
Schema refinement, Functional
dependencies and Normal Form
Kathleen Durant PhD
CS 3200
Lesson 3B

1

Lecture Outline
• Functional dependency definition
• Schema Refinement
• Redundancy of Data
• Introduction to Normal Form

2

Functional Dependency
• A functional dependency (FD) has the form X  Y (read X

functionally determines Y) where X and Y are sets of
attributes in a relation R

• An FD is a statement about all allowable relations.
• Must be identified based on semantics of application.
• Given some allowable instance r1 of R, we can check if it violates

some FD f, but we cannot tell if f holds over R

X  Y if and only if:

for any instance r of R
 For any tuples t1 and t2 of r

t1(X) = t2(X) implies t1(Y) = t2(Y)

X  Y iff
 any two tuples that agree on X values also agree on Y value

3

Identifying Functional Dependencies

• FDs are domain knowledge
• Intrinsic features of the data you’re dealing with
• Something you know (or assume) about the data

• Database engine cannot identify FDs for you
• Designer must specify them as part of the schema
• DBMS can only enforce FDs when told about them

• DBMS cannot safely “optimize” FDs either
• DBMS has only a finite sample of the data
• An FD constrains the entire domain

4

Data Redundancy
• Redundancy is at the root of several problems associated with relational

schemas:
• redundant storage, insert/delete/update anomalies

• Integrity constraints, in particular functional dependencies, can be used to
identify schemas with such problems and to suggest schema refinements.

• Role of FDs in detecting redundancy:
• Consider a relation R with 3 attributes, ABC.

• No FDs hold: There is no redundancy.
• Given A  B: Several tuples can have the same A value,

and if so, they’ll all have the same B value (Redundancy)

• Schema refinement technique: decomposition (replace
relation ABCD with, say, AB and BCD, or ACD and ABD).

5

Decomposing Relations
• Decomposition addresses redundancy of data

• Use FDs to identify “good” ways to split relations
• Split R into 2+ smaller relations having less redundancy
• Split up F into subsets which apply to the new relations

• Decomposition should be used judiciously:
• Is there a reason to decompose a relation?
• What problems (if any) does the decomposition cause?

• A good decomposition does not :
• lose information
• complicate checking of constraints
• contain anomalies (or at least contains fewer anomalies)

6

Example: Original Table {S,N,L,R,W,H}
• Social Security #, Name, Lot, Rating, Wage, Hours per week
S N L R W H
123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

dependency
• FDS S  {S,N,L,R,W,H} AND R  W
• Problems due to R  W :

• Update anomaly: Can we change W in just the 1st tuple of SNLRWH?
• Insertion anomaly: What if we want to insert an employee and don’t

know the hourly wage for his rating?
• Deletion anomaly: If we delete all employees with rating 5, we lose the

information about the wage for rating 5

7

Example Solution

S N L R W H
123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

S N L R H
123-22-3666 Attishoo 48 8 40
231-31-5368 Smiley 22 8 30
131-24-3650 Smethurst 35 5 30
434-26-3751 Guldu 35 5 32
612-67-4134 Madayan 35 8 40

R W
8 10
5 7

Hourly_Emps2

Wages

Will 2 smaller tables be
better?

Set of Functional Dependencies F+

• Informal Definition

 F+ is the set of all FDs logically implied by F

• Usually F+ is too large to enumerate
• Some FDs are trivial (EXAMPLE: A A)

• Formal Definition

 If F is a set of FDs, then F+ = { X  Y | F |= X  Y }

9

Reasoning About FDs
• Given some FDs, we can usually infer additional FDs:

• ssn did, did lot implies ssn lot
• An FD f is implied by a set of FDs F if f holds whenever all

FDs in F hold.
• = closure of F is the set of all FDs that are implied by

F.
• Armstrong’s Axioms (X, Y, Z are sets of attributes):

• Reflexivity: If X Y, then Y X
• Augmentation: If X Y, then XZ YZ for any Z
• Transitivity: If X Y and Y Z, then X Z

• These are sound and complete inference rules for FDs!

→ → →

F +

⊆ →
→ →

→ → →
10

Normal Forms
• Returning to the issue of schema refinement, the

first question to ask is whether any refinement is
needed

• If a relation is in a certain normal form (BCNF, 3NF
etc.), it is known that certain kinds of problems are
avoided/minimized.

• This can be used to help us decide whether
decomposing the relation will improve the schema

11

Reasoning About FDs (Contd.)
• Couple of additional rules (that follow from Armstrong Axiom):

• Union: If X Y and X Z, then X YZ
• Decomposition: If X YZ, then X Y and X Z

• Example: Contracts(cid,sid,jid,did,pid,qty,value), and:
• C is the key: C CSJDPQV
• Project purchases each part using single contract: JP C
• Dept purchases at most one part from a supplier: SD P

• JP C, C CSJDPQV imply JP CSJDPQV
• SD P implies SDJ JP
• SDJ JP, JP CSJDPQV imply SDJ CSJDPQV

→ → →
→ → →

→
→
→

→ → →
→ →
→ → → 12

Closure of FD (Example)
• GIVEN: 1. A  B , 2. B  C and 3. AB  D

• Step 4 if A  B then A  AB (Reflexive & 1)
• Step 5 if A  and B  C then A  C (transitive & 1)
• Step 5 if A AB and AB  D then A  ABD (transitive, 3, 4)
• Step 6 if A B and BC then A C (1,2,transitivity_
• Step 7 if A ABD and A  C then A  ABCD (2, 5, Union)

13

Problems with Decompositions
• There are three potential problems to consider:

• Some queries become more expensive.
• e.g., How much did sailor Joe earn? (salary = W*H)

• Given instances of the decomposed relations, we may not be able
to reconstruct the corresponding instance of the original relation

• Fortunately, not in the SNLRWH example.

• Checking some dependencies may require joining the instances of
the decomposed relations.

• Fortunately, not in the SNLRWH example.

• Tradeoff: Must consider these issues vs. redundancy.
14

Normal Form: Codd’s Objectives
• Free the collection of relations from undesirable insertion,

update and deletion dependencies
• Duplicate data in multiple rows

• Forced to update/delete all copies of a piece of data
• How do you know you got all copies of it?

• Reduce the need for restructuring the collection of relations
• Build an extensible design

• Make the relational model more informative to users
• Cleaner model should be easier to understand

• Make the collection of relations neutral to the query statistics
• Designed for general purpose querying

15

First Normal Form
• Tuples in a relation must contain the same

number of fields
• The domain of each attribute is atomic
• The value of each attribute contains only a

single value
• No attributes are sets

• No repeating groups

16

Levels of Normal Form
• Level 1: No repeating entities or group of

elements
• Do not have multiple columns representing the same type of

entity
• Primary key that represents the entity

• Example: Table mother (MotherName
varchar(40), child1 varchar(20),
child2(varchar(20)…child8 varchar(20))
• Create 3 tables: Mother, Children and Offspring

• Offspring links Mother and Children together

17

1NF vs. Not 1NF

• Create Table Mother,
Table Offspring and a
Table Children

• Link them together via a
unique representation
(social security number)

Parent Id Offspring Id

1 11

1 12

2 13

2 14

3 15

4 16

5 17

Mother Id Mother
Name

1 Elsa

2 Golda

3 Viola

4 Iris

5 Daisy

Offspring
Id

Offspring
Name

11 Mary

12 Alice

13 George

14 Fred

15 Ava

16 Kayla

17 Harry

NOT FIRST NORMAL FORM (1NF) – DUPLICATES ENTITIES

Mother
Id

Mother
Name

Child1 Child2 Child3 Child4

1 Elsa Mary Alice NULL NULL

2 Golda George Fred NULL NULL

3 Viola Ava NULL NULL NULL

4 Iris Kayla NULL NULL NULL

5 Daisy Harry NULL NULL NULL

18

Benefits of 1NF
• No duplicated data
• Beneficial when you want to extend your

database by adding more concepts
• Example: Say you now want to model the father

relationship ?
• With the not 1NF solution you are forced to

duplicate all of the offspring data in the father
relation

 19

Adding the Father Relation
• Forced to

duplicate child
data in both
mother and
father
relationship

• Leads to errors in
child data during
updates and
deletions

• Hard to query
child data

• Limits schema
• 5 children?

NOT FIRST NORMAL FORM (1NF) – DUPLICATES ENTITIES

Mother
Id

Mother
Name

Child1 Child2 Child3 Child4

1 Elsa Mary Alice NULL NULL

2 Golda George Fred NULL NULL

3 Viola Ava NULL NULL NULL

4 Iris Kayla NULL NULL NULL

5 Daisy Harry NULL NULL NULL

NOT FIRST NORMAL FORM (1NF) – DUPLICATES ENTITIES

Father
Id

Father
Name

Child1 Child2 Child3 Child4

21 Sam Mary Alice Fred NULL

22 Sal George NULL NULL NULL

23 Hal Ava NULL NULL NULL

24 Ed Kayla NULL NULL NULL

25 George Harry NULL NULL NULL

20

1NF with Father Relation
Parent Id Offspring Id

1 11

1 12

2 13

2 14

3 15

4 16

5 17

21 11

21 12

21 14

22 13

23 15

24 16

25 17

Mother
Id

Mother
Name

1 Elsa

2 Golda

3 Viola

4 Iris

5 Daisy

Offspring
Id

Offspring
Name

11 Mary

12 Alice

13 George

14 Fred

15 Ava

16 Kayla

17 Harry

Father
Id

Father
Name

21 Sam

22 Sal

23 Hal

24 Ed

25 George

OneDegree
Table
contains
Mapping
between
parent and
offspring

21

Second normal form
• Schema must be in first normal form

• You have eliminated group sets
• Every tuple has a unique key

• Each field not in the primary key provides a fact
about the entity represented via the (entire) primary
key
• The primary key must be minimal – no extra fields thrown in
• No partial dependency on part of the primary key

• Only applies to composite primary key

• Helps you identify a relation that may represent
more than one entity

• All fields must be functionally dependent on the
complete primary key 22

Example 2NF vs. Not 2NF
1st Normal Form but NOT 2ndNORMAL FORM

Mother Id First
Name

Last
Name

Hospital Hospital
Address

1 Elsa General BIDMC Boston

2 Golda Major MGH Boston

3 Viola Funt TMC Cambridge

4 Iris Batter BIDMC Brighton

5 Daisy Mae Mayo Allston

2nd NORMAL FORM

Mother Id First
Name

Last
Name

Hospital
Id

1 Elsa General 1

2 Golda Major 2

3 Viola Funt 3

4 Iris Batter 1

5 Daisy Mae 4

2nd NORMAL FORM

Hospital
ID

Hospital Hospital
Address

1 BIDMC Boston

2 MGH Boston

3 TMC Cambridge

4 Mayo Allston

23

3rd Normal Form
• No dependencies between 2 non-key attributes
• Typically the form most database developers

strive to be at

• Bill Kent: Every non-key attribute
must provide a fact about the key, the
whole key and nothing but the key

24

Example 3NF vs. Not 3NF
2nd NORMAL FORM

Mother
Id

 First
Name

Last
Name

Hospital
Id

Room
Number

1 Elsa General 1 36

2 Golda Major 2 48

3 Viola Funt 3 36

4 Iris Batter 1 41

5 Daisy Mae 4 32

2nd or 3rd NORMAL FORM

Hospital
ID

Hospital Hospital
Address

1 BIDMC Boston

2 MGH Boston

3 TMC Cambridge

4 Mayo Allston

3rd NORMAL FORM

Mother Id First
Name

Last
Name

Registration
Id

1 Elsa General 1

2 Golda Major 2

3 Viola Funt 3

4 Iris Batter 4

5 Daisy Mae 5

3rd Normal Form

Registration
Id

Hospital
Id

Room
Id

1 1 36

2 2 48

3 3 36

4 1 41

5 4 32

25

Third Normal Form (3NF)
• Relation R with FDs F is in 3NF if, for all X A in

• A X (called a trivial FD), or
• X contains a key for R, or
• A is part of some key for R. (Relaxation from BCNF)

• Minimality of a key is crucial in third condition
above

• If R is in BCNF, obviously in 3NF.
• If R is in 3NF, some redundancy is possible.
• It is a compromise, used when BCNF not achievable (e.g., no

``good’’ decomposition, or performance considerations).

F+→
∈

26

What Does 3NF Achieve?
• If 3NF is violated by X A, one of the following holds:

• X is a subset of some key K
• We store (X, A) pairs redundantly in the relation

• X is not a proper subset of any key.
• There is a chain of FDs K X A, which means that we cannot associate

an X value with a K value unless we also associate an A value with an X value.

• But: even if relation is in 3NF, these problems could arise.
• e.g., Reserves SBDC, S C, C S is in 3NF, but for each reservation

of sailor S, same (S, C) pair is stored.
• Thus, 3NF is indeed a compromise relative to BCNF.

→

→ →

→ →

27

Decomposition of a Relation
Scheme
• Suppose that relation R contains attributes A1 ... An.
• A decomposition of R consists of replacing R by two or more

relations such that:
• Each new relation scheme contains a subset of the attributes of R (and

no attributes that do not appear in R), and
• Every attribute of R appears as an attribute of one of the new

relations.
• Intuitively, decomposing R means we will store instances of the

relation schemes produced by the decomposition, instead of
instances of R.

• E.g., Can decompose SNLRWH into SNLRH and RW.

28

Example Decomposition
• Decompositions should be used only when needed.

• SNLRWH has FDs S SNLRWH and R W
• Second FD causes violation of 3NF; W values repeatedly

associated with R values. Easiest way to fix this is to create a
relation RW to store these associations, and to remove W
from the main schema:
• i.e., we decompose SNLRWH into SNLRH and RW

• The information to be stored consists of SNLRWH tuples. If we
just store the projections of these tuples onto SNLRH and RW,
are there any potential problems that we should be aware of?

→ →

29

Refining an ER Diagram
• 1st diagram translated:

Workers(S,N,L,D,Si)
Departments(D,M,B)
• Lots associated with

workers.

• Suppose all workers in a
dept are assigned to the
same lot: D L

• Redundancy; fixed by:
Workers2(S,N,D,Si)
Dept_Lots(D,L)

• Can fine-tune this:
Workers2(S,N,D,Si)
Departments(D,M,B,L)

→

lot
dname

budget did

since
name

Works_In Departments Employees

ssn

lot

dname

budget

did

since
name

Works_In Departments Employees

ssn

Before:

After:

Boyce-Codd Normal Form
(BCNF)
• Relation R with FDs F is in BCNF if, for all X A in

• A X (called a trivial FD), or
• X contains a key for the relation R.

• In other words, R is in BCNF if the only non-trivial FDs that hold
over R are key constraints.
• No dependency in R that can be predicted using FDs alone.
• If we are shown two tuples that agree upon the X value, we cannot

infer the A value in one tuple from the A value in the other.
• If example relation is in BCNF, the 2 tuples must be identical (since X

is a key).

F+→
∈

X Y A
x y1 a
x y2 ?

31

Normal Form Tips
• Review your attributes in your tables and ensure

that they are facts about the complete key and
only the complete key

• No duplicating groups in a table
• Split many to many relationships up into 2 many

to 1 relationships by identifying the relation that
maps them together

32

Example
• Students takes Courses M-to-M relationship

• Many students to a Course
• Many courses to a Student

• Represent using 2 M-to-1 relationships
• Students has an Enrollment M-to-1
• Enrollment in a Class 1-to-M

Student Table
StudentID

Class Table
ClassID

Enrollment
StudentId, ClassId

33

Summary of Schema Refinement
• If a relation is in BCNF, it is free of redundancies that can be

detected using FDs. Thus, trying to ensure that all relations are in
BCNF is a good heuristic.

• If a relation is not in BCNF, we can try to decompose it into a
collection of BCNF relations.
• Must consider whether all FDs are preserved. If all decompositions

that exists lead to a loss of information then should consider
decomposition into 3NF.

• Decompositions should be carried out and/or re-examined while
keeping performance requirements in mind.

34

	Schema refinement, Functional dependencies and Normal Form
	Lecture Outline
	Functional Dependency
	Identifying Functional Dependencies
	Data Redundancy
	Decomposing Relations
	Example: Original Table {S,N,L,R,W,H}
	Example Solution
	Set of Functional Dependencies F+
	Reasoning About FDs
	Normal Forms
	Reasoning About FDs (Contd.)
	Closure of FD (Example)
	Problems with Decompositions
	Normal Form: Codd’s Objectives
	First Normal Form
	Levels of Normal Form
	1NF vs. Not 1NF
	Benefits of 1NF
	Adding the Father Relation
	1NF with Father Relation
	Second normal form
	Example 2NF vs. Not 2NF
	3rd Normal Form
	Example 3NF vs. Not 3NF
	Third Normal Form (3NF)
	What Does 3NF Achieve?
	Decomposition of a Relation Scheme
	Example Decomposition
	Refining an ER Diagram
	Boyce-Codd Normal Form (BCNF)
	Normal Form Tips
	Example
	Summary of Schema Refinement

