Relational Query Languages

• Query languages: Allow manipulation and retrieval of data from a database.

• Relational model supports simple, powerful QLs:
 • Strong formal foundation based on logic.
 • Allows for optimization.
 • Query Languages != programming languages
 • QLs not expected to be “Turing complete”.
 • QLs not intended to be used for complex calculations.
 • QLs support easy, efficient access to large data sets.
Relational Query Languages

- Two mathematical Query Languages form the basis for “real” query languages (e.g. SQL), and for implementation:
 - Relational Algebra: More operational, very useful for representing execution plans.
 - Basis for SEQUEL
 - Relational Calculus: Let’s users describe WHAT they want, rather than HOW to compute it. (Non-operational, declarative.)
 - Basis for QUEL
Mathematical Foundations: Cartesian Product

• Let:
 • A be the set of values \{ a_1, a_2, \ldots \}
 • B be the set of values \{ b_1, b_2, \ldots \}
 • C be the set of values \{ c_1, c_2, \ldots \}

• The Cartesian product of A and B (written $A \times B$) is the set of all possible ordered pairs (a_i, b_j), where $a_i \in A$ and $b_j \in B$.

• Similarly:
 • $A \times B \times C$ is the set of all possible ordered triples (a_i, b_j, c_k), where $a_i \in A$, $b_j \in B$, and $c_k \in C$.
 • $A_1 \times A_2 \times \ldots \times A_n$ is the set of all possible ordered tuples $(a_{1i}, a_{2j}, \ldots, a_{nk})$, where $a_{de} \in A_d$
Cartesian Product Example

- $A = \{\text{small, medium, large}\}$
- $B = \{\text{shirt, pants}\}$

<table>
<thead>
<tr>
<th>A x B</th>
<th>Shirt</th>
<th>Pants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>(Small, Shirt)</td>
<td>(Small, Pants)</td>
</tr>
<tr>
<td>Medium</td>
<td>(Medium, Shirt)</td>
<td>(Medium, Pants)</td>
</tr>
<tr>
<td>Large</td>
<td>(Large, Shirt)</td>
<td>(Large, Pants)</td>
</tr>
</tbody>
</table>

- $A \times B = \{(\text{small, shirt}), (\text{small, pants}), (\text{medium, shirt}), (\text{medium, pants}), (\text{large, shirt}), (\text{large, pants})\}$
- Set notation
Example: Cartesian Product

• What is the Cartesian Product of AxB?
 • A = \{perl, ruby, java\}
 • B = \{necklace, ring, bracelet\}

• What is BxA?

<table>
<thead>
<tr>
<th>A x B</th>
<th>Necklace</th>
<th>Ring</th>
<th>Bracelet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perl</td>
<td>(Perl, Necklace)</td>
<td>(Perl, Ring)</td>
<td>(Perl, Bracelet)</td>
</tr>
<tr>
<td>Ruby</td>
<td>(Ruby, Necklace)</td>
<td>(Ruby, Ring)</td>
<td>(Ruby, Bracelet)</td>
</tr>
<tr>
<td>Java</td>
<td>(Java, Necklace)</td>
<td>(Java, Ring)</td>
<td>(Java, Bracelet)</td>
</tr>
</tbody>
</table>
Mathematical Foundations: Relations

• The domain of a variable is the set of its possible values
• A relation on a set of variables is a subset of the Cartesian product of the domains of the variables.
 • Example: let \(x \) and \(y \) be variables that both have the set of non-negative integers as their domain
 • \(\{(2,5),(3,10),(13,2),(6,10)\} \) is one relation on \((x, y) \)
• A table is a subset of the Cartesian product of the domains of the attributes. Thus a table is a mathematical relation.
• Synonyms:
 • Table = relation
 • Row (record) = tuple
 • Column (field) = attribute
Mathematical Relations

• In tables, as in mathematical relations, the order of the tuples does not matter but the order of the attributes does.

• The domain of an attribute usually includes NULL, which indicates the value of the attribute is unknown.
What is an Algebra?

- Mathematical system consisting of:
 - Operands --- variables or values from which new values can be constructed.
 - Operators --- symbols denoting procedures that construct new values from given values.
What is Relational Algebra?

• An algebra whose operands are relations or variables that represent relations.
• Operators are designed to do the most common things that we need to do with relations in a database.
• The result is an algebra that can be used as a query language for relations.
Relational Algebra

- A collection of operations that users can perform on relations to obtain a desired result
- This is an introduction and only covers the algebra needed to represent SQL queries
 - Select, project, rename
 - Cartesian product
 - Joins (natural, condition, outer)
 - Set operations (union, intersection, difference)
- Relational Algebra treats relations as sets: duplicates are removed
Relation Instance vs. Schema

• Schema of a relation consists of
 • The name of the relation
 • The fields of the relation
 • The types of the fields
• For the Student table

<table>
<thead>
<tr>
<th>SID</th>
<th>Name</th>
<th>Login</th>
<th>DoB</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>55515</td>
<td>Smith</td>
<td>smith@ccs</td>
<td>Jan 10, 1990</td>
<td>3.82</td>
</tr>
<tr>
<td>55516</td>
<td>Jones</td>
<td>jones@hist</td>
<td>Feb 11, 1992</td>
<td>2.98</td>
</tr>
<tr>
<td>55517</td>
<td>Ali</td>
<td>ali@math</td>
<td>Sep 22, 1989</td>
<td>3.11</td>
</tr>
<tr>
<td>55518</td>
<td>Smith</td>
<td>smith@math</td>
<td>Nov 30, 1991</td>
<td>3.32</td>
</tr>
</tbody>
</table>

• Schema = Student(SID int, Name char(20), Login char(20), DoB date, GPA real)
• Instance of a relation is an actual collection of tuples
 • Table with rows of values
• Database schema is the schema of the relations in a database
Relational Algebra

One or more relations

Operation

Resulting Relation

For each operation: both the operands and the result are relations
Facts on relational algebra queries

• A query is applied to relation instances, and the result of a query is also a relation instance.
 • Schemas of input relations for a query are fixed
 • But query will run regardless of instance.

• The schema for the result of a given query is also fixed
 • Determined by definition of query language constructs.

• Positional vs. named-field notation:
 • Positional notation easier for formal definitions, named field notation more readable.
 • Both used in SQL
Basic Relational Algebra Operations

- **Basic operations:**
 - **Selection** (\(\sigma \)): Selects a subset of tuples from a relation.
 - **Projection** (\(\pi \)): Selects columns from a relation.
 - **Cross-product** (\(\times \)): Allows us to combine two relations.
 - **Set-difference** (\(-\)): Tuples in relation 1, but not in relation 2.
 - **Union** (\(\cup \)): Tuples in relation 1 and in relation 2.

- **Additional operations:**
 - Intersection, join, division, renaming: Not essential, but (very) useful.
 - Each operation returns a relation, operations can be composed (Algebra is “closed”)
 - Contains the closure property
 - Since operators’ input is a relation and its output is a relation we can string these operators together to form a more complex operator
Basic Operation: Projection

- Deletes attributes that are not in projection list.
- Schema of result contains exactly the fields in the projection list, with the same names that they had in the input relation.
- Syntax: $\pi_{f_1, f_2} \ldots$ (Relation)
- Projection operator has to eliminate duplicates. (Why?)
 - Note: real systems typically do not eliminate duplicates unless the user explicitly asks for it. (Why not?)

<table>
<thead>
<tr>
<th>SID</th>
<th>Name</th>
<th>Login</th>
<th>DoB</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>55515</td>
<td>Smith</td>
<td>smith@ccs</td>
<td>Jan 10,1990</td>
<td>3.82</td>
</tr>
<tr>
<td>55516</td>
<td>Jones</td>
<td>jones@hist</td>
<td>Feb 11, 1992</td>
<td>2.98</td>
</tr>
<tr>
<td>55517</td>
<td>Ali</td>
<td>ali@math</td>
<td>Sep 22, 1989</td>
<td>3.11</td>
</tr>
<tr>
<td>55518</td>
<td>Smith</td>
<td>smith@math</td>
<td>Nov 30, 1991</td>
<td>3.32</td>
</tr>
</tbody>
</table>

\[
\pi_{\text{Sid}, \text{Name}} (S1) \quad \pi_{\text{Sid}} (S1)
\]
Basic Operations: Select σ

- Selects rows that satisfy the selection condition.
 - No duplicates in result (Why?)
 - Schema of result is identical to schema of input relation
- Selection predicates can include: <, >, =, !=, and, or, not
 - Examples:
 - $\sigma_{Sid \neq 55516}$ (S1)
 - $\sigma_{Name = 'Smith'}$ (S1)
- Syntax: $\sigma_{Conditional}$ (Relation)
Operator composition example.

Select and Project

\[\pi_{Sid, Name} \left(\sigma_{Sid > 55516} (S1) \right) \]
Union

- Takes two input relations, which must be union-compatible:
 - Same number of fields.
 - ‘Corresponding’ fields have the same type.

\[S1 \cup S2 \]
Intersection \(\cap \)

Occurs in S1 and S2

\[S1 \cap S2 \]

Set difference

Occurs in S1 but not in S2

\[S1 - S2 \]

S1

<table>
<thead>
<tr>
<th>SID</th>
<th>Name</th>
<th>Login</th>
<th>DoB</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>55515</td>
<td>Smith</td>
<td>smith@ccs</td>
<td>Jan 10, 1990</td>
<td>3.82</td>
</tr>
<tr>
<td>55516</td>
<td>Jones</td>
<td>jones@hist</td>
<td>Feb 11, 1992</td>
<td>2.98</td>
</tr>
<tr>
<td>55517</td>
<td>Ali</td>
<td>ali@math</td>
<td>Sep 22, 1989</td>
<td>3.11</td>
</tr>
<tr>
<td>55518</td>
<td>Smith</td>
<td>smith@math</td>
<td>Nov 30, 1991</td>
<td>3.32</td>
</tr>
</tbody>
</table>

S2

<table>
<thead>
<tr>
<th>SID</th>
<th>Name</th>
<th>Login</th>
<th>DoB</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>55515</td>
<td>Chen</td>
<td>chen@ccs</td>
<td>Jan 10, 1990</td>
<td>3.01</td>
</tr>
<tr>
<td>55519</td>
<td>Alton</td>
<td>alton@hist</td>
<td>Jun 11, 1992</td>
<td>2.07</td>
</tr>
<tr>
<td>55517</td>
<td>Ali</td>
<td>ali@math</td>
<td>Sep 22, 1989</td>
<td>3.11</td>
</tr>
<tr>
<td>55518</td>
<td>Smith</td>
<td>smith@math</td>
<td>Nov 30, 1991</td>
<td>3.32</td>
</tr>
</tbody>
</table>
Cross-Product x

Each row within S1 is paired with each row of C1

<table>
<thead>
<tr>
<th>SID</th>
<th>Name</th>
<th>Login</th>
<th>DoB</th>
<th>GPA</th>
<th>CID</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>55515</td>
<td>Smith</td>
<td>smith@ccs</td>
<td>Jan 10, 1990</td>
<td>3.82</td>
<td>History 101</td>
<td>C</td>
</tr>
<tr>
<td>55516</td>
<td>Jones</td>
<td>jones@hist</td>
<td>Feb 11, 1992</td>
<td>2.98</td>
<td>History 101</td>
<td>C</td>
</tr>
</tbody>
</table>

Result schema has one field per field of S1 and C1, with field names `inherited` if possible.
Rename \(\rho \)

- Reassign the field names
 \[\rho(\mathbf{C}(1\rightarrow S1.sid, 6\rightarrow C1.sid), S1 \times C1) \]

S1

<table>
<thead>
<tr>
<th>SID</th>
<th>Name</th>
<th>Login</th>
<th>DoB</th>
<th>GPA</th>
<th>C1.Sid</th>
<th>CID</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>55515</td>
<td>Smith</td>
<td>smith@ccs</td>
<td>Jan 10, 1990</td>
<td>3.82</td>
<td>55515</td>
<td>History 101</td>
<td>C</td>
</tr>
<tr>
<td>55515</td>
<td>Smith</td>
<td>smith@ccs</td>
<td>Jan 10, 1990</td>
<td>3.82</td>
<td>55515</td>
<td>Biology 220</td>
<td>A</td>
</tr>
<tr>
<td>55515</td>
<td>Smith</td>
<td>smith@ccs</td>
<td>Jan 10, 1990</td>
<td>3.82</td>
<td>55515</td>
<td>Anthro 320</td>
<td>B</td>
</tr>
<tr>
<td>55515</td>
<td>Smith</td>
<td>smith@ccs</td>
<td>Jan 10, 1990</td>
<td>3.82</td>
<td>55515</td>
<td>Music 101</td>
<td>A</td>
</tr>
<tr>
<td>55516</td>
<td>Jones</td>
<td>jones@hist</td>
<td>Feb 11, 1992</td>
<td>2.98</td>
<td>55516</td>
<td>History 101</td>
<td>C</td>
</tr>
<tr>
<td>55516</td>
<td>Jones</td>
<td>jones@hist</td>
<td>Feb 11, 1992</td>
<td>2.98</td>
<td>55516</td>
<td>Biology 220</td>
<td>A</td>
</tr>
<tr>
<td>55516</td>
<td>Jones</td>
<td>jones@hist</td>
<td>Feb 11, 1992</td>
<td>2.98</td>
<td>55516</td>
<td>Anthro 320</td>
<td>B</td>
</tr>
<tr>
<td>55516</td>
<td>Jones</td>
<td>jones@hist</td>
<td>Feb 11, 1992</td>
<td>2.98</td>
<td>55516</td>
<td>Music 101</td>
<td>A</td>
</tr>
</tbody>
</table>

C1

<table>
<thead>
<tr>
<th>Sid</th>
<th>Cid</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>55515</td>
<td>History 101</td>
<td>C</td>
</tr>
<tr>
<td>55516</td>
<td>Biology 220</td>
<td>A</td>
</tr>
<tr>
<td>55517</td>
<td>Anthro 320</td>
<td>B</td>
</tr>
<tr>
<td>55518</td>
<td>Music 101</td>
<td>A</td>
</tr>
</tbody>
</table>

Prepend the name of the original relation to the fields having a collision

Naming columns and result set to C
Conditional Join

- Accepts a conditional
- Operation equivalent to:
 - \(S_1 \bowtie_c C_1 = \sigma_c (S_1 \times C_1) \)
- Filters out tuples according to the conditional expression

\[S_1 \bowtie_{gpa > 3.0} C_1 \]
Equijoin \(\bowtie_c \)

- What does it do: performs a filtered Cartesian product
- Filters out tuples where the attribute that have the same name have a different value
- \(S \bowtie_c S_1\cdot sid = C_1\cdot sid \)

<table>
<thead>
<tr>
<th>SID</th>
<th>Name</th>
<th>Login</th>
<th>DoB</th>
<th>GPA</th>
<th>CID</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>55515</td>
<td>Smith</td>
<td>smith@ccs</td>
<td>Jan 10,1990</td>
<td>3.82</td>
<td>History 101</td>
<td>C</td>
</tr>
<tr>
<td>55516</td>
<td>Jones</td>
<td>jones@hist</td>
<td>Feb 11, 1992</td>
<td>2.98</td>
<td>Biology 220</td>
<td>A</td>
</tr>
</tbody>
</table>

Only one copy of Sid is in the resultant relation
Natural Join

• What does it do: performs a filtered Cartesian product
• Filters out tuples where the attribute that have the same name have a different value

\[S1 \bowtie C1 \]

No need to specify field list

Natural join is equivalent to:
Cartesian project (x)
Selection (\(\sigma\))
Projection (\(\pi\))
Precedence of Relational Operators

1. \([\sigma, \pi, \rho]\) (highest).
2. \([\times, \bowtie]\)
3. \(\cap\)
4. \([\cup, __]\)
Schema of the Resulting Table

- Union, intersection, and difference operators
 - the schemas of the two operands must be the same, so use that schema for the result.
- Selection operator
 - schema of the result is the same as the schema of the operand.
- Projection operator
 - list of attributes determines the schema.
Relational Algebra: Summary

• The relational model has rigorously defined query languages that are simple and powerful.
 • Relational algebra is more operational
 • Useful as internal representation for query evaluation plans
• Several ways of expressing a given query
• A query optimizer should choose the most efficient version
Relational Calculus

- Relational Calculus is an alternative way for expressing queries
 - Main feature: specify what you want, not how to get it
 - Many equivalent algebra “implementations” possible for a given calculus expression
- In short: SQL query without aggregation = relational calculus expression
- Relational algebra expression is similar to program, describing what operations to perform in what order
What is Relational Calculus?

• It is a formal language based upon predicate calculus

• It allows you to express the set of tuples you want from a database using a formula
Relational Calculus

• Comes in two flavors: Tuple relational calculus (TRC) and Domain relational calculus (DRC)
• TRC: Variables range over (i.e., get bound to) tuples.
• DRC: Variables range over domain elements (= attribute values)
• Both TRC and DRC are subsets of first-order logic
 • We use some short-hand notation to simplify formulas
• Expressions in the calculus are called *formulas*
• Answer tuple = assignment of constants to variables that make the formula evaluate to true
Relational Calculus Formula

- Formula is recursively defined
 - Start with simple atomic formulas (getting tuples (or defining domain variables) from relations or making comparisons of values)
 - And build bigger and more complex formulas using the logical connectives.
Domain Relational Calculus

• Query has the form:
 • \{<x_1, x_2, \ldots, x_n> \mid p(<x_1, x_2, \ldots, x_n>)\}
 • Domain Variable – ranges over the values in the domain of some attribute or is a constant
 • Example: If the domain variable \(x_1\) maps to attribute - Name char(20) then \(x_1\) ranges over all strings that are 20 characters long
 • Not just the strings values in the relation’s attribute
 • Answer includes all tuples \(<x_1, x_2, \ldots, x_n>\) that make the formula \(p(<x_1, x_2, \ldots, x_n>)\) true.
DRC Formulas

• Atomic Formulas
 1. \(<x_1, x_2, \ldots, x_n> \in \text{Relation}\)
 • where Relation is a relation with n attributes
 2. \(X \text{ operation } Y\)
 3. \(X \text{ operation } constant\)
 • Where operation is an operator in the set \{<, >, =, \leq, \geq, \neq\}

• Recursive definition of a Formula:
 1. An atomic formula
 2. \(\neg p, p \land q, p \lor q\), where \(p\) and \(q\) are formulas
 3. \(\exists X(p(X))\), where variable \(X\) is free in \(p(X)\)
 4. \(\forall X(p(X))\), where variable \(X\) is free in \(p(X)\)

• The use of quantifiers \(\exists X\) and \(\forall X\) is said to bind \(X\)
 • A variable that is not bound is free.
Free and bound variables

• Let us revisit the definition of a query:
 • \{<x_1, x_2,\ldots, x_n> | p <x_1, x_2,\ldots, x_n>\}
 • Determine what assignment(s) to <x_1, x_2,\ldots, x_n> make | p <x_1, x_2,\ldots, x_n> true
 • There is an important restriction:
 • The variables x_1,\ldots, x_n that appear to the left of `|’ must be the only free variables in the formula p<...>
 • All other variables in the query are bound
Quantifiers: \(\forall x \) and \(\exists x \)

- Variable \(x \) is said to be *subordinate* to the quantifier
 - You are restricting (or binding) the value of the variable \(x \) to set \(S \)
- The set \(S \) is known as the *range* of the quantifier
- \(\forall x \) predicate true for all elements in set \(S \)
- \(\exists x \) predicate true for at least 1 element in set \(S \)
Formula quantifier: $\forall x$

- \forall is called the universal or “for all” quantifier because every tuple in “the universe of” tuples must make $P(x)$ true to make the quantified formula true.
- $\forall x \ (P(x))$ - is only true if $P(x)$ is true for every x in the universe.
- In our example we wrote:
 - $\forall x \in \text{Boats}(\text{color} = \text{"Red"})$
 - It really means:
 - $\forall x \ ((x \in \text{Boats}) \Rightarrow (\text{color} = \text{"Red"}))$
 - \Rightarrow logical implication What does it mean?
 - $A \Rightarrow B$ means that if A is true, B must be true.
 - Since $A \Rightarrow B$ is the same as $\neg A \lor B$
\(A \Rightarrow B \) is the same as \(\neg A \lor B \)

If \(A \) is true and \(B \) is false, the implication evaluates to false.

If \(A \) is not true, \(B \) has no effect on the answer.

Since you have already satisfied the clause with \((\neg A)\),
The expression is always true.
Formula Quantifiers: $\exists X$

- \exists is called the existential or “there exists” quantifier because any tuple that exists in “the universe of” tuples may make $p(x)$ true to make the quantified formula true.
- $\exists X(p(X))$
 - Means $p(X)$ is true for some X
 - There exists an X for which $p(X)$ is true
- Shorthand notation
 - $\exists X \in \text{Students}(\text{GPA} = 3.2)$
- Real representation of the formula
 - $\exists X ((X \in \text{Students}) \land (\text{GPA} = 3.2))$
 - And logical operation as opposed to implication
Example : Domain RC

• Find all students with the name ‘Smith’
\{ <I, N,L,D,G > | <I, N,L,D,G > ∈ Students ∧ N = ‘Smith’ \}

 ▪ Can reference the relation in the expression as opposed to the attribute name
Anatomy of a DRC query

\{<I, N,L,D,G> | <I, N,L,D,G> ∈ Students ∧ N = ‘Smith’\}

• The condition \(<I, N,L,D,G> ∈ Students\)
 • ensures that the domain variables I, N, L,D, and G are bound to fields of
 the same Students tuple.
 • Maps it to an instance in the Students table
• The symbol ‘|’ from predicate calculus means ‘such that’
• The \(<I, N,L,D,G>\) to the left of `|’ (such that) says that every tuple
 \(<I, N,L,D,G>\) that satisfies N = ‘Smith’ is in the answer set.
• Calculus expresses answers to the query not operations like in
 relational algebra
DRC example with multiple predicates

- Find all students with the name ‘Smith’ and with a GPA > 3.5
- Just add another predicate \(\{ p \land q \} \)
- \(\{ <I, N, L, D, G> | <I, N, L, D, G> \in \text{Students} \land N = \text{‘Smith’} \land G > 3.5 \} \)

<table>
<thead>
<tr>
<th>SID</th>
<th>Name</th>
<th>Login</th>
<th>DoB</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>55515</td>
<td>Smith</td>
<td>smith@ccs</td>
<td>Jan 10, 1990</td>
<td>3.82</td>
</tr>
<tr>
<td>55516</td>
<td>Jones</td>
<td>jones@hist</td>
<td>Feb 11, 1992</td>
<td>2.98</td>
</tr>
<tr>
<td>55517</td>
<td>Ali</td>
<td>ali@math</td>
<td>Sep 22, 1989</td>
<td>3.11</td>
</tr>
<tr>
<td>55518</td>
<td>Smith</td>
<td>smith@math</td>
<td>Nov 30, 1991</td>
<td>3.32</td>
</tr>
</tbody>
</table>
DRC: returning a field satisfying restrictions on multiple tables

- Find the name of all students that received a ‘C’ in a course
 - Retrieving data across 2 tables
 - \(\{<N> | \exists I, L, D, G(<I, N, L, D, G > \in Students \land \exists Ir, CN, CG(<Ir, CN, CG> \in Courses \land Ir = I \land CG = 'C'))\} \)

<table>
<thead>
<tr>
<th>SID</th>
<th>Name</th>
<th>Login</th>
<th>DoB</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>55515</td>
<td>Smith</td>
<td>smith@ccs</td>
<td>Jan 10,1990</td>
<td>3.82</td>
</tr>
<tr>
<td>55516</td>
<td>Jones</td>
<td>jones@hist</td>
<td>Feb 11, 1992</td>
<td>2.98</td>
</tr>
<tr>
<td>55517</td>
<td>Ali</td>
<td>ali@math</td>
<td>Sep 22, 1989</td>
<td>3.11</td>
</tr>
<tr>
<td>55518</td>
<td>Smith</td>
<td>smith@math</td>
<td>Nov 30, 1991</td>
<td>3.32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sid</th>
<th>ClId</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>55515</td>
<td>History 101</td>
<td>C</td>
</tr>
<tr>
<td>55516</td>
<td>Biology 220</td>
<td>A</td>
</tr>
<tr>
<td>55517</td>
<td>Anthro 320</td>
<td>B</td>
</tr>
<tr>
<td>55518</td>
<td>Music 101</td>
<td>A</td>
</tr>
</tbody>
</table>

Resulting Table

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
</tr>
</tbody>
</table>
Parsing a DRC query

Find the name of all students that received a ‘C’ in course

\{<N> \mid \\
 \exists I, L, D, G(<I, N, L, D, G> \in Students \\
 \land \exists I_r, CN, CG_r(<I_r, CN, CG_r> \in Courses \land I_r = I \land CG_r = 'C')\}\}

• Note the use of \(\exists\) to find a tuple in Courses that `joins with’ the Students tuple under consideration
 • Student Id is the same value in both tables
 • Bound value represented via the variable I_r
Unsafe Queries, Expressive Queries

• It is possible to write syntactically correct calculus queries that have an *infinite* number of answers.
 • Such queries are called unsafe.

• Theorem: Every query that can be expressed in relational algebra can be expressed as a safe query in DRC / TRC
 • The converse is also true.
 • Relational Completeness: Query language (e.g., SQL) can express every query that is expressible in relational algebra/calculus.
Relational Calculus: Summary

- Relational calculus is non-operational
 - Users define queries in terms of what they want, not in terms of how to compute it. (Declarativeness.)
- Algebra and safe calculus have the same expressive power, leading to the notion of relational completeness.
- Relational calculus had big influence on the design of SQL and Query-by-Example
Practice with relational algebra

Building up a Relational Algebra Function
Division Operation in RA A/B

• Given 2 relations A (courses) and B (students); A/B = let x, yA be two attributes in A and yB is an attribute in B with the same domain as the domain of yB

• A/B = {<x> such that for all <y> in B there exists <x ,y> an element of A = {< x > | ∀< y > ∈ B ∃ < x, y > ∈ A}

• A/B contains all x tuples (courses) such that for every y tuple (students) in B, there is an xy tuple in A.

• Or: If the set of y values (courses) associated with an x value (students) in A contains all y values in B, the x value is in A/B.

 • In general, x and y can be any lists of attributes
 • y is the list of fields in B, and x U y is the list of fields of A.

• Assume x = course id and y = student id - What is the query asking for?

The MEGA-STUDENT(s) someone who has taken all courses that are in the course table
Example of division

Table A

<table>
<thead>
<tr>
<th>Student Id (x)</th>
<th>Course Id (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>cs200</td>
</tr>
<tr>
<td>10</td>
<td>cs100</td>
</tr>
<tr>
<td>10</td>
<td>cs300</td>
</tr>
<tr>
<td>10</td>
<td>cs400</td>
</tr>
<tr>
<td>20</td>
<td>cs300</td>
</tr>
<tr>
<td>30</td>
<td>cs200</td>
</tr>
<tr>
<td>15</td>
<td>cs400</td>
</tr>
<tr>
<td>15</td>
<td>cs100</td>
</tr>
<tr>
<td>25</td>
<td>cs100</td>
</tr>
<tr>
<td>25</td>
<td>cs200</td>
</tr>
</tbody>
</table>

Instances of B

<table>
<thead>
<tr>
<th>Course Id</th>
</tr>
</thead>
<tbody>
<tr>
<td>cs200</td>
</tr>
<tr>
<td>cs100</td>
</tr>
<tr>
<td>Cs 200</td>
</tr>
<tr>
<td>cs300</td>
</tr>
</tbody>
</table>

Corresponding Instances of A/B

<table>
<thead>
<tr>
<th>Student Id</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Student Id</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
<tr>
<td>25</td>
</tr>
</tbody>
</table>
Basic operations for Division

• Compute all x values in A that are not disqualified
 • How is a value disqualified?
 • If by attaching a y value from B, we obtain a tuple NOT in A
 • $\pi_x((\pi_x(A) \times B) - A)$

• $\pi_x(A) - \pi_x((\pi_x(A) \times B) - A)$
Step by step process of Division

<table>
<thead>
<tr>
<th>Student Id (x)</th>
<th>Course Id (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>cs200</td>
</tr>
<tr>
<td>10</td>
<td>cs100</td>
</tr>
<tr>
<td>10</td>
<td>cs300</td>
</tr>
<tr>
<td>10</td>
<td>cs400</td>
</tr>
<tr>
<td>20</td>
<td>cs300</td>
</tr>
<tr>
<td>30</td>
<td>cs200</td>
</tr>
<tr>
<td>15</td>
<td>cs400</td>
</tr>
<tr>
<td>15</td>
<td>cs100</td>
</tr>
<tr>
<td>25</td>
<td>cs100</td>
</tr>
<tr>
<td>25</td>
<td>cs200</td>
</tr>
</tbody>
</table>

\[(\pi_x(A) \times B) \]

| 10, cs200 |
| 20, cs200 |
| 15, cs200 |
| 25, cs200 |

\[(\pi_x(A) \times B) - A \]

\[\pi_x((\pi_x(A) \times B) - A) \]

\[\pi_x(A) - \pi_x((\pi_x(A) \times B) - A) \]

<table>
<thead>
<tr>
<th>Student Id</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>25</td>
</tr>
</tbody>
</table>
Relational Algebra

• Like ERM modeling there are many ways to solve the problem at hand
• Given the theory behind RA, a sophisticated query optimization engineer can write algorithms that optimize a query
 • Theory in practice