
Brewer's Conjeture and the Feasibility ofConsistent, Available, Partition-Tolerant WebServiesSeth Gilbert� Nany Lynh�
AbstratWhen designing distributed web servies, there are threeproperties that are ommonly desired: onsisteny, avail-ability, and partition tolerane. It is impossible to ahieveall three. In this note, we prove this onjeture in the asyn-hronous network model, and then disuss solutions to thisdilemma in the partially synhronous model.1 IntrodutionAt PODC 2000, Brewer1, in an invited talk [2℄, made the following on-jeture: it is impossible for a web servie to provide the following threeguarantees:� Consisteny� Availability� Partition-toleraneAll three of these properties are desirable { and expeted { from real-worldweb servies. In this note, we will �rst disuss what Brewer meant by theonjeture; next we will formalize these onepts and prove the onjeture;�Laboratory for Computer Siene, Massahusetts Institute of Tehnology, Cambridge,MA 02139.1Eri Brewer is a professor at the University of California, Berkeley, and the o-founderand Chief Sientist of Inktomi.

�nally, we will desribe and attempt to formalize some real-world solutionsto this pratial diÆulty.Most web servies today attempt to provide strongly onsistent data.There has been signi�ant researh designing ACID2 databases, and mostof the new frameworks for building distributed web servies depend on thesedatabases. Interations with web servies are expeted to behave in a trans-ational manner: operations ommit or fail in their entirety (atomi), trans-ations never observe or result in inonsistent data (onsistent), unommit-ted transations are isolated from eah other (isolated), and one a trans-ation is ommitted it is permanent (durable). It is learly important, forexample, that billing information and ommerial transation reords behandled with this type of strong onsisteny.Web servies are similarly expeted to be highly available. Every requestshould sueed and reeive a response. When a servie goes down, it maywell reate signi�ant real-world problems; the lassi example of this isthe potential legal diÆulties should the E-Trade web site go down. Thisproblem is exaerbated by the fat that a web-site is most likely to beunavailable when it is most needed. The goal of most web servies today isto be as available as the network on whih they run: if any servie on thenetwork is available, then the web servie should be aessible.Finally, on a highly distributed network, it is desirable to provide someamount of fault-tolerane. When some nodes rash or some ommuniationlinks fail, it is important that the servie still perform as expeted. Onedesirable fault tolerane property is the ability to survive a network parti-tioning into multiple omponents. In this note we will not onsider stoppingfailures, though in some ases a stopping failure an be modeled as a nodeexisting in its own unique omponent of a partition.2 Formal ModelIn this setion, we will formally de�ne what is meant by the terms onsistent,available, and partition tolerant.2.1 Atomi Data ObjetsThe most natural way of formalizing the idea of a onsistent servie is asan atomi data objet. Atomi [4℄, or linearizable [3℄, onsisteny is the2Atomi, Consistent, Isolated, Durable

ondition expeted by most web servies today.3 Under this onsistenyguarantee, there must exist a total order on all operations suh that eahoperation looks as if it were ompleted at a single instant. This is equivalentto requiring requests of the distributed shared memory to at as if they wereexeuting on a single node, responding to operations one at a time. Thisis the onsisteny guarantee that generally provides the easiest model forusers to understand, and is most onvenient for those attempting to designa lient appliation that uses the distributed servie. See Chapter 13 of [5℄for a more omplete de�nition of atomi onsisteny.2.2 Available Data ObjetsFor a distributed system to be ontinuously available, every request reeivedby a non-failing node in the system must result in a response.4 That is, anyalgorithm used by the servie must eventually terminate. In some waysthis is a weak de�nition of availability: it puts no bound on how long thealgorithm may run before terminating, and therefore allows unbounded om-putation. On the other hand, when quali�ed by the need for partition toler-ane, this an be seen as a strong de�nition of availability: even when severenetwork failures our, every request must terminate.2.3 Partition ToleraneThe above de�nitions of availability and atomiity are quali�ed by the needto tolerate partitions. In order to model partition tolerane, the networkwill be allowed to lose arbitrarily many messages sent from one node toanother. When a network is partitioned, all messages sent from nodes inone omponent of the partition to nodes in another omponent are lost.(And any pattern of message loss an be modeled as a temporary partitionseparating the ommuniating nodes at the exat instant the message is lost.)The atomiity requirement (x2.1) therefore implies that every response willbe atomi, even though arbitrary messages sent as part of the algorithmmight not be delivered. The availability requirement (x2.2) implies that3Disussing atomi onsisteny is somewhat di�erent than talking about an ACIDdatabase, as database onsisteny refers to transations, while atomi onsisteny refersonly to a property of a single request/response operation sequene. And it has a di�erentmeaning than the Atomi in ACID, as it subsumes the database notions of both Atomiand Consistent.4Brewer originally only required almost all requests to reeive a response. As allowingprobabilisti availability does not hange the result when arbitrary failures our, forsimpliity we are requiring 100% availability.

every node reeiving a request from a lient must respond, even thougharbitrary messages that are sent may be lost. Note that this is similar towait-free termination in a pure shared-memory system: even if every othernode in the network fails (i.e. the node is in its own unique omponent of thepartition), a valid (atomi) response must be generated. No set of failuresless than total network failure is allowed to ause the system to respondinorretly.53 Asynhronous Networks3.1 Impossibility ResultIn proving this onjeture, we will use the asynhronous network model, asformalized by Lynh in Chapter 8 of [5℄. In the asynhronous model, thereis no lok, and nodes must make deisions based only on the messagesreeived and loal omputation.Theorem 1 It is impossible in the asynhronous network model to imple-ment a read/write data objet that guarantees the following properties:� Availability� Atomi onsistenyin all fair exeutions (inluding those in whih messages are lost).Proof: We prove this by ontradition. Assume an algorithm A exists thatmeets the three riteria: atomiity, availability, and partition tolerane. Weonstrut an exeution of A in whih there exists a request that returns aninonsistent response. The methodology is similar to proofs in Attiya etal. [1℄ and Lynh [5℄ (Theorem 17.6). Assume that the network onsistsof at least two nodes. Thus it an be divided into two disjoint, non-emptysets: fG1; G2g. The basi idea of the proof is to assume that all messagesbetween G1 and G2 are lost. If a write ours in G1, and later a read oursin G2, then the read operation annot return the results of the earlier writeoperation.More formally, let v0 be the initial value of the atomi objet. Let �1 bethe pre�x of an exeution of A in whih a single write of a value not equal to5Brewer pointed out in the talk that partitions of one node are irrelevant: they areequivalent to that node failing. However restriting our attention to partitions ontainingonly omponents of size greater than one does not hange any of the results in this note.

v0 ours in G1, ending with the termination of the write operation. Assumethat no other lient requests our in either G1 or G2. Further, assumethat no messages from G1 are reeived in G2, and no messages from G2are reeived in G1. We know that this write ompletes, by the availabilityrequirement. Similarly, let �2 be the pre�x of an exeution in whih asingle read ours in G2, and no other lient requests our, ending withthe termination of the read operation. During �2 no messages from G2 arereeived in G1, and no messages from G1 are reeived in G2. Again we knowthat the read returns a value by the availability requirement. The valuereturned by this exeution must be v0, as no write operation has ourredin �2.Let � be an exeution beginning with �1 and ontinuing with �2. To thenodes in G2, � is indistinguishable from �2, as all the messages from G1 toG2 are lost (in both �1 and �2, whih together make up �), and �1 does notinlude any lient requests to nodes in G2. Therefore in the � exeution,the read request (from �2) must still return v0. However the read requestdoes not begin until after the write request (from �1) has ompleted. Thistherefore ontradits the atomiity property, proving that no suh algorithmexists.Corollary 1.1 It is impossible in the asynhronous network model to im-plement a read/write data objet that guarantees the following properties:� Availability, in all fair exeutions,� Atomi onsisteny, in fair exeutions in whih no messages are lost.Proof: The main idea is that in the asynhronous model an algorithm has noway of determining whether a message has been lost, or has been arbitrarilydelayed in the transmission hannel. Therefore if there existed an algorithmthat guaranteed atomi onsisteny in exeutions in whih no messages werelost, then there would exist an algorithm that guaranteed atomi onsistenyin all exeutions. This would violate Theorem 1.More formally, assume for the sake of ontradition that there existsan algorithm A that always terminates, and guarantees atomi onsistenyin fair exeutions in whih all messages are delivered. Further, Theorem 1implies that A does not guarantee atomi onsisteny in all fair exeutions,so there exists some fair exeution � of A in whih some response is notatomi.At some �nite point in exeution �, the algorithm A returns a responsethat is not atomi. Let �0 be the pre�x of � ending with the invalid response.

Next, extend �0 to a fair exeution �00, in whih all messages are delivered.The exeution �00 is now a fair exeution in whih all messages are delivered.However this exeution is not atomi. Therefore no suh algorithm A exists.3.2 Solutions in the Asynhronous ModelWhile it is impossible to provide all three properties: atomiity, availability,and partition tolerane, any two of these three properties an be ahieved.3.2.1 Atomi, Partition TolerantIf availability is not required, then it is easy to ahieve atomi data andpartition tolerane. The trivial system that ignores all requests meets theserequirements. However we an provide a stronger liveness riterion: if allthe messages in an exeution are delivered, the system is available and alloperations terminate. A simple entralized algorithm meets these require-ments: a single designated node maintains the value of an objet. A nodereeiving a request forwards the request to the designated node, whih sendsa response. When an aknowledgment is reeived, the node sends a responseto the lient.Many distributed databases provide this type of guarantee, espeiallyalgorithms based on distributed loking or quorums: if ertain failure pat-terns our, then the liveness ondition is weakened and the servie no longerreturns responses. If there are no failures, then liveness is guaranteed.3.2.2 Atomi, AvailableIf there are no partitions, it is learly possible to provide atomi, availabledata. In fat, the entralized algorithm desribed in Setion 3.2.1 meetsthese requirements. Systems that run on intranets and LANs are an exampleof these types of algorithms.3.2.3 Available, Partition TolerantIt is possible to provide high availability and partition tolerane, if atomionsisteny is not required. If there are no onsisteny requirements, theservie an trivially return v0, the initial value, in response to every request.However it is possible to provide weakened onsisteny in an available, par-tition tolerant setting. Web ahes are one example of a weakly onsistent

network. In Setion 4.4 we onsider one of the possible weaker onsistenyonditions.4 Partially Synhronous Networks4.1 Partially Synhronous ModelThe most obvious way to try to irumvent the impossibility result of The-orem 1 is to realize that in the real world, most networks are not purelyasynhronous. If you allow eah node in the network to have a lok, it ispossible to build a more powerful servie.For the rest of this paper, we will assume a partially synhronous modelin whih every node has a lok, and all loks inrease at the same rate.However, the loks themselves are not synhronized, in that they may dis-play di�erent values at the same real time. In e�et, the loks at as timers:loal state variables that the proesses an observe to measure how muhtime has passed. A loal timer an be used to shedule an ation to oura ertain interval of time after some other event. Furthermore, assume thatevery message is either delivered within a given, known time: tmsg, or it islost. Also, every node proesses a reeived message within a given, knowntime: tloal, and loal proessing takes zero time. This an be formalized asa speial ase of the General Timed Automata model desribed by Lynh inChapter 23 of [5℄.4.2 Impossibility ResultIt is still impossible to have an always available, atomi data objet whenarbitrary messages may be lost, even in the partially synhronous model.That is, the following analogue of Theorem 1 holds:Theorem 2 It is impossible in the partially synhronous network model toimplement a read/write data objet that guarantees the following properties:� Availability� Atomi onsistenyin all exeutions (even those in whih messages are lost).Proof: This proof is rather similar to the proof of Theorem 1. We willfollow the same methodology: divide the network into two omponents,fG1; G2g, and onstrut an admissible exeution in whih a write happens

in one omponent, followed by a read operation in the other omponent.This read operation an be shown to return inonsistent data.More formally, onstrut exeution �1 as before in Theorem 1: a singlewrite request and aknowledgment our inG1, and all messages between thetwo omponents, fG1; G2g, are lost. We will onstrut the seond exeution,�02, slightly di�erently. Let �02 be an exeution that begins with a longinterval of time during whih no lient requests our. This interval mustbe at least as long as the entire duration of �1. Then append to �02 theevents of �2, as de�ned above in Theorem 1: a single read request andresponse in G2, again assuming all messages between the two omponentsare lost. Finally, onstrut � by superimposing the two exeutions �1 and�02. The long interval of time in �2 ensures that the write request ompletesbefore the read request begins. However, as in Theorem 1, the read requestreturns the initial value, rather than the new value written by the writerequest, violating atomi onsisteny.4.3 Solutions in the Partially Synhronous ModelIn the partially synhronous model, however, the analogue of Corollary 1.1does not hold. The proof of this orollary does in fat depend on nodesbeing unaware of when a message is lost. There are partially synhronousalgorithms that will return atomi data when all messages in an exeutionare delivered (i.e., there are no partitions), and will only return inonsistent(and, in partiular, stale) data when messages are lost. One example of suhan algorithm is the entralized protool desribed in Setion 3.2.1, modi�edto time-out lost messages. On a read (or write) request, a message is sentto the entral node. If a response from the entral node is reeived, then thenode delivers the requested data (or an aknowledgment). If no response isreeived within 2 � tmsg + tloal, then the node onludes that the messagewas lost. The lient is then sent a response: either the best known valueof the loal node (for a read operation), or an aknowledgment (for a writeoperation). In this ase, atomi onsisteny may be violated.4.4 Weaker Consisteny ConditionsWhile it is useful to guarantee that atomi data will be returned in exeu-tions in whih all messages are delivered (within some time bound), it isequally important to speify what happens in exeutions in whih some ofthe messages are lost. In this setion, we will disuss one possible weakeronsisteny ondition that allows stale data to be returned when there are

partitions, yet still plae formal requirements on the quality of the stale datareturned. This onsisteny guarantee will require availability and atomionsisteny in exeutions in whih no messages are lost, and is thereforeimpossible to guarantee in the asynhronous model as a result of Corollary1.1.In the partially synhronous model it often makes sense to base guar-antees on how long an algorithm has had to retify a situation. This on-sisteny model ensures that if messages are delivered, then eventually somenotion of atomiity is restored.In an atomi exeution, we would de�ne a partial order of the read andwrite operations, and then require that if one operation begins after anotherone ends, the former does not preede the latter in the partial order. We willde�ne a weaker guarantee, t-Conneted Consisteny, whih de�nes a partialorder in a similar manner, but only requires that one operation not preedeanother if there is an interval between the operations in whih all messagesare delivered.De�nition 3 A timed exeution, �, of a read-write objet is t-ConnetedConsistent if two riteria hold. First, in exeutions in whih no messagesare lost, the exeution is atomi. Seond, in exeutions in whih messagesare lost, there exists a partial order P on the operations in � suh that:1. P orders all write operations, and orders all read operations with re-spet to the write operations.2. The value returned by every read operation is exatly the one writtenby the previous write operation in P , or the initial value, if there isno suh previous write in P .3. The order in P is onsistent with the order of read and write requestssubmitted at eah node.4. Assume there exists an interval of time longer than t in whih nomessages are lost. Further, assume an operation, �, ompletes beforethe interval begins, and another operation, �, begins after the intervalends. Then � does not preede � in the partial order P .This guarantee allows for some stale data when messages are lost, butprovides a time limit on how long it takes for onsisteny to return, onethe partition heals. This de�nition an of ourse be generalized to provideonsisteny guarantees when only some of the nodes are onneted, and

when onnetions are available only some of the time. These generalizationswill be further examined in future work.A variant of the entralized algorithm desribed in Setion 4.3 is t-Conneted Consistent. Assume node C is the entralized node. The al-gorithm behaves as follows:� read at node A:A sends a request to C for the most reent value. If A reeives aresponse from C within time 2 � tmsg + tloal, it saves the value andreturns it to the lient. Otherwise, A onludes that a message waslost and it returns the value with the highest sequene number thathas ever been reeived from C, or the initial value if no value has yetbeen reeived from C. (When a lient read request ours at C, it atslike any other node, sending messages to itself.)� write at A:A sends a message to C with the new value. A waits 2 � tmsg + tloal,or until it reeives an aknowledgment from C, and then sends anaknowledgment to the lient. At this point, either C has learnedof the new value, or a message was lost, or both events ourred. IfA onludes that a message was lost, it periodially retransmits thevalue to C (along with all values lost during earlier write operations)until it reeives an aknowledgment from C. (As in the ase of readoperations, when a lient write request ours at C, it ats like anyother node, sending messages to itself.)� New value is reeived at C:C serializes the write requests that it hears about by assigning themonseutive integer tags. Periodially C broadasts the latest valueand sequene number to all other nodes.Theorem 4 The modi�ed entralized algorithm is t-Conneted onsistent.Proof: First, it is lear that in exeutions in whih no messages are lost,the operations are atomi. An exeution is atomi if every operation ats asif it is exeuted at a single instant; in this ase, that single instant ourswhen C proesses the operation. C serializes the operations, ensuring atomionsisteny in exeutions in whih all messages are delivered.Next, we examine exeutions in whih messages are lost. The partialorder, P is onstruted as follows. Write operations are ordered by the

sequene number assigned by the entral node. Eah read operation is se-quened after the write operation whose value it returns. It is lear by theonstrution that the partial order P satis�es riteria 1 and 2 of the de�ni-tion of t-Conneted onsisteny. As the algorithm handles requests in theorder reeived, riterion 3 is also learly true.In showing that the partial order respets riterion 4, there are fourases: write followed by read, write followed by write, read followed by read,and read followed by write. Let time t be long enough for a write operationto omplete (and for C to assign a sequene number to the new value), andfor one of the periodi broadasts from C to our.1. write followed by readAssume a write ours at Aw, after whih an interval of time longerthan t passes in whih all messages are delivered. After this, a readis requested at some node. By the end of the interval, two thingshave happened. First, Aw has noti�ed the entral node of the newvalue, and the write operation has been assigned a sequene number.Seond, the entral node has rebroadast that value (or a later valuein the partial order) to all other nodes during one of the periodibroadasts. As a result, the read operation does not return an earliervalue, and therefore it must ome after the write in the partial orderP .2. write followed by writeAssume a write ours at Aw, after whih an interval of time longerthan t passes in whih all messages are delivered. After this, a writeis requested at some node. As in the previous ase, by the end of theinterval in whih messages are delivered, the entral node has assigneda sequene number to the write operation at Aw. As a result, the laterwrite operation is sequened by the entral node after the �rst writeoperation. Therefore the seond write omes after the �rst write inthe partial order P .3. read followed by readAssume a read operation ours at Br, after whih an interval of timelonger than t passes in whih all messages are delivered. After this, aread is requested at some node. Let be the write operation whosevalue the �rst read operation at Br returns. By the end of the inter-val in whih messages are delivered, the entral node has assigned asequene number to , and has broadast the value of (or a latervalue in the partial order) to all other nodes. As a result, the seond

read operation does not return a value earlier in the partial order than . Therefore the seond read operation does not preede the �rst inthe partial order P .4. read followed by writeAssume a read operation ours at Br, after whih an interval of timelonger than t passes in whih all messages are delivered. After this,a write is requested at some node. Let be the write operationwhose value the �rst read operation at Br returns. By the end of theinterval in whih messages are delivered, the entral node has assigneda sequene number to , and as a result all write operations beginningafter the interval are serialized after . Therefore the write operationdoes not preede the read operation in the partial order P .Therefore, P satis�es riterion 4 of the de�nition, and this algorithm ist-Conneted Consistent.5 ConlusionIn this note, we have shown that it is impossible to reliably provide atomi,onsistent data when there are partitions in the network. It is feasible,however, to ahieve any two of the three properties: onsisteny, availability,and partition tolerane. In an asynhronous model, when no loks areavailable, the impossibility result is fairly strong: it is impossible to provideonsistent data, even allowing stale data to be returned when messages arelost. However in partially synhronous models it is possible to ahieve apratial ompromise between onsisteny and availability. In partiular,most real-world systems today are fored to settle with returning \most ofthe data, most of the time." Formalizing this idea and studying algorithmsfor ahieving it is an interesting subjet for future theoretial researh.AknowledgmentsWe thank Eri Brewer for his interesting PODC talk, for providing us withhis talk slides and notes, and for enouraging us in writing this note. Wealso thank Charles Leiserson for suggesting this problem and for interestingand helpful disussions.

Referenes[1℄ Hagit Attiya, Amotz Bar-Noy, Danny Dolev, Daphne Koller, David Pe-leg, and R�udiger Reishuk. Ahievable ases in an asynhronous environ-ment. In 28th Annual Symposium on Foundations of Computer Siene,pages 337{346, Los Angeles, California, Otober 1987.[2℄ Eri A. Brewer. Towards robust distributed systems. (Invited Talk)Priniples of Distributed Computing, Portland, Oregon, July 2000.[3℄ Maurie P. Herlihy and Jeannette M. Wing. Linearizability: A orret-ness ondition for onurrent objets. ACM Transations on Program-ming Languages and Systems, 12(3):463{492, July 1990.[4℄ Leslie Lamport. On interproess ommuniation { parts I and II. Dis-tributed Computing, 1(2):77{101, April 1986.[5℄ Nany Lynh. Distributed Algorithms. Morgan Kaufman, 1996.

