index. (And sometimes, we can scan the data entries in an index
instead of the table itself.)

• Partitioning: By using sorting or hashing, we can partition the input
tuples and replace an expensive operation by similar operations on
smaller inputs.

49

Summary: Query plan

• Many implementation techniques for each
operator; no universally superior technique for
most operators.

• Must consider available alternatives for each
operation in a query and choose best one based
on:

• system state (e.g., memory) and

• statistics (table size, # tuples matching value k).

• This is part of the broader task of optimizing a
query composed of several ops. 50

Summary: Optimization

• Query optimization is an important task in relational DBMS.

• Must understand optimization in order to understand the
performance impact of a given database design (relations,
indexes) on a workload (set of queries).

• Two parts to optimizing a query:

• Consider a set of alternative plans.

• Must prune search space; typically, left-deep plans only.

• Must estimate cost of each plan that is considered.

• Must estimate size of result and cost for each plan node.

• Key issues: Statistics, indexes, operator implementations.

51

