
Relational Calculus and
Relational Algebra Review
DDL and DML SQL
 Lesson 5
Northeastern University
Kathleen Durant
 1

Outline for today
• Review of Chapter 4

• Quantifiers
• Relational Algebra & Relational Calculus

• Introduce examples from the text
• Students, Courses, Lecturers
• Boats, Sailors, Reservations

• Review of DDL SQL Queries
• Introduction to the SELECT command

• Basics, Set operations, Nested Queries, Aggregation functions
• Additional information for the homework assignment

2

Data manipulation via Relational
Algebra
• Data is represented as mathematical relations.
• Manipulation of data (query and update operations)

corresponds to operations on relations
• Relational algebra describes those operations
• Relational algebra contains two kinds of operators:

• common set-theoretic operators
• operators specific to relations (for example projection of

columns).

3

Relational Algebra
 One or
 more
 relations

Operation
Resulting
 Relation

• A collection of operations that users can perform on relations
to obtain a desired result (which is also a relation)

• For each operation (steps in the computation), both the
operands and the result are relations

• Basic (Relational) operations:
– Selection (σ): Selects a subset of tuples from a relation.
– Projection (π): Selects columns from a relation.
– Cross-product (×): Allows us to combine two relations.
– Set-difference (−): Tuples in relation 1, but not in relation 2.
– Union (∪): Tuples in relation 1 and in relation 2.

• Relational Algebra treats relations as sets: duplicates are
removed

4

Example: Different solutions – same
answer

Find the names of
 students registered for
 History 101
Solution1: 𝜋𝑁𝑁𝑁𝑁((𝛿𝑐𝑐𝑐 = ′𝐻𝑐𝐻𝐻𝐻𝐻𝐻 101′

 Courses) ⋈S1)
Solution2: 𝜋𝑁𝑁𝑁𝑁(𝛿𝑐𝑐𝑐 = ′𝐻𝑐𝐻𝐻𝐻𝐻𝐻 101′

 (Courses ⋈S1))
Solution3: ρ(Temp1, (𝛿𝑐𝑐𝑐 = ′𝐻𝑐𝐻𝐻𝐻𝐻𝐻 101′

 Courses))
 ρ(Temp2,(Temp1 ⋈S1))
 𝜋Name(Temp2)

SID Name Login DoB GPA

55515 Smith smith@ccs Jan 10,1990 3.82

55516 Jones jones@hist Feb 11, 1992 2.98

55517 Ali ali@math Sep 22, 1989 3.11

55518 Smith smith@math Nov 30, 1991 3.32

Sid CId Grade

55515 History 101 C

55516 Biology 220 A

55517 History 101 B

55518 Music 101 A

S1

C1

Name

Smith

Ali

Answer

5

Example: 3 Table join
Find the lecturers
teaching History 101
Whose Students GPA >3.2
Solution1: 𝜋𝑁𝑁𝑁𝑁
((𝜋Sid,GPA(𝛿𝐺𝐺𝐺 > 3.2

 𝑆1))⋈
 ((𝛿𝑐𝑐𝑐 = ′𝐻𝑐𝐻𝐻𝐻𝐻𝐻 101′

 C1) ⋈
 𝛿𝑐𝑐𝑐 = ′𝐻𝑐𝐻𝐻𝐻𝐻𝐻 101′

 L1))

Solution2:
 ρ(Temp1,
 (𝛿𝑐𝑐𝑐 = ′𝐻𝑐𝐻𝐻𝐻𝐻𝐻 101′

 C1))
ρ(Temp2, (Temp1 ⋈
 𝛿𝑐𝑐𝑐 = ′𝐻𝑐𝐻𝐻𝐻𝐻𝐻 101′

 L1))
ρ(Temp3, (𝜋Sid,GPA(𝛿𝐺𝐺𝐺 > 3.2

 S1)
 ⋈ Temp2))
 𝜋Name(Temp3)

SID Name Login DoB GPA

55515 Smith smith@ccs Jan 10,1990 3.82

55516 Jones jones@hist Feb 11, 1992 2.98

55517 Ali ali@math Sep 22, 1989 3.11

55518 Smith smith@math Nov 30, 1991 3.32

Sid CId LID Grade

55515 History
101

45 C

55516 History
101

47 A

55517 History
101

45 B

55518 Music
101

48 A

S1

C1

Name

Fisk

Answer

LID Name CID

45 Fisk History 101

46 Alder Biology 220

47 Wong History 101

48 Foster Music 101

L1

Why did I need
𝜋Sid,GPA to use a natural join?
Any other solution?

6

Table
 Instances

• We will use
these instances
of the Sailors
and Reserves
relations in our
examples.

• If the key for the
Reserves
relation
contained only
the attributes sid
and bid, how
would the
semantics differ?

SID BID DAY

22 101 10/10/96

58 103 11/12/96

SID Sname Rating Age

22 Dustin 7 45.0

31 Lubber 8 55.5

58 Rusty 10 35.0

SID Sname Rating Age

28 Yuppy 9 35.0

31 Lubber 8 55.5

44 Guppy 5 35.0

58 Rusty 10 35.0

R1

S1

S2

BID BName Color

101 Interlake blue

102 Interlake red

103 Clipper green

104 Marine red

B1

7

Relational calculus
• A formal, logical description, of what you want

from the database
• Sometimes describing the set you desire is easier

than figuring out the operations you need to do
to get to the desired set

• Case in point: Division

8

Division Operation in RA A/B
• Given 2 relations A (courses) and B (students); A/B = let x, yA be

two attributes in A and yB is an attribute in B with the same
domain as the domain of yB

• A/B = {<x> such that for all <y> in B there exists <x ,y> an
element of A = < 𝒙 > ∀< 𝒚 > ∈ 𝑩 ∃ < 𝒙,𝒚 > ∈ 𝑨

• A/B contains all x tuples (courses) such that for every y tuple
(students) in B, there is an xy tuple in A.

• Or: If the set of y values (courses) associated with an x value
(students) in A contains all y values in B, the x value is in A/B.
• In general, x and y can be any lists of attributes
• y is the list of fields in B, and x U y is the list of fields of A.

9

Example of division

Student Id (x) Course Id (y)

10 cs200

10 cs100

10 cs300

10 cs400

20 cs300

30 cs200

15 cs400

15 cs100

25 cs100

25 cs200

Course Id

cs200

Student Id

10

30

25

B

A/B

Table A

10

Basic operations for Division
• Compute all x values in A that are not disqualified

• How is a value disqualified?
• If by attaching a y value from B, we obtain a tuple NOT in A
• 𝜋𝑥(𝜋𝑥 𝐺 x 𝐵 − 𝐺)

• 𝜋𝑥 𝐺 − 𝜋𝑥(𝜋𝑥 𝐺 x 𝐵 − 𝐺)

11

Step by step process of Division

10, cs200

20, cs200

30, cs200

15,cs200

25, cs200

Student Id (x) Course Id (y)

10 cs200

10 cs100

10 cs300

10 cs400

20 cs300

30 cs200

15 cs400

15 cs100

25 cs100

25 cs200

Course Id

cs200

𝜋𝑥 𝐺 x 𝐵
𝜋𝑥 𝐺 x 𝐵 - A

20, cs200

15,cs200

𝜋𝑥(𝜋𝑥 𝐺 x 𝐵 − 𝐺)
 20

15

𝜋𝑥 𝐺 − 𝜋𝑥(𝜋𝑥 𝐺 x 𝐵 − 𝐺)

Student Id

10

30

25

A
B

12

Division via Relational Calculus
• Select students who have taken all courses

• Algebra :
• 𝜋𝑥 𝐺 − 𝜋𝑥(𝜋𝑥 𝐺 x 𝐵 − 𝐺)
• Calculus:
• {<N> | ∃I, L, D, G (< I, N, L, D, G >∈S1 ∧

 ∀<I,C,G> ∈C1 (∃<Ic,C,G>∈C1 ∧
 (S1.I = C1.Ic))}

• {<I> | ∃C (< I, C >∈S1 ∧

 ∀<C> ∈C1 (∃<Ic>∈C1 ∧
 (S1.I = C1.Ic))}

• SO MUCH EASIER

13

Unsafe queries
• Queries that have an infinite number of responses yet are

syntactically correct
• Simple example – all students not in the table

• Expressive theorem: every query that can be expressed in

relational algebra can be expressed as a safe predicate calculus
formula

• Relational completeness of a query language: every query that
can be expressed in relational algebra can be expressed in the
language

 ∈¬ StudentsSS|

14

Summary
• The relational model has rigorously defined query languages

— simple and powerful.
• Relational algebra is more operational

• useful as an internal representation for query evaluation plans.
• Relational calculus is non-operational

• Users define queries in terms of what they want, not in terms of
how to compute it. (Declarative)

• Several ways of expressing a given query
• a query optimizer should choose the most efficient version.

• Algebra and safe calculus have same expressive power
• leads to the notion of relational completeness.

 15

Onto SQL
• Review of DDL
• Introduction to DML (SELECT command)

16

SQL

•SQL provides
• A data definition

language (DDL)
• A data manipulation

language (DML)
• A data control

language (DCL)

• SQL can be used
from other languages

• SQL Is often
extended to provide
common
programming
constructs (such as if
then tests, loops,
variables, etc.)
Example T-SQL

17

DDL – CREATE TABLE
CREATE TABLE
 <table name> (<col-def-1>,
 <col-def-2>, …
 <col-def-n>,
 <constraint-1>, …
 <constraint-k>)

• You supply
• name for the table
• A list of column

definitions
• A list of constraints

(such as keys)

18

DDL – What is a Column
Definition?
 <col-name> <type>
 [NULL|NOT NULL]
 [DEFAULT <value>]
 [constraint-1],
 [constraint-2], [...]]]

• Each column has a
• Name
• Data Type

• Common data types
• INT
• REAL
• CHAR(n)
• VARCHAR(n)
• DATE

19

DDL: Column Specifications
• Columns can be specified as NULL or NOT NULL
• NOT NULL columns cannot have missing values

• If neither is given, then columns are allowed to have NULL values
• Columns can be given a default value

• You just use the keyword DEFAULT followed by the value, e.g.:
fieldnum INT DEFAULT 0

• Example: CREATE TABLE Student (stuID INT NOT NULL,
 stuName VARCHAR(50) NOT NULL,

• stuAddress VARCHAR(50),
 stuYear INT DEFAULT 2017)

20

DDL: Constraints
• CONSTRAINT <name> <type> <details>

• Common <type>s
• PRIMARY KEY
• UNIQUE
• FOREIGN KEY
• INDEX

• Each constraint may be given a name –
 Most RDMS requires a name, but some others don’t
• Constraints which refer to single columns can be included in

the column definition

21

DDL: Primary Keys
• Primary Keys are defined through constraints
• A PRIMARY KEY constraint also includes a UNIQUE constraint

and makes the columns involved NOT NULL
• The <details> for a primary key is a list of columns which make

up the key
• CONSTRAINT <name> PRIMARY KEY (col1, col2, …)

22

DDL : UNIQUE
• Any set of columns can be specified as UNIQUE

• This has the effect of making candidate keys in the table
• The <details> for a unique constraint are a list of columns which make

up the candidate key
• CONSTRAINT <name> UNIQUE (col1, col2, …)

• Example: CREATE TABLE Student
• (stuID INT NOT NULL,
• stuName VARCHAR(50) NOT NULL,
• stuAddress VARCHAR(50),
• stuYear INT DEFAULT 2017,
• CONSTRAINT pkStudent PRIMARY KEY (stuID),
• CONSTRAINT uniqueName stuName)

23

DDL: Foreign Keys
• Foreign Keys are also defined as constraints

• You need to provide:
• The columns which make up the Foreign Key
• The referenced table
• The columns which are referenced by the Foreign Key

• CONSTRAINT <name> FOREIGN KEY (col1, col2,…)
REFERENCES <table> [(ref1, ref2,…)]

• If the Foreign Key references the Primary Key of <table> you
don’t need to list the columns

24

DDL: Example with constraints
• CREATE TABLE Enrollment (stuID INT NOT NULL,
• modCode CHAR(6) NOT NULL,
• enrAssignment INT,
• enrExam INT,
• CONSTRAINT enrPK PRIMARY KEY (stuID, modCode),
• CONSTRAINT enrStu FOREIGN KEY (stuID) REFERENCES

Student (stuID),
 CONSTRAINT enrMod FOREIGN KEY (modCode)
REFERENCES Module (modCode))

25

DDL Language: Alter Table
• ALTER TABLE can

• Add a new column
• Remove an existing column
• Add a new constraint
• Remove an existing constraint

• To add or remove columns use command
• ALTER TABLE <table> ADD COLUMN <colname, type>
• ALTER TABLE <table> DROP COLUMN <name>

• Examples
• ALTER TABLE Student ADD COLUMN Degree VARCHAR(50)
• ALTER TABLE Student DROP COLUMN Degree

26

DDL: Add constraint using
ALTER
• Used when you want to add or drop a constraint after the

table has been created
• ALTER TABLE <table> ADD CONSTRAINT <definition> (as

defined previously)
• ALTER TABLE <table> DROP CONSTRAINT <name> (only need

name of constraint to drop)
• Examples

• ALTER TABLE Module ADD CONSTRAINT ck UNIQUE (title)
• ALTER TABLE Module DROP CONSTRAINT ck

27

Other DDL Commands
• DROP - deletes a table
• INSERT - add a row to a table
• UPDATE – change row(s) in a table
• DELETE – remove row(s) from a table
• UPDATE and DELETE use ‘WHERE clauses’ to specify which

rows to change or remove
• BE CAREFUL with these - an incorrect WHERE clause can destroy

lots of data

28

Chapter 5: SELECT command

29

Basic DML SQL command for retrieval

• Relation-list: List of tables names [possibly with a range variable (alias)
after each name]
• You can also specify a database name
• Databasename.tablename

• Target-list: list of attributes wanted from the relation-list
• Databasename.tablename.fieldname

• Qualification: comparisons (Attribute op const or Attribute op Attribute2,

where op is one of (<,>,=,<=,>=,<>) can combine with AND, OR and NOT

• DISTINCT: Optional keyword indicating that the answer should not have
duplicates
• Default: duplicates are not eliminated

SELECT [DISTINCT] target-list FROM
 relation-list WHERE qualification

30

Conceptual Evaluation Strategy
• Semantics of an SQL query defined in terms of the following

conceptual evaluation strategy
• Compute the cross product of relation-list
• Discard resulting tuples if they fail qualifications
• Delete attributes that are not in target-list
• If distinct is specified, eliminate duplicate rows

• This strategy is probably the LEAST EFFICIENT way to compute
a query

• Query optimizer should find more efficient strategies to
compute the same answer

31

Example of Conceptual
Evaluation

SELECT S.sname from sailors S, Reserves R where
S.sid = R.sid and R.bid = 103

(sid) sname rating age (sid) bid day

22 Dustin 7 45.0 22 101 10/10/96

22 Dustin 7 45.0 58 103 11/12/96

31 Lubber 8 55.5 22 101 10/10/96

31 Lubber 8 55.5 58 103 11/12/96

58 Rusty 10 35.0 22 101 10/10/96

58 Rusty 10 35.0 58 103 11/12/96

(sid) sname rating age (sid) bid day

58 Rusty 10 35.0 58 103 11/12/96

32

Range variables or Aliases
• Are only necessary

when you need to
distinguish items
within the query
• Same named field or

table

• Shows good coding
practice
• Less typing

• SELECT S.sname from
sailors S, Reserves R
where S.sid = R.sid and
R.bid = 103

Equivalent
• SELECT sname, from

Sailors, Reserves where
sailors.sid =
Reserves.sid and bid =
103 33

Find sailors who have reserved at
least one boat
• What affect would

adding a DISTINCT
make on this query

• What is the effect of
replacing S.sid by
S.name in the SELECT
clause? Do we still
need a DISTINCT?

SELECT S.sid from
Sailors, Reserves R
where S.sid = R.sid

SELECT S.sid from
Sailors S Join Reserves R
on S.sid = R.sid

34

Expressions and Strings
• SELECT S.age,

Age1=s.age-5, 2*S.age
as Age2 from Sailors S
where S.name like
‘B_%B’

• Returns triples of Ages
for sailors whose
names begin and end
with B that are at least
3 characters long

• Can do computation
within a SELECT
statement

• Can assign variables to
that computation using
2 different syntax

• Can do pattern
matching using the like
operator
• % 0 or more characters
• _ Any one character

35

Find sids of sailors who have
reserved a red or green boat
• UNION computes the union of

any two union-compatible
sets
• typically intermediate results

• Other set operator EXCEPT

returns tuples in the first set
that are not found in the
Second Set
• Not supported by MySQL –

there is a workaround use NOT
EXIST

• What happens if we replace
the OR in the qualifier with
and AND ?

SELECT s.SID FROM Sailors S, Boats B,
Reserves R where S.sid = R.sid and
R.bid = B.bid and (B.color = ‘red’ OR
B.color = ‘green’)

SELECT s.SID FROM Sailors S, Boats B,
Reserves R where S.sid = R.sid and
R.bid = B.bid and (B.color = ‘red’)
 UNION
SELECT s.SID FROM Sailors S,
Boats B, Reserves R where S.sid =
R.sid and R.bid = B.bid and (B.color =
‘green’)

36

Find the sid’s of sailors who have
reserved a red boat and a green
boat
• Solution using a join
• Can also be solved

using Intersect
• MySql does not

support Intersect
• Workaround is to use

EXISTS involves a
subquery – will cover
when we discuss
subqueries

• SELECT S.sid from
Sailors S, Boats B1,
Reserves R1, Boats
B2, Reserves R2
where S.sid=R1.sid
and R1.bid=B1.bid
and S.sid=R2.sid and
R2.bid=B2.bid and
(B1.color = ‘red’ and
B2.color = ‘green’) 37

Nested queries
• Find names of sailors

who have reserved
boat #103

• SELECT S.name from
Sailors S where S.sid in
(SELECT R.sid from
Reserves R where R.bid
= 103)

• For each Sailor tuple
check the Sid against
the return of the
nested query

• Where clause can be a
complete query
• Also true for FROM

clause and HAVING
clause

• In clause can be
negated
• Variable not in (…)

• Semantics for a nested
query similar for a
nested loop in
programming

38

Nested queries with
correlation
• SELECT names of sailors who have reserved boat

#103
• SELECT S.sname from Sailors S where exists

(SELECT * from Reserves R where R.bid = 103 and
S.sid = R.sid)

Exists tests to see if the return set is
empty

 39

Set Operations
• IN, EXISTS, ANY as well as negation of these
• Missing Unique and Intersect in My SQL
• An ANY example:
• SELECT S.name from Sailors S where rating >
 any (SELECT S2.rating from Sailors S2
 where S2.name = ‘Horatio’)

• Find sailors with a higher rating than Horatio

40

Getting around no INTERSECT
operator in MySQL
• Find sailor ids that have reserved a red boat and also a green

boat
• SELECT s.sid from Sailors s, Boats B, Reserves R
 where S.sid =R.sid and R.sid=B.sid
 and B.color=‘red’ and S.sid in
 (SELECT S2.sid Sailors S2, Boats B2, Reserves R2
 where S2.sid=R2.sid and R2.bid = B2.bid
 and B2.color = ‘green’)
• Use IN to define the opposing set

41

Division in SQL - MYSQL
• SELECT S.name, from Sailors S where not exists

 (SELECT B.bid from Boats B where not exists
 (SELECT R.bid from Reserves R
 where R.bid = B.bid and R.sid =S.sid)

Find sailors such that (line 1)
 There is no boat without (line 2)
 a Reserves tuple showing that sailor S reserved boat B

42

DML: Aggregate operators
• Significant extension to Relational Algebra

• Operators: count, avg, stdev, min, max, sum
• Examples count(*) , count([DISTINCT] FIELD),

SUM([DISTINCT]FIELD), AVG([DISTINCT]FIELD), MIN(A), MAX(A)
• SELECT COUNT(*) FROM Sailors S
• SELECT AVG(S.age) from Sailors S where S.rating = 10
• SELECT S.name from Sailors S where S.rating = (SELECT

MAX(S2.rating) from Sailors S2)

43

DML: Examples of Aggregators
• SELECT AVG(Distinct S.Age) from Sailors S where S.rating=10
• Interpretation of Query?
• A particular age can only contribute once to the average
• SELECT AVG(S.Age) from Sailors S where S.rating=10
• Interpretation of Query?
• Every person’s age contributes to the average (50 Sailors – 50

numbers contribute to the average

44

Complete SELECT command
• SELECT [DISTINCT | ALL] <column-list> FROM <table-names>

[WHERE <condition>] [ORDER BY <column-list>] [GROUP BY
<column-list>] HAVING <condition>] [ORDER BY <column-
list>]
• (optional [], | - or)

• Still need to introduce group by, order by and having
• Next meeting

45

	Relational Calculus and Relational Algebra Review �DDL and DML SQL �
	Outline for today
	Data manipulation via Relational Algebra
	Relational Algebra
	Example: Different solutions – same answer
	Example: 3 Table join
	Table� Instances
	Relational calculus
	Division Operation in RA A/B
	Example of division
	Basic operations for Division
	Step by step process of Division
	Division via Relational Calculus
	Unsafe queries
	Summary
	Onto SQL
	SQL
	DDL – CREATE TABLE
	DDL – What is a Column Definition?
	DDL: Column Specifications
	DDL: Constraints
	DDL: Primary Keys
	DDL : UNIQUE
	DDL: Foreign Keys
	DDL: Example with constraints
	DDL Language: Alter Table
	DDL: Add constraint using ALTER
	Other DDL Commands
	Chapter 5: SELECT command
	Basic DML SQL command for retrieval
	Conceptual Evaluation Strategy
	Example of Conceptual Evaluation
	Range variables or Aliases
	Find sailors who have reserved at least one boat
	Expressions and Strings
	Find sids of sailors who have reserved a red or green boat
	Find the sid’s of sailors who have reserved a red boat and a green boat
	Nested queries
	Nested queries with correlation
	Set Operations
	Getting around no INTERSECT operator in MySQL
	Division in SQL - MYSQL
	DML: Aggregate operators
	DML: Examples of Aggregators
	Complete SELECT command

