Embedded SQL & JDBC

Kathleen Durant
CS 3200

Outline for today

* SQL in application code such as C++ and Java
* Embedded SQL

* Cursors

* Dynamic SQL

* JDBC

« SQU

* Stored procedures

Database API’s

* Rather than modify the compiler, add a library with database
calls (API)

Special standardized interface: procedures/objects

Pass SQL strings from language, presents result sets in a
language-friendly way

Sun’s JDBC: Java API

Supposedly DBMS-neutral

* A “driver” traps the calls and translates them into DBMS
specific code

database can be across a network

Embedded SQL

CH# application

PHP application Javaapplication

Mysqli or PDO J0EE ADO.NET

Java Driver Net Driver
Connector/) Connector/Net

Download the driver you want

I https://wwiv. mysql.com/products/connector/
MySQL Connectors

MySQL provides standards-based drivers for |DBC, ODBC, and .Net enabling developers to buil

Developed by MySQL

ADO.NET Driver for MySQL (Connector/MNET) Download
QDBC Driver for MySQL (Connecter/QDBC) Download
|DBC Driver for MySQL (Connector/]) Download
Pythan Driver for MySQL (Connector/Python) Download
C++ Driver for MySQL (Connector/C++) Download
C Driver for MySQL (Connectar/C) Download
C APl for MySQL (mysqlclient) Download

hese drivers are developed and maintained by the MySQL Community.

Developed by Community

PHP Drivers for MySQL Download
(mysqli, ext/mysqli, PDO_MYSQL, PHP_MYSQLND)

Perl Driver for MySQL (DED:mysqgl) Download
Ruby Driver for MySQL (ruby-mysgl) Download

C++ Wrapper for MySQL C APl {MySQL++) Download

SQL code in other programming
languages

* SQL commands can be called from within a host language
(e.g., C++ or Java) program.

SQL statements can refer to host variables (including special
variables used to return status).

Must include a statement to connect to the right database.
* Two main integration approaches:

Embed SQL in the host language (Embedded SQL, SQLUJ)

Create special APl to call SQL commands (JDBC)

[ssues with Embedded SQL

* SQL relations are (multi-) sets of records, with no a priori bound on
the number of records.

* No such data structure exist traditionally in procedural
programming languages

SQL supports a mechanism
called a cursor to handle this.

Embed SQL in the host
language

* How does it work?

A preprocessor converts the SQL statements into specific APl calls.
Compiler takes preprocessed file as input
* Supporting Language constructs:

Connecting to a database:

EXEC SQL CONNECT
Declaring variables:

EXEC SQL BEGIN SECTION

<DECLARATIONS>
END DECLARE SECTION

Statements:
EXEC SQL Statement;

Example: Embedded SQL
Declare

Special variables at least one needs to be declared by your code for
error handling

SQLCODE (long, is negative if an error has occurred)
SQLSTATE (char[6], predefined codes for common errors)

User Variables
EXEC SQL BEGIN DECLARE SECTION
char c_sname[20];
long c_sid;
short c_rating;
float c_age;
EXEC SQL END DECLARE SECTION

Handling multisetsin your
Application

* Can DECLARE a cursor on a relation or query statement
OPEN a cursor
repeatedly FETCH a tuple
then MOVE the cursor until all tuples have been retrieved.

Can use a special clause, called ORDER BY, in queries that are
accessed through a cursor, to control the order in which tuples are
returned.

Fieldsin ORDER BY clause must also appearin SELECT clause
Restriction typically not true when ORDER BY used without cursor

* Can also modify/delete tuple pointed to by a cursor.

ANSWER: CURSOR

Declare a cursor: state what
multiset you are perusing

Peruse the sailor’s names that have reserved a red boat

EXEC SQL DECLARE sinfo CURSOR FOR
SELECT S.sname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
AND B.color=‘red’” ORDER BY S.sname

General declaration of a cursor

DECLARE cursorname [INSENSITIVE | SCROLL | CURSOR] [WITH HOLD]

FOR some query
[ORDER BY order-item-list]
[FOR READ ONLY | FOR UPDATE]

Define the scope of the cursors operation with:
[FOR READ ONLY | FOR UPDATE] DEFAULT VALUE
Determine the order of the return values with:
[ORDER BY order-item-list]
Cannot update a field that you use to order your return set
SCROLL provides more powerful cursor positioningthan just the FETCH operation
Seek functionality within the cursor
MY SQL seems to have problems with this functionality
INSENSITIVE -Grabs a local copy of the multiset (INSENSITIVE TO CHANGES)
- Do NOT UPDATE my multiset while | am working on it
- Emulatedin MY SQL via a temporary file
WITH HOLD — Do not release the cursor at the end of the transaction

Example: Printall sailor’s age and
name with a rating greater than 5

* EXECSQL BEGIN DECLARE SECTION : :
Variable Declarations:

char c_sname([20]; Variablesused in the
short c_minrating; SQL statement
float c_age;
EXEC SQL END DECLARE SECTION

Cc_minrating = 5;
EXEC SQL DECLARE sinfo CURSOR FOR Cursor Declaration
SELECT S.sname, S.age FROM Sailors S
WHERE S.rating > :c_minrating ORDERBY S.sname;
do { Do some work with the
EXEC SQL FETCH sinfo INTO :c_sname, :c_age; |declaredvariables
printf(“%s is %d years old\n”, ¢_sname, c_age);
} while (SQLSTATE < ‘02000’); Until Last record

EXEC SQL CLOSE sinfo; Close the cursor

SQL Errors: SQLSTATE return values

Success "00000"
Success, but no rows found "02000"
Success, but warnings generated "01"
Failure, Runtime Error Generated > “02”

* SQLSTATE return values are standardized and determined by SQL standard 92

* SQLSTATE values are comprised of a two-character class code value, followed by a
three-character subclass code value

* Complete table at:

* http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.isp?topic=%2Fcom.ib
m.db2z10.doc.codes%2Fsrc%2 Ftpck2Fdb2z sqglstatevalues.htm

* https://dev.mysql.com/doc/refman/5.6/en/mysql-sqlstate.html

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db2z10.doc.codes/src/tpc/db2z_sqlstatevalues.htm

SQLSTATE in My SQL

* Use mysql_sqlstate()
const char *mysql_sqlstate(MYSQL *mysql)

To get the result for the last executed SQL statement

https://dev.mysal.com/doc/refman/5.6/en/mysqgl-sqglstate.html

https://dev.mysql.com/doc/refman/5.0/en/mysql-sqlstate.html

Dynamic SQL

* What if you do not know what data you are looking for until
your program is running

* The data you want is determined by user input or some other
event that occurs after compilation time

* Can construct the queries on the fly via a well defined
algorithm

ANSWER: Dynamic SQL

Dynamic SQL example

char c_sqlstring[]=

{“DELETE FROM Sailors WHERE rating>5"};

EXEC SQL PREPARE readytogo FROM :c_sqlstring;
EXEC SQL EXECUTE readytogo;

MY SQL Dynamic SQL stored procedure

DECLARE TableName VARCHAR(32);

SET @Selectedld = NULL;

SET @s := CONCAT("SELECT Id INTO @Selectedld FROM ", TableName,
" WHERE param=val LIMIT 1");

PREPARE stmt FROM @s;

EXECUTE stmt;

DEALLOCATE PREPARE stmt;

PREPARE command:
Parses the query,
Determine the execution plan
Associates an identifier (handle) with the statement (stmt)
This statement can be executed again, and again, and again (18 J
Execute statement can actually take parameters

PREPARE: passing parameters

PREPARE stmt FROM ‘SELECT COUNT(*) FROM
information_schema.schemata where schema_name = ?‘

SET @schema := 'test';
EXECUTE stmt USING @schema;
* Parameter binding occurs in a positional manner

* PREPARE stmt FROM 'select count(*) from
information_schema.schemata WHERE schema_name =? OR
schema_name =7?‘

* EXECUTE stmt USING @schema, @schemal

JDBC Processing

* Steps to submit a database query:
Load the JDBC driver
Connect to the data source
Execute SQL statements

JDBC Architecture: 4 components

» Application (initiates and terminates
connections, submits SQL statements)

* Driver manager (load JDBC driver)

* Driver (connects to data source, transmits
requests and returns/translates results and error
codes)

* Data source (processes SQL statements)

JDBC: Driver Manager

* All drivers are managed by the DriverManager class
Loading a JDBC driver:

In the Java code:
Class.forName(“oracle/jdbc.driver.Oracledriver”); /Oracle
Class.forName("com.mysql.jdbc.Driver"); /My SQL

* When starting the Java application:
-Djdbc.drivers=oracle/jdbc.driver

* Or provide the driver in the CLASSPATH directory

Connecting to DB via JDBC

Interact with a data source through sessions. Each connection identifies a logical session.
JDBC URL:
jdbc:<subprotocol>:<otherParameters>

Example:

//Define URL of database server for

// database named mysql on the localhost

// with the default port number 3306.

String url =

"jdbc:mysql://localhost:3306/mysql";

//Get a connection to the database for a user named root with a root password.
// This user is the default administrator having full privileges to do anything.
Connection con = DriverManager.getConnection(url,"root", "root");

//Display URL and connection information
System.out.printIn("URL: " + url);
System.out.printIn("Connection: " + con);

Connection Class Interface

public int getTransactionlsolation() and
void setTransactionlsolation(int level)
Sets isolation level for the current connection.
public boolean getReadOnly() and void setReadOnly(boolean b)
Specifies whether transactions in this connection are readonly
public boolean getAutoCommit()

and void setAutoCommit(boolean b)

If autocommitis set, then each SQL statement is considered its own
transaction. Otherwise, a transaction is committed using commit(), or
aborted using rollback().

public boolean isClosed()
Checks whether connection is still open.

Executing SQL Statements

* Three different methods to execute SQL statements:
Statement (both staticand dynamic SQL statements)
PreparedStatement (semi-static SQL statements)
CallableStatment (stored procedures)

* PreparedStatement class: Precompiled, parametrized SQL
statements:

Structure of the SQL statement is fixed
Values of parameters are determined at run-time

PreparedStatement: Passing and
defining Parameters

String sql="“INSERT INTO Sailors VALUES(?,?,?,?)”;
PreparedStatment pstmt=con.prepareStatement(sql);
pstmt.clearParameters();

pstmt.setint(1,sid);

ostmt.setString(2,sname); Parameters are positional
pstmt.setint(3, rating);
pstmt.setFloat(4,age);

// No return rows use executeUpdate()

int numRows = pstmt.executeUpdate();

Result Sets

PreparedStatement.executeUpdate only returns the number
of affected records

PreparedStatement.executeQuery returns data, encapsulated
in a ResultSet object (a cursor)

ResultSet rs=pstmt.executeQuery(sql);

// rs is now a cursor
While (rs.next()) {
* // process the data

°)

ResultSet: Cursor with seek
functionality

* A ResultSet is a very powerful cursor:

previous(): moves one row back
absolute(int num): moves to the row with the specified number

relative (int num): moves forward or backward
first() and last()

Javato SQL Data Types and Result
methods

SQL Type m Result Set get method

Boolean getBoolean()
CHAR String getString()
VARCHAR String getString()
DOUBLE Double getDouble()
FLOAT Double getDouble()
INTEGER Integer getint()
REAL Double getFloat()
DATE Java.sqgl.Date getDate()
TIME Java.sql.Time getTime()
TIMESTAMP Java.sgl.Timestamp getTimestamp()

(2]

JDBC: Processing exceptions and
warnings

* Most of java.sqgl can throw an error and set SQLException
when an error occurs
* SQLWarning is a subclass of SQLException
Not as severe as an error
They are not thrown
Code has to explicitly test for a warning

Example of catching and error

try {
stmt=con.createStatement();

warning=con.getWarnings();
while(warning != null) {
// handle SQLWarnings;
warning = warning.getNextWarning():
}
con.clearWarnings();
stmt.executeUpdate(queryString);
warning = con.getWarnings();

}//end try
catch(SQLException SQLe) {
// handle the exception

Examining Metadata on the DB

DatabaseMetaData object gives information about the database
system and the catalog.

DatabaseMetaData md = con.getMetaData();
// print information about the driver:
System.out.printin(

“Name:” + md.getDriverName() +

“version: ” + md.getDriverVersion());

Metadata: Print out table and its
columns

DatabaseMetaData md=con.getMetaData();

ResultSet trs=md.getTables(null,null,null,null);

String tableName;

While(trs.next()) {
tableName = trs.getString(“TABLE_NAME”);
System.out.printin(“Table: “ + tableName);
//print all attributes
ResultSet crs = md.getColumns(null,null,tableName, null);
while (crs.next()) {

System.out.printin(crs.getString(“COLUMN_NAME” + “, “);

}

(2]

}
http://docs.oracle.com/javase/7/docs/api/java/sqgl/DatabaseMetaData.html

Connect, Process, Check errors

Connection con = // connect Connect
DriverManager.getConnection(url,”login", ”pass");

Statement stmt = con.createStatement(); // set up stmt
String query = "SELECT name, rating FROM Sailors";]
ResultSet rs = stmt.executeQuery(query); Get multiset
try { // handle exceptions

// loop through result tuples

while (rs.next()) { .
String s = rs.getString(“name"); Process with cursor

Int n = rs.getFloat(“rating");

System.out.printin(s+ " " + n);
}
} catch(SQLException ex) {
System.out.printin(ex.getMessage () + CatCh Errors

ex.getSQLState () + ex.getErrorCode ());

SQLJ

* Complements JDBCwith a (semi-)static query model: Compiler can
perform syntax checks, strong type checks, consistency of the query
with the schema

All arguments always bound to the same variable:
#sqgl = { SELECT name, rating INTO :name, :rating FROM Books WHERE
sid = :sid;
* Compare to JDBC:
sid=rs.getInt(1);
if (sid==1) {sname-=rs.getString(2);}
else { sname2=rs.getString(2);}

SQLJ (part of the SQL standard) versus
embedded SQL (vendor-specific)

SQLJ Code

Int sid; String name; Int rating;
// named iterator
#sql iterator Sailors(Int sid, String name, Int rating);
Sailors sailors;
// assume that the application sets rating
#sailors = {
SELECT sid, sname INTO :sid, :name
FROM Sailors WHERE rating = :rating
Iy
// retrieve results

while (sailors.next()) {
System.out.printin(sailors.sid + “ “ + sailors.sname));

}

sailors.close();

SQLJ Iterators

* Two types of iterators (“cursors”):
* Named iterator

Need both variable type and name, and then allows retrieval of columns
by name.

See example on previous slide.
* Positional iterator
Need only variable type, and then uses FETCH .. INTO construct:
#sql iterator Sailors(Int, String, Int);
Sailors sailors;
#sailors = ...
while (true) {
#sql {FETCH :sailors INTO :sid, :name};
if (sailors.endFetch()) { break; }
// process the sailor

Stored procedures

* Program executed through a single SQL statement
* Executed in the process space of the server

* Advantages:

Can encapsulate application logic while staying “close” to the
data

Reuse of application logic by different users
Avoid tuple-at-a-time return of records through cursors

Stored Procedure: Examples

* CREATE PROCEDURE ShowNumReservations

SELECT S.sid, S.sname, COUNT(*) FROM Sailors S, Reserves R
WHERE S.sid = R.sid GROUP BY S.sid, S.sname

* Create procedure can have parameters
Three different modes: IN, OUT, INOUT

* CREATE PROCEDURE IncreaseRating(
IN sailor_sid INTEGER, IN increase INTEGER)
UPDATE Sailors
SET rating = rating + increase
WHERE sid = sailor_sid

Calling stored procedures

EXEC SQL BEGIN DECLARE SECTION
Int sid;
Int rating;
EXEC SQL END DECLARE SECTION

// now increase the rating of this sailor
EXEC CALL IncreaseRating(:sid,:rating);

Stored Procedures can be written
in other languages

* CREATE PROCEDURE TopSailors(
IN num INTEGER)
LANGUAGE JAVA
EXTERNAL NAME
“file:///c:/storedProcs/rank.jar”

Calling procedures from JDBC,
SQLJ

JDBC: SQLJ
CallableStatement cstmt= #sql iterator
con.prepareCall(“{call ShowsSailors(...);
ShowSailors}); ShowSailors showsailors;
ResultSet rs = #sql showsailors={CALL
cstmt.executeQuery(); ShowSailors};
while (rs.next()) { while (showsailors.next())
//process data ... {
} /process data ...

SQL/PSM

* Most DBMSs allow users to write stored
procedures in a simple, general-purpose
language (close to SQL) SQL/PSM standard

IS a representative

* Declare a stored procedure:
CREATE PROCEDURE name(p1, p2, ..., pn)
local variable declarations
procedure code;
* Declare a function:
CREATE FUNCTION name (p1, ..., pn) RETURNS sqglDataType
local variable declarations
function code

CREATE A FUNCTION

CREATE FUNCTION rate Sailor
IN sailorld INTEGER)
RETURNS INTEGER
DECLARE rating INTEGER
DECLARE numRes INTEGER
SET numRes = (SELECT COUNT(*) FROM Reserves R
WHERE R.sid = sailorld)
IF (humRes > 10) THEN rating =1;
ELSE rating = 0;
END IF;
RETURN rating;

Function constructs

Local variables (DECLARE)
RETURN values for FUNCTION
Assign variables with SET

Branches and loops:
IF (condition) THEN statements;
ELSEIF (condition) statements;
... ELSE statements; END IF;
LOOP statements; END LOOP

Queries can be parts of expressions

Can use cursors naturally without “EXEC SQL”

Summary

* Embedded SQL allows execution of parameterized static
queries within a host language

* Dynamic SQL allows execution of completely ad hoc queries
within a host language

* Cursor mechanism allows retrieval of one record at a time and
bridges impedance mismatch between host language and SQL

* APIs such as JDBC introduce a layer of abstraction between
application and DBMS

* SQLJ: Static model, queries checked at compile-time.

 Stored procedures execute application logic directly at the
server

* SQL/PSM standard for writing stored procedures

MySQL Connectors

* ODBC (MySQL Connector/ODBC (sometimes called just
Connector ODBC or MyODBC)

A driver for connecting to a MySQL database server through the
Open Database Connectivity (ODBC) application program
interface (API)

Standard means of connecting to any database.
Supports .NET
* JDBC Connector

