
Normal Form, SQL Constraints &
Triggers

Kathleen Durant
CS 3200
Lesson 7

Lecture Outline

• MY SQL Installation
• Introduction to Normal Form
• Constraints
• Triggers
• NULL Values

MY SQL Notes
• One directory for the catalog, which is itself a

database.
• Consists of tables specifying privileges – who can

access what
– database-level privileges
– table-level privileges etc.

• One directory for each user database.
• Each table is represented by three files:

– one for the per-table metadata
– one for the data
– one for any indices on the table

Normal Form: Codd’s Objectives
• Free the collection of relations from undesirable insertion,

update and deletion dependencies
– Duplicate data in multiple rows

• Forced to update/delete all copies of a piece of data
• How do you know you got all copies of it?

• Reduce the need for restructuring the collection of
relations
– Build an extensible design

• Make the relational model more informative to users
– Cleaner model should be easier to understand

• Make the collection of relations neutral to the query
statistics
– Designed for general purpose querying

Redundancy and Normalization

• Redundant data
– Can be determined from other data in the

database
– Leads to various problems

• INSERT anomalies
• UPDATE anomalies
• DELETE anomalies

• Normalization aims to reduce redundancy

First Normal Form

• First normal form
– Tuples in a relation must contain the same

number of fields
– The domain of each attribute is atomic
– The value of each attribute contains only a single

value
– No attributes are sets

• No repeating groups

Levels of Normal Form

• Level 1: No repeating entities or group of
elements
– Do not have multiple columns representing the same

type of entity
– Primary key that represents the entity

• Example: Table mother (MotherName
varchar(40), child1 varchar(20),
child2(varchar(20)…child8 varchar(20))
– Create 3 tables: Mother, Children and Offspring

• Offspring links Mother and Children together

1NF vs. Not 1NF

• Create Table Mother,
Table Offspring and a
Table Children

• Link them together
via a unique
representation (social
security number)

Parent Id Offspring Id

1 11

1 12

2 13

2 14

3 15

4 16

5 17

Mother Id Mother
Name

1 Elsa

2 Golda

3 Viola

4 Iris

5 Daisy

Offspring
Id

Offspring
Name

11 Mary

12 Alice

13 George

14 Fred

15 Ava

16 Kayla

17 Harry

NOT FIRST NORMAL FORM (1NF) – DUPLICATES ENTITIES

Mother
Id

Mother
Name

Child1 Child2 Child3 Child4

1 Elsa Mary Alice NULL NULL

2 Golda George Fred NULL NULL

3 Viola Ava NULL NULL NULL

4 Iris Kayla NULL NULL NULL

5 Daisy Harry NULL NULL NULL

Benefits

• No duplicated data
• Beneficial when you want to extend your

database by adding more concepts
• Example: Say you now want to model the

father relationship ?
• With the not 1NF solution you are forced to

duplicate all of the offspring data in the father
relation

Adding the Father Relation
• Forced to

duplicate child
data in both
mother and
father
relationship

• Leads to errors
in child data
during updates
and deletions

• Hard to query
child data

• Limits schema
– 5 children?

NOT FIRST NORMAL FORM (1NF) – DUPLICATES ENTITIES

Mother
Id

Mother
Name

Child1 Child2 Child3 Child4

1 Elsa Mary Alice NULL NULL

2 Golda George Fred NULL NULL

3 Viola Ava NULL NULL NULL

4 Iris Kayla NULL NULL NULL

5 Daisy Harry NULL NULL NULL

NOT FIRST NORMAL FORM (1NF) – DUPLICATES ENTITIES

Father
Id

Father
Name

Child1 Child2 Child3 Child4

21 Sam Mary Alice Fred NULL

22 Sal George NULL NULL NULL

23 Hal Ava NULL NULL NULL

24 Ed Kayla NULL NULL NULL

25 George Harry NULL NULL NULL

1NF with Father Relation
Parent Id Offspring Id

1 11

1 12

2 13

2 14

3 15

4 16

5 17

21 11

21 12

21 14

22 13

23 15

24 16

25 17

Mother
Id

Mother
Name

1 Elsa

2 Golda

3 Viola

4 Iris

5 Daisy

Offspring
Id

Offspring
Name

11 Mary

12 Alice

13 George

14 Fred

15 Ava

16 Kayla

17 Harry

Father
Id

Father
Name

21 Sam

22 Sal

23 Hal

24 Ed

25 George

OneDegree
Table contains
Mapping
between
parent and
offspring

Second normal form
• Schema must be in first normal form

– You have eliminated group sets
– Every tuple has a unique key

• Each field not in the primary key provides a fact about the
entity represented via the (entire) primary key
– The primary key must be minimal – no extra fields thrown in
– No partial dependency on part of the primary key
– Only applies to composite primary key

• Helps you identify a relation that may represent more than
one entity

• All fields must be functionally dependent on the complete
primary key

Example 2NF vs. Not 2NF
1st Normal Form but NOT 2ndNORMAL FORM

Mother Id First
Name

Last
Name

Hospital Hospital
Address

1 Elsa General BIDMC Boston

2 Golda Major MGH Boston

3 Viola Funt TMC Cambridge

4 Iris Batter BIDMC Brighton

5 Daisy Mae Mayo Allston
2nd NORMAL FORM

Mother Id First
Name

Last
Name

Hospital
Id

1 Elsa General 1

2 Golda Major 2

3 Viola Funt 3

4 Iris Batter 1

5 Daisy Mae 4

2nd NORMAL FORM

Hospital
ID

Hospital Hospital
Address

1 BIDMC Boston

2 MGH Boston

3 TMC Cambridge

4 Mayo Allston

3rd Normal Form

• No dependencies between 2 non-key
attributes

• Bill Kent: Every non-key attribute must provide
a fact about the key, the whole key and
nothing but the key

Example 3NF vs. Not 3NF
1st Normal Form but NOT 2ndNORMAL FORM

Mother Id First
Name

Last
Name

Hospital Hospital
Address

1 Elsa General BIDMC Boston

2 Golda Major MGH Boston

3 Viola Funt TMC Cambridge

4 Iris Batter BIDMC Brighton

5 Daisy Mae Mayo Allston
2nd NORMAL FORM

Mother Id First
Name

Last
Name

Hospital
Id

1 Elsa General 1

2 Golda Major 2

3 Viola Funt 3

4 Iris Batter 1

5 Daisy Mae 4

2nd NORMAL FORM

Hospital
ID

Hospital Hospital
Address

1 BIDMC Boston

2 MGH Boston

3 TMC Cambridge

4 Mayo Allston

Normal Form Tips

• Review your attributes in your tables and
ensure that they are facts about the complete
key and only the complete key

• No duplicating groups in a table
• Split many to many relationships up into 2

many to 1 relationships by identifying the
relation that maps them together

Example

• Students takes Courses M-to-M relationship
– Many students to a Course
– Many courses to a Student

• Represent using 2 M-to-1 relationships
– Students has an Enrollment M-to-1
– Enrollment in a Class 1-to-M

Student Table
StudentID

Class Table
ClassID Enrollment

StudentId, ClassId

NULL and Missing Data

Missing data values in relations

• Allowing fields to have no value allows us to
model the real world as well as mathematics

• We need to be able to semantically represent the
NAN or a value that does not have a value (yet)
or a value that does exist we just do not know it

• Missing data is prevalent in many fields of study –
the majority of data is missing
– Goal: get a good representation of what is not there

given the minority that is provided
– Many statistical and data mining techniques defined

to deal with missing data

NULLS in SQL

• NULL is a placeholder for missing or unknown
value of an attribute.
– It is not itself a value, therefore it has no data type.

• Codd proposed to distinguish two kinds of NULLs:
• A-marks: data Applicable but not known (for

example, someone’s age)
• I-marks: data is Inapplicable (telephone number

for someone who does not have a telephone, or
spouse’s name for someone who is not married)

NULL and its impact on SQL
• SQL allows field values not to have a value

– Sometimes the field’s value will not be known until later or it is
inapplicable

– Example: Later: (e.g., a rating has not been assigned) or
Inapplicable (e.g., no spouse’s name).

– SQL provides a special value NULL for such situations.
• Presence of NULL complicates many issues:

– Special operators needed to check if value is (not) NULL.
– Is rating>8 true or false for rating=NULL? What about AND, OR

and NOT connectives?
• We need a 3-valued logic (true, false and unknown).
• Semantics of 3-valued logic must be defined consistently.

– WHERE clause eliminates rows that do not evaluate to true.

Problems with NULLs

• Defining selection operation: if we check tuples
for some property like Mark > 40 and for some
tuple Mark is NULL, do we include it?

• Defining intersection or difference of two
relations: are two tuples <John, NULL> and
<John,NULL> the same or not?

• Additional problems for SQL: do we treat NULLs
as duplicates?

• Do we include them in count, sum, average and if
yes, how? How do arithmetic operations behave
when an argument is NULL?

Solutions to NULL: three values in
Logic
• Use three-valued logic instead of classical two-

valued logic to evaluate conditions.
• When there are no NULLs around, conditions

evaluate to true or false, but if a null is involved, a
condition will evaluate to the third value
(‘undefined’, or ‘unknown’).

• This is the idea behind testing conditions in
WHERE clause of SQL SELECT: only tuples where
the condition evaluates to true are returned.

3-VALUED LOGIC
X Y X AND Y X OR Y NOT X

TRUE TRUE TRUE TRUE FALSE

TRUE UNKNOWN UNKNOWN TRUE FALSE

TRUE FALSE FALSE TRUE FALSE

UNKNOWN TRUE UNKNOWN TRUE UNKNOWN

UNKNOWN UNKNOWN UNKNOWN UNKOWN UNKNOWN

UNKNOWN FALSE FALSE UNKNOWN UNKNOWN

FALSE TRUE FALSE TRUE TRUE

FALSE UKNOWN FALSE UNKNOWN TRUE

FALSE FALSE FALSE FALSE TRUE

FALSE = 0, TRUE = 1, UNKNOWN =1/2 NOT(X) = 1-X,
AND(X,Y) =MIN(X,Y), OR(X,Y) = MAX(X,Y)

SQL: NULLs in conditions

• Select SID from Sailor where rating > 5
• Execution: rating > 5 evaluates to ‘unknown’

on the last tuple

SID Sname Rating Age

28 Yuppy 9 35.0

31 Lubber 3 55.5

44 Guppy 5 35.0

58 Rusty NULL 35.0

SID Sname Rating Age

28 Yuppy 9 35.0

SQL: NULLs in conditions
• Select SID from Sailor where rating > 5 OR

Name = ‘Rusty’
• Execution: rating > 5 evaluates to true on the

last tuple
SID Sname Rating Age

28 Yuppy 9 35.0

31 Lubber 3 55.5

44 Guppy 5 35.0

58 Rusty NULL 35.0

SID Sname Rating Age

28 Yuppy 9 35.0

58 Rusty NULL 35.0

SQL: NULLs in Arithmetic

• Select SID, Rating * 10 as NewRating from
Sailor

• Arithmetic operations applied to NULL result
in NULLs

SID Sname Rating Age

28 Yuppy 9 35.0

31 Lubber 3 55.5

44 Guppy 5 35.0

58 Rusty NULL 35.0

SID NewRating

28 90

31 30

44 50

58 NULL

SQL with NULLS: Aggregates

• Select avg(Rating) as AVG,
COUNT(Rating) as NUM,
COUNT(*) as ALLNUM,
SUM(Salary) as SUM from Sailors

– AVG = 5.67
– NUM = 3
– ALLNUM = 4
– SUM = 17

SID Sname Rating Age

28 Yuppy 9 35.0

31 Lubber 3 55.5

44 Guppy 5 35.0

58 Rusty NULL 35.0

Outer Joins

• When we take the join of two relations we
match up tuples which share values
– Some tuples have no match are ‘lost’
– These are called dangles

• Outer joins include dangles in the result set
and use NULLs to fill in the blanks
– LEFT OUTER JOIN
– RIGHT OUTER JOIN
– FULL OUTER JOIN

Alternative Solution: Default Values to
Express Loss of Data
• Default values are an alternative to the use of

NULLs
– If a value is not known a particular placeholder value –

the default is used
– Actual values within the domain type so no need for 3

value-logic
– Default values can provide more meaning than NULLs

• None
• Unknown
• Not supplied
• Not applicable

Default Value Example

• Default values are
– ???? For Name
– -1 for Rating and Age

• Hopefully no one has a name of ???? and
rating and age cannot really be = -1 so can
identify your default values

• What about
• Update Sailors
 set age = age +1?

SID Sname Rating Age

28 Yuppy 9 35.0

31 Lubber 3 55.5

44 ???? 5 -1

58 Rusty -1 35.0

Problems with default values

• They are real values in the domain of the
variable
– They can be updated like any other field value
– You need to use a value that will not appear in any

other circumstances
– They may not be interpreted correctly
– You need compatibility in the domains

• You can’t have a string such as ‘unknown’ stored in an
integer field

• You may want to just use NULL

NULL support in SQL

• SQL allows you to INSERT NULLs
– Example: UPDATE Sailors set rating = NULL where

Name = ‘Mark’

• Separate function to test for NULL
– Example: SELECT Name from Sailor where rating IS

NOT NULL
– Example: SELECT Name from Sailor
 where rating IS NULL

NULL or Default Value

• Which method to use?
• Default values should not be used when they

might be confused with ‘real’ values
• NULLs can (and often are) used where the

other approaches seem inappropriate

Triggers

• Similar to Integrity constaints

Integrity Constraints

• An IC describes conditions that every legal
instance of a relation must satisfy.
– Inserts, deletes, updates that violate IC’s are

disallowed.
– Can be used to ensure application semantics (e.g., sid

is a key), or prevent inconsistencies (e.g., sname has
to be a string, age must be < 200)

– Types of IC’s: Domain constraints, primary key
constraints, foreign key constraints, general
constraints.

• Domain constraints: Field values must be of right
type. This is always enforced.

General Constraints

• Allows you to define a constraint beyond key or
unique fileds.
– Can use queries to express constraint.
– Constraints can be named uses the CHECK keyword

• CREATE TABLE Sailors (sid INTEGER, sname CHAR(10), rating

INTEGER, age REAL, PRIMARY KEY (sid), CHECK (rating >= 1 AND
rating <= 10)

• CREATE TABLE Reserves (sname CHAR(10), bid INTEGER, day DATE,PRIMARY
KEY (bid,day), CONSTRAINT noInterlakeRes CHECK (`Interlake’ <> (SELECT
B.bname FROM Boats B WHERE B.bid=bid)))

Constraints over multiple tables

• Create a contraint such that: Number of boats
plus number of sailors is < 100

• CREATE ASSERTION smallClub CHECK ((SELECT
COUNT (S.sid) FROM Sailors S) +(SELECT
COUNT (B.bid) FROM Boats B) < 100)

Triggers

• Trigger: procedure that starts automatically if
specified changes occur to the DBMS

• A trigger has three parts:
• Event

– Change to the database that activates the trigger
• Condition

– Query or test that is run when the trigger is activated
• Action

– Procedure that is executed when the trigger is
activated and its condition is true

Trigger Options
• Event can be insert, delete, or update on DB table

– Condition can be a true/false statement
• All employee salaries are less than $100K

• Condition can be a query
– Interpreted as true if and only if answer set is not empty

• Action can perform DB queries and updates that
depend on
– Answers to query in condition part
– Old and new values of tuples modified by the statement

that activated the trigger
– Action can also contain data-definition commands, e.g.,

create new tables

When to Fire the Trigger
• Triggers can be executed once per modified record or

once per activating statement
– Row-level trigger versus a Statement Level Trigger
– Trigger looking at the set of records that are modified

versus the actual individual values of the old and the new
values

• Should trigger action be executed before or after the
statement that activated the trigger?
– Consider triggers on insertions

• Trigger that initializes a variable for counting how many new tuples
are inserted: execute trigger before insertion

• Trigger that updates this count variable for each inserted tuple:
execute after each tuple is inserted (might need to examine
values of tuple to determine action)

• Trigger can also be run in place of the action

Trigger Example

• CREATE TRIGGER YoungSailorUpdate
 AFTER INSERT ON SAILORS
 REFERENCING NEW TABLE NewSailors
 FOR EACH STATEMENT
 INSERT
 INTO YoungSailors(sid, name, age, rating)
 SELECT sid, name, age, rating
 FROM NewSailors N
 WHERE N.age <= 18

Trigger has
acess to
NEW and
 OLD values

Trouble with Triggers
• Action can trigger multiple triggers

– Execution order is arbitrary
• Challenge: Trigger action can fire other triggers

– Very difficult to reason about what exactly will happen
• Trigger can fire “itself” again

– Unintended effects possible
• Many religious wars on triggers evil vs. not evil

– Analogous to the gun control debate in society
• Triggers do not corrupt databases people who write triggers do

• Example: Triggers defined to monitor Stock prices
– Once multiple triggers are activated can’t shut off
– Sit back and watch the world’s economic system collapse

• Introducing Triggers leads you to deductive databases
– Need rule analysis tools that allow you to deduce truths about the

data

MY SQL limits the user of triggers

• Triggers not introduced until 5.0
• Not activated for foreign key actions
• No triggers on the mysql system database
• Active triggers are not notified when the meta

data of the table is changed while it is running
• No recursive triggers
• Triggers cannot modify/alter the table that is

already being used
– For example the table that triggered it

Summary

• NULL for unknown field values brings many
complications to a DBMS
– However, unknown values are part of the real world

• SQL allows specification of rich integrity
constraints
– Define constraints across tables

• Triggers respond to changes in the database
– Strength: Very Powerful
– Weakness: Very Powerful

	Normal Form, SQL Constraints & Triggers
	Lecture Outline
	MY SQL Notes
	Normal Form: Codd’s Objectives
	Redundancy and Normalization
	First Normal Form
	Levels of Normal Form
	1NF vs. Not 1NF
	Benefits
	Adding the Father Relation
	1NF with Father Relation
	Second normal form
	Example 2NF vs. Not 2NF
	3rd Normal Form
	Example 3NF vs. Not 3NF
	Normal Form Tips
	Example
	NULL and Missing Data
	Missing data values in relations
	NULLS in SQL
	NULL and its impact on SQL
	Problems with NULLs
	Solutions to NULL: three values in Logic
	3-VALUED LOGIC
	SQL: NULLs in conditions
	SQL: NULLs in conditions
	SQL: NULLs in Arithmetic
	SQL with NULLS: Aggregates
	Outer Joins
	Alternative Solution: Default Values to Express Loss of Data
	Default Value Example
	Problems with default values
	NULL support in SQL
	NULL or Default Value
	Triggers
	Integrity Constraints
	General Constraints
	Constraints over multiple tables
	Triggers
	Trigger Options
	When to Fire the Trigger
	Trigger Example
	Trouble with Triggers
	MY SQL limits the user of triggers
	Summary

