Relational Calculus

Lecture 4**B**Kathleen Durant
Northeastern University

Relational Calculus

- Relational Calculus is an alternative way for expressing queries
 - Main feature: specify what you want, not how to get it
 - Many equivalent algebra "implementations" possible for a given calculus expression
- In short: SQL query without aggregation = relational calculus expression
- Relational algebra expression is similar to program, describing what operations to perform in what order

What is Relational Calculus?

- It is a formal language based upon predicate calculus
- It allows you to express the set of tuples you want from a database using a formula

Relational Calculus

- Comes in two flavors: Tuple relational calculus (TRC) and Domain relational calculus (DRC)
- TRC: Variables range over (i.e., get bound to) tuples.
- DRC: Variables range over domain elements (= attribute values)
- Both TRC and DRC are subsets of first-order logic
 - We use some short-hand notation to simplify formulas
- Expressions in the calculus are called formulas
- Answer tuple = assignment of constants to variables that make the formula evaluate to true

Relational Calculus Formula

- Formula is recursively defined
 - Start with simple atomic formulas (getting tuples (or defining domain variables) from relations or making comparisons of values)
 - And build bigger and more complex formulas using the logical connectives.

Domain Relational Calculus

- Query has the form:
 - {<x1, x2,..., xn> | p(<x1, x2,..., xn>)}
 - Domain Variable ranges over the values in the domain of some attribute or is a constant
 - Example: If the domain variable x_1 maps to attribute Name char(20) then x_1 ranges over all strings that are 20 characters long
 - Not just the strings values in the relation's attribute
 - Answer includes all tuples <x1, x2,..., xn> that make the formula p(<x1, x2,..., xn>) true.

DRC Formulas

Atomic Formulas

- 1. $\langle x_1, x_2, ..., x_n \rangle \in Relation$
 - where Relation is a relation with n attributes
- 2. X operation Y
- 3. X operation *constant*
- Where operation is an operator in the set { <, >, =, ≤, ≥, ≠ }

• Recursive definition of a Formula:

- 1. An atomic formula
- 2. $\neg p$, $p \land q$, $p \lor q$, where p and q are formulas
- 3. $\exists X(p(X))$, where variable X is free in p(X)
- 4. $\forall X(p(X))$, where variable X is free in p(X)
- The use of quantifiers $\exists X$ and $\forall X$ is said to bind X
 - A variable that is not bound is free.

Free and bound variables

- Let us revisit the definition of a query:
- $\{ \langle x_1, x_2, ..., x_n \rangle \mid p \langle x_1, x_2, ..., x_n \rangle \}$
- Determine what assignment(s) to $\langle x_1, x_2, ..., x_n \rangle$ make $| p \langle x_1, x_2, ..., x_n \rangle$ true
- There is an important restriction:
 - The variables $x_1,...,x_n$ that appear to the left of `|' must be the only free variables in the formula p<...>
 - All other variables in the query are bound

Quantifiers: $\forall x$ and $\exists x$

- Variable x is said to be subordinate to the quantifier
 - You are restricting (or binding) the value of the variable x to set S
- The set S is known as the range of the quantifier
- $\forall x$ predicate true for all elements in set S
- ∃x predicate true for at least 1 element in set S

Formula quantifier: ∀x

- ∀ is called the universal or "for all" quantifier because every tuple in "the universe of" tuples must make P(x) true to make the quantified formula true
- $\forall x (P(x))$ is only true if P(x) is true for every x in the universe
- In our example we wrote:
 - $\forall x \in Boats(color = "Red")$
- It really means:
 - $\forall x ((x \in Boats) \Rightarrow (color = "Red"))$
- \Rightarrow logical implication What does it mean?
 - $A \Rightarrow B$ means that if A is true, B must be true
 - **Since** $A \Rightarrow B$ is the same as $\neg A \lor B$

$A \Rightarrow B$ is the same as $\neg A \lor B$

If A is TRUE, B has to be TRUE for $A \Rightarrow B$ to be TRUE

If A is true and B is false, the implication evaluates to false.

If A is not true, B has no effect on the answer

Since you have already satisfied the clause with $(\neg A)$

The expression is always true.

Formula Quantifiers: ∃X

- \exists is called the existential or "there exists" guantifier because any tuple that exists in "the universe of" tuples may make p(x) true to make the quantified formula true.
- ∃X(p(X))
 - Means p(X) is true for some X
 - There exists an X for which p(X) is true
- Shorthand notation
 - $\exists X \in Students(GPA = 3.2)$
 - Real representation of the formula
 - $\exists X ((X \in Students) \land (GPA = 3.2))$
 - And logical operation as opposed to implication

Example: Domain RC

Table Students

SID	Name	Login	DoB	GPA
55515	Smith	smith@ccs	Jan 10,1990	3.82
55516	Jones	jones@hist	Feb 11, 1992	2.98
55517	Ali	ali@math	Sep 22, 1989	3.11
55518	Smith	smith@math	Nov 30, 1991	3.32

- Find all students with the name 'Smith'
- $\{\langle I, N, L, D, G \rangle \mid \langle I, N, L, D, G \rangle \in Students \land N = 'Smith'\}$
 - Can reference the relation in the expression as opposed to the attribute name

SID	Name	Login	DoB	GPA
55515	Smith	smith@ccs	Jan 10,1990	3.82
55518	Smith	smith@math	Nov 30, 1991	3.32

Anatomy of a DRC query

 $\{\langle I, N, L, D, G \rangle \mid \langle I, N, L, D, G \rangle \in Students \land N = 'Smith' \}$

- The condition <I, N,L,D,G > ϵ Students
 - ensures that the domain variables I, N, L,D, and G are bound to fields of the same Students tuple.
 - Maps it to an instance in the Students table
- The symbol '|' from predicate calculus means 'such that'
- The <I, N,L,D,G > to the left of `|' (such that) says that every tuple
 <I, N,L,D,G > that satisfies N = 'Smith' is in the answer set.
- Calculus expresses answers to the query not operations like in relational algebra

DRC example with multiple predicates

- Find all students with the name 'Smith' and with a GPA > 3.5
- Just add another predicate { p Λ q }
- $\{\langle I, N, L, D, G \rangle \mid \langle I, N, L, D, G \rangle \in \text{Students } \Lambda N = \text{'Smith'} \Lambda G > 3.5 \}$

SID	Name	Login	DoB	GPA
55515	Smith	smith@ccs	Jan 10,1990	3.82
55516	Jones	jones@hist	Feb 11, 1992	2.98
55517	Ali	ali@math	Sep 22, 1989	3.11
55518	Smith	smith@math	Nov 30, 1991	3.32

SID	Name	Login	DoB	GPA
55515	Smith	smith@ccs	Jan 10,1990	3.82

DRC: returning a field satisfying restrictions on multiple tables

- Find the name of all students that received a 'C' in a course
 - Retrieving data across 2 tables
- {<N> | ∃I, L, D, G(< I, N, L, D, G > ∈ Students Λ∃Ir,CN,CG(<Ir, CN, CG> ∈ Courses Λ Ir = I Λ CG = 'C'))}

SID	Name	Login	DoB	GPA
55515	Smith	smith@ccs	Jan 10,1990	3.82
55516	Jones	jones@hist	Feb 11, 1992	2.98
55517	Ali	ali@math	Sep 22, 1989	3.11
55518	Smith	smith@math	Nov 30, 1991	3.32

Sid	Cld	Grade
55515	History 101	С
55516	Biology 220	Α
55517	Anthro 320	В
55518	Music 101	А

Resulting Table Name Smith

Parsing a DRC query

Find the name of all students that received a 'C' in course $\{<N>\mid$ $\exists I, L, D, G(< I, N, L, D, G> \in Students$ $\land \exists Ir,CN,CGr(<Ir, CN, CG> \in Courses \land Ir = I \land CGr = 'C'))\}$

- Note the use of ∃ to find a tuple in Courses that `joins with' the Students tuple under consideration
 - Student Id is the same value in both tables
 - Bound value represented via the variable Ir

Unsafe Queries, Expressive Queries

- It is possible to write syntactically correct calculus queries that have an *infinite* number of answers.
 - Such queries are called unsafe.
- Theorem: Every query that can be expressed in relational algebra can be expressed as a safe query in DRC / TRC
 - The converse is also true.
 - Relational Completeness: Query language (e.g., SQL) can express every query that is expressible in relational algebra/calculus.

Relational Calculus: Summary

- Relational calculus is non-operational
 - Users define queries in terms of what they want, not in terms of how to compute it. (Declarativeness.)
- Algebra and safe calculus have the same expressive power, leading to the notion of relational completeness.
- Relational calculus had big influence on the design of SQL and Query-by-Example

Practice with relational algebra

Building up a Relational Algebra Function

Division Operation in RA A/B

- Given 2 relations A (courses) and B (students); A/B = let x, yA be two attributes in A and yB is an attribute in B with the same domain as the domain of yB
- A/B = {<x> such that for all <y> in B there exists <x ,y> an element of A = {< x > | \forall < y > \in B \exists < x, y > \in A}
- A/B contains all x tuples (courses) such that for every y tuple (students) in B, there is an xy tuple in A.
- Or: If the set of y values (courses) associated with an x value (students) in A contains all y values in B, the x value is in A/B.
 - In general, x and y can be any lists of attributes
 - y is the list of fields in B, and x U y is the list of fields of A.
- Assume x = course id and y = student id What is the query asking for?

The MEGA-STUDENT(s) someone who has taken all courses that are in the course table

Example of division

Table A

Student Id (x)	Course Id (y)
10	cs200
10	cs100
10	cs300
10	cs400
20	cs300
30	cs200
15	cs400
15	cs100
25	cs100
25	cs200

Instances of B

Course Id	Course Id	Course Id
cs200	cs200	cs100
	cs100	Cs 200
		cs300

Corresponding Instances of A/B

Student Id	Student Id	Student Id
10	10	10
30	25	
25		

Basic operations for Division

- Compute all x values in A that are not disqualified
 - How is a value disqualified?
 - If by attaching a y value from B, we obtain a tuple NOT in A
 - $\pi_{\chi}((\pi_{\chi}(A) \times B) A)$
- $\pi_{\chi}(A) \pi_{\chi}((\pi_{\chi}(A) \times B) A)$

Step by step process of Division

B Course Id cs200

Α

Student Id (x)	Course Id (y)
10	cs200
10	cs100
10	cs300
10	cs400
20	cs300
30	cs200
15	cs400
15	cs100
25	cs100
25	cs200

 $(\pi_x(A) \times B)$

10, cs200 20, cs200 30, cs200 15,cs200 25, cs200 $(\pi_{x}(A) \times B) - A$

20, cs200 15,cs200

 $\pi_{\chi}((\pi_{\chi}(A) \times B) - A)$

20

15

$$\pi_{\chi}(A) - \pi_{\chi}((\pi_{\chi}(A) \times B) - A)$$

Student Id

10

30

25