
Transactions
Kathleen Durant PhD

Northeastern University CS3200

Lesson 9

1

Outline for the day

• The definition of a transaction

• Benefits provided

• What they look like in SQL

• Scheduling Transactions

• Serializability

• Recoverability

2

What is a transaction?

• A transaction is a collection of operations treated as a single
logical operation

• Typically carried out by a single user or an application program

• Reads or updates the contents of a database

• A transaction is a ‘logical unit of work’ on a database

• Each transaction does something in the database

• No part of it alone achieves anything of use or interest to a user

• Transactions are the unit of recovery, consistency, and
integrity of a database

• A transaction is the DBMS’s abstract view of a user program:
a sequence of reads and writes.

3

Transactions: ACID Properties

• Atomicity: either the entire set of operations happens or
none of it does

• Consistency: the set of operations taken together should
move the system for one consistent state to another
consistent state.

• Isolation: each system perceives the system as if no other
transactions were running concurrently (even though odds
are there are other active transactions)

• Durability: results of a completed transaction must be
permanent - even IF the system crashes

4

Why the concept of a transaction?

• Real world events require the manipulation of multiple data
items

• Examples:

• A patient’s admission to a hospital

• Transfer of money from checking to savings

• Adding an additional column to a table

• Purchase of an item on a website

• Any other examples?

5

Example of a transaction

Transfer $50 from account A
($200) to account B ($50)

Read(A);

A -= 50;

Write(A);

Read(B);

B += 50;

Write(B);

ACID

• Atomicity - shouldn’t take
money from A without
giving it to B

• Consistency - money isn’t
lost or gained

• Isolation - other queries
shouldn’t see A or B
change until transaction is
completed

• Durability - the money
does not go back to A is
transaction was marked as
committed

Transaction

6

Transaction Commands

• Begin a transaction with the My SQL command:

• START TRANSACTION;

• Transactions complete via 2 different input

• COMMIT;

• ROLLBACK;

7

Transaction Outcomes

• Can have one of two outcomes:

• Success - transaction commits and database reaches a new
consistent state.

• Failure - transaction aborts, and database must be restored to a
consistent state before it started.

• Such a transaction is rolledback or undone.

• Committed transaction cannot be aborted.

• An aborted transaction that is rolled back can be restarted
later.

8

Life of a transaction via a FSM

Failed Aborted

Partially
committed Committed

Active

BEGIN
TRANSACTION

Rollback

Commit

Simple state machine should help prove the correctness of algorithm

Rollback

9

Transaction Abort/Rollback

• Rollback signals the unsuccessful end of a transaction

• Returns the system to the state it was in before the
transaction began

• System state must be the same as if the transaction had never
existed

• Must abort any transactions that depend on the outcome of
the aborting transaction

10

Transaction Commit

• COMMIT signals the successful end of a Transaction

• Any changes made by the transaction should be saved

• These changes are now visible to other transactions

• Declare the transaction permanently complete

• If you commit:

• No actions should be able to move the DBMS to a state not
containing the results of the transaction

• All operations must be forever persistent in the database

11

Serial Schedule
• Simplest way to support transaction semantics is to require that each

transaction run to completion before the next one begins

• A schedule is a sequence of the operations by a set of concurrent
transactions that preserves the order of operations in each of the
individual transactions

• A serial schedule is a schedule where operations of each transaction
are executed consecutively without any interleaved operations from
other transactions (each transaction commits before the next one is
allowed to begin)

• Serial schedule - actual transaction does have the whole database to
itself

• This is not a solution for the real world

• Cannot overlap I/O operations and computation

• Multiple cores or processors are sitting idle

• Workload may just be really heavy

• Response times get long as well as variable

• Short transactions must wait for long ones to finish

13

Concurrency Control

Process of managing simultaneous operations on the database
without having them interfere with one another.

• Prevents interference when two or more users are accessing
the database simultaneously and at least one is updating
data.

• Although two transactions may be correct in themselves,
interleaving of operations may produce an incorrect result.

14

Serializableschedule: alternative
to simple serial schedule
• Multiple transactions running: we know that the execution of

a set of simultaneous transactions is correct if it obeys the
ACID properties

• More formally:

• Define the sequence of operations performed is a schedule.

• Define the sequence of operations performed when running each
transaction serially a serial schedule.

• Any schedule that corresponds to a serial schedule is correct.

15

Schedule for a transaction

• Actions are reads and writes to the DB

• Transaction: transfer money from account A to account B

Actual Execution Schedule

Read(A balance) Read(a)

A balance -=50

Write (A balance) Write(a)

Read(B balance) Read(b)

B_balance +=50;

Write(B_balance) Write(b)

16

Two transactions
• Transfer $50 from Account A to Account B (T1)

• Pay 2% interest to each account (T2)

• There is no guarantee that T1 will execute before T2 or vice-
versa, if both are submitted together.

• However, the net effect must be equivalent to these two
transactions running serially in some order. T2 followed by T1 or
T1 followed by t2

Time

T1 T2

Time

T2 T1

17

Either Final Balance is Correct
Account A starting balance = $50
Account B starting balance = $200
T1: Transfer $50 from Account A to Account B
T2: Pay 2% interest to each account

T2 then T1

• Apply T2

• Account A = $51

• Account B = $204

• Apply T1

• Account A = $1

• Account B = $254

T1 then T2

• Apply T1

• Account A = $0

• Account B = $250

• Apply T2

• Account A = $0

• Account B = $255.
18

Examples of Incorrect Schedules

• Increase Balance B by
$50

• Increase Balance B by
2%

• Increase Balance A by
2%

• Decrease Balance A by
$50

Ending Balances

• Balance B = $255

• Balance A = $1

• Increase Balance B by
2%

• Increase Balance B by
$50

• Decrease Balance A by
$50

• Increase Balance A by
2%

• Ending Balances

• Balance B = $254.

• Balance A = $0 19

Account A starting balance = $50
Account B starting balance = $200

Two parallel transactions
• Transfer $50 from Account A to Account B

• Pay 2% interest to each account

Your Transaction Bank’s Transaction Your Transaction Bank Transaction

Read(A) Read(A)

A balance -=$50

Write(A balance) Write(A)

Read (A balance) Read(A)

A Balance *= 1.02

Write(A balance) Write(A)

Read(B balance) Read(B)

B Balance *= 1.02

Write(B Balance) Write(B)

Read(B Balance) Read(B)

B Balance +=$50

Write(B Balance) Write(B)

Bank pays less interest

20

Serializability

• Objective of a concurrency control protocol is to
schedule transactions in such a way as to avoid any
interference.

• Could run transactions serially, but this limits degree
of concurrency or parallelism in the system.

• Serializability identifies those executions of
transactions guaranteed to ensure consistency.

Pearson Education © 2014 21

21

Serializability

Schedule

Sequence of reads/writes by set of concurrent transactions.

Serial Schedule

Schedule where operations of each transaction are executed
consecutively without any interleaved operations from other
transactions.

• No guarantee that results of all serial executions of a given
set of transactions will be identical.

Pearson Education © 2014 22

22

Nonserial Schedule

• Schedule where operations from set of concurrent
transactions are interleaved.

• Objective of serializability is to find nonserial schedules
that allow transactions to execute concurrently without
interfering with one another.

• In other words, want to find nonserial schedules that are
equivalent to some serial schedule. Such a schedule is
called serializable.

Pearson Education © 2014 23

23

Serializability

• In serializability, ordering of read/writes is
important:

(a) If two transactions only read a data item, they do
not conflict and order is not important.

(b) If two transactions either read or write separate
data items, they do not conflict and order is not
important.

(c) If one transaction writes a data item and another
reads or writes same data item, order of
execution is important.

Pearson Education © 2014 24

24

Lost UpdateProblem

• Successfully completed update is overridden
by another user.

• T1 withdrawing $10 from an account with balx,
initially $100.

• T2 depositing $100 into same account.

• Serially, final balance would be $190.

Pearson Education © 2014 25

25

Lost UpdateProblem

• Loss of T2’s update avoided by preventing T1 from
reading balx until after update.

Pearson Education © 2014 26

26

UncommittedDependencyProblem

• Occurs when one transaction can see
intermediate results of another transaction
before it has committed.

• T4 updates balx to $200 but it aborts, so balx
should be back at original value of $100.

• T3 has read new value of balx ($200) and uses
value as basis of $10 reduction, giving a new
balance of $190, instead of $90.

Pearson Education © 2014 27

27

UncommittedDependencyProblem

• Problem avoided by preventing T3 from reading balx until
after T4 commits or aborts.

Pearson Education © 2014 28

28

InconsistentAnalysis Problem

• Occurs when transaction reads several values but
second transaction updates some of them during
execution of first.

• Sometimes referred to as dirty read or unrepeatable
read.

• T6 is totaling balances of account x ($100), account y
($50), and account z ($25).

• Meantime, T5 has transferred $10 from balx to balz, so
T6 now has wrong result ($10 too high).

Pearson Education © 2014 29

29

InconsistentAnalysis Problem

• Problem avoided by preventing T6 from reading balx and balz
until after T5 completed updates.

Pearson Education © 2014 30

30

Recoverability

• Since we need to fix things up after a failed transaction in
addition to serializability we also need recoverability

• If transaction Tj depends on transaction Ti and Ti aborts, then
Tj must also abort

• Thus our goal is to find schedules that are
both serializable and recoverable

31

An Unrecoverable Schedule

• What do we have to do when T1 aborts?

• Undo both T1 & T2.

• Since T2 is already committed this is called an Unrecoverable
schedule

Schedule Unrecoverable

T1 T2

20 Read (A)

30 Write (A)

30 Read (A)

40 Write (A)

Read (B) Commit

Rollback

T2 Commits

T1 Aborts

32

Aborting transactions
• All actions of aborted transactions have to be undone

• Dirty read can result in unrecoverable schedule

• T1 writes A, then T2 reads A and makes modifications based on
A’s value

• T2 commits, and later T1 is aborted

• T2 worked with invalid data and hence has to be aborted as
well; but T2 already committed…

• Recoverable schedule: cannot allow T2 to commit until T1 has
committed

• Can still lead to cascading aborts

33

Aborting transactions

• Data produced by an uncommitted
transaction is called dirty

• If a transaction produced dirty data and
then aborts then all transactions that read
the dirty data must also abort

• Such abort dependencies are called
cascading aborts and should be avoided

• Why? Performance impact
Complicated to maintain dependency relationships
What if events are user visible?

34

Preventing anomalies through
locking
• DBMS can support concurrent transactions while preventing

anomalies by using a locking protocol

• If a transaction wants to read an object, it first requests a shared
lock (S-lock) on the object

• If a transaction wants to modify an object, it first requests an
exclusive lock (X-lock) on the object

• If requested lock is not available – then the transaction waits

• Multiple transactions can hold a shared lock on an object

• At most one transaction can hold an exclusive lock on an
object

35

Lock-based Concurrency
control
• Strict Two-phase Locking (Strict 2PL) Protocol:

• Each transaction must obtain the appropriate lock before
accessing an object.

• All locks held by a transaction are released when the transaction
is completed.

• All this happens automatically inside the DBMS

• Strict 2PL allows only serializable schedules.

• Prevents all the anomalies shown earlier

• Two phases in lock algorithm

• Growing phase where locks are acquired on resources

• Shrinking phase where locks are released

36

Phantom Problem

• Assume initially the youngest sailor is 20 years old
• T1 contains this query twice

• SELECT rating, MIN(age) FROM Sailors (Query Q)

• T2 inserts a new sailor with age 18

• Consider the following schedule:

• T1 runs query Q, T2 inserts new sailor, T1 runs query Q again
• T1 sees two different results! Unrepeatable read.

• Would Strict 2PL prevent this?

• Assume T1 acquires Shared lock on each existing sailor tuple
• T2 inserts a new tuple, which is not locked by T1

• T2 releases its Exclusive lock on the new sailor before T1 reads
Sailors again

• What went wrong? 37

Lock level of objects
• T1 cannot lock a tuple that T2 will insert

• …but T1 could lock the entire Sailors table

• Now T2 cannot insert anything until T1 completed

• What if T1 computed a slightly different query:

• SELECT MIN(age) FROM Sailors WHERE rating = 8

• Now locking the entire Sailors table seems excessive, because
inserting a new sailor with rating <> 8 would not create a problem

• T1 can lock the predicate [rating = 8] on Sailors

• General challenge: DBMS needs to choose appropriate
granularity for locking

38

Deadlocks

• Assume T1 and T2 both want to read and write objects A and
B
• T1 acquires X-lock on A;

• T2 acquires X-lock on B

• Now T1 wants to update B, but has to wait for T2 to release its
lock on B

• But T2 wants to read A and also waits for T1 to release its lock
on A

• Strict 2PL does not allow either to release its locks before the
transaction completed. Deadlock!

• DBMS can detect this

• Automatically breaks deadlock by aborting one of the involved
transactions
• Tricky to choose which one to abort: work performed is lost

39

Performance of Locking

• Locks force transactions to wait
• Abort and restart due to deadlock wastes the work done by the

aborted transaction

• In practice, deadlocks are rare, e.g., due to lock downgrades
approach

• Waiting for locks becomes bigger problem as more
transactions execute concurrently
• Allowing more concurrent transactions initially increases

throughput, but at some point leads to thrashing

• Need to limit maximum number of concurrent transactions to
prevent thrashing

• Minimize lock contention by reducing the time a transaction
holds locks and by avoiding hotspots (objects frequently
accessed) 40

Controlling Locking Overhead
• Declaring transaction as “READ ONLY” increases concurrency

• Isolation level: trade off concurrency against exposure of
transaction to other transaction’s uncommitted changes

• Degrees of serializability

Isolation level Dirty Read Unrepeatable
Read

Phantom

READ
UNCOMMITTED

Maybe Maybe Maybe

READ COMMITTED No Maybe Maybe

REPEATABLE READ No No Maybe

SERIALIZABLE No No No

41

Locking versus Isolation level

• SERIALIZABLE: obtains locks on (sets of) accessed objects and
holds them until the end

• REPEATABLE READ: same locks as for serializable transaction,
but does not lock sets of objects at higher level

• READ COMMITTED: obtains X-locks before writing and holds
them until the end; obtains S-locks before reading, but
releases them immediately after reading

• READ UNCOMMITTED: does not obtain S-locks for reading;
not allowed to perform any writes

• Does not request any locks ever

42

My SQL and transactions

• A transaction is implicitly created every time you issue a SQL
command (called AUTOCOMMIT)

• SQL transactions must be serializable and recoverable, where
serializable is defined as having the same effect as a serial
execution

• Commit transaction with commit;

• Abort transaction with rollback;

43

Precedence Graph

• To determine if a schedule is conflict serializable we use a
precedence graph

• Transactions are vertices of the graph

• There is an edge from T1 to T2 if T1 must happen before T2 in
any equivalent serial schedule

• Edge T1 -> T2 if in the schedule we have:

• T1 Read(R) followed by T2 Write(R) for the same resource R

• T1 Write(R) followed by T2 Read(R)

• T1 Write(R) followed by T2 Write(R)

• The schedule is serializable if there are no cycles

44

Are these schedules view
equivalent?

• No – In Schedule U T2 reads initial value of B

• While in Schedule T T1 reads initial value of B

Schedule U

T1 T2

Read (A)

Write (A)

Read (A)

Write (A)

Read (B)

Write (B)

Read (B)

Write (B)

Schedule T

T1 T2

Read (A)

Write (A)

Read (A)

Write (A)

Read (B)

Write (B)

Read (B)

Write (B)

46

Summary

• Concurrency control is one of the most important functions
provided by a DBMS.

• Users need not worry about concurrency.

• System automatically inserts lock/unlock requests and can
schedule actions of different transactions in such a way as to
ensure that the resulting execution is equivalent to executing the
transactions one after the other in some order.

• DBMS automatically undoes the actions of aborted
transactions.

• Consistent state: Only the effects of committed transactions
seen.

47

