ERM to Relational Model

Kathleen Durant CS 3200 Lesson 3

Outline for today

- Review of fundamental ERM concepts
- Walk through the process of identifying the components of a entity relational model (ER)
- Introduce the relational model
- Mapping from the ERM to the Relational model
- Introduction to the SQL data definition commands

Entity Relational Model

- It is expressed in terms of entities in the environment
- The relationships (or associations) among those entities
- The **attributes** (properties) of both the entities and their relationships

ER Model constructs: Entities

- Entity person, place, object, event, concept
- Entity Set is a collection of entities that share common properties or characteristics.
 - Each entity set is given a unique name
 - Since this name represents a set of items, it is always singular
 - The description of an entity set is often referred to as an Entity Type

ER Model Constructs : Attributes

- An attribute is a property or characteristic of an entity type
 - Describes (descriptor) or represents (key) an entity
 - Simple attribute vs. Derived attribute
 - Atomic attribute vs. Composite attribute
 - Single-Valued versus Multi-valued Attribute
- Attributes may also be associated with relationships
- An attribute is associated with exactly one entity or relationship

Example: Composite Attribute

6

Example: Types of Attributes

7

ER Model constructs: Relationships

- A relationship is an association among the instances of one or more entity sets that is of interest
- Relationship Set is a meaningful association between (or among) entity sets
 - Implication: Relationship allows us to answer questions that can not be answered given only the entity sets

• Set of n-tuples
$$\{(e_1, \dots, e_n) | e_1 \in E_1, \dots, e_n \in E_n \}$$

Example: Relationship set

Constraints : Cardinality

- A relationship's *cardinality* = the maximum number of entities of one type that can be associated with an entity of another type.
 - 1 to 1, 1 to many , or many to many

Examples:

Relationship between *car* and *steering wheel* Relationship between *building* and *room* Relationship between *patient and doctor*

ER Process

Where to start

- To make an ER model from a verbal description you need to identify
 - Entities
 - Attributes
 - Relationships
- Cardinality ratios

General guidelines

- Since entities are things or objects they are often nouns in the description
- Attributes are facts or properties, and so are often nouns also
- Verbs often describe relationships between entities

Example to model

A university consists of a number of departments. Each department offers several majors. A number of courses make up each major. Students declare a particular major and take courses towards the completion of that major. Each course is taught by a lecturer from the appropriate department, and each lecturer tutors a group of students

Example: Entities

 A university consists of a number of departments. Each department offers several majors. A number of courses make up each major. Students declare a particular major and take courses towards the completion of that major. Each course is taught by a lecturer from the appropriate department, and each lecturer tutors a group of students

Example: Relationships

A university consists of a number of departments. Each department offers several majors. A number of courses make up each major. Students declare a particular major and take courses towards the completion of that major. Each course is taught by a lecturer from the appropriate department, and each lecturer tutors a group of students

How do we add:

Department offers several majors

15

Department offers a major

A number of courses make up each major.

A number of courses make up each major.

Students declare a major.

18

A course is taught by a lecturer.

Each course is taught by a lecturer.

A lecturer tutors students

A lecturer tutors students

Introduction to Relational Model

- How does a relational database conceptually represent data?
 - How can we access specific values in a database?
 - How do we map an ER diagram to an actual database

Top level definitions

- Relational database: a set of relations
- Relation: made up of two parts
 - Instance: a table, with rows and columns.
 - #Rows = cardinality of the relation
 - #Fields = degree / arity of the relation
 - Schema: specifies name of relation, plus name and type of each column.
 - E.g., Students(sid: string, name: string, login: string, dob: date, gpa: real).
- One can think of a relation as a set of rows or tuples
 - All rows are distinct. (Not necessarily true for DBMS tables.)
 - Order of tuples is irrelevant (tuples may be stored in an arbitrary order)

Example of Relation

SID	Name	Login	DoB	GPA
55515	Smith	smith@ccs	Jan 10,1990	3.82
55516	Jones	jones@hist	Feb 11, 1992	2.98
55517	Ali	ali@math	Sep 22, 1989	3.11
55518	Smith	smith@math	Nov 30, 1991	3.32

Cardinality = 4, degree = 5, all rows distinct

 Do all columns in a relation instance have to be distinct?

Relational Query Languages

- A major strength of the relational model: supports simple, powerful querying of data.
- Queries can be written intuitively, and the DBMS is responsible for efficient evaluation.
 - Specify WHAT you want, not HOW to get it efficiently
 - Declarative query language plus automatic optimizer
- How can it optimize different queries: precise semantics for relational queries.
 - Simplicity and elegance of relational model and operators also crucial
- Allows the optimizer to extensively re-order operations and still ensure that the answer does not change.

A SQL History

- Developed by IBM (System R) in the 1970s
- Need for a standard since it is used by many vendors
- Standards:
- SQL-86
- SQL-89 (minor revision)
- SQL-92 (major revision)
- SQL-99 (major extensions, current standard)
- However, not all vendors implement the complete standard and often there are vendor-specific extensions

Retrieving data from a table Select command

SID	Name	Login	DoB	GPA
55515	Smith	smith@ccs	Jan 10,1990	3.82
55516	Jones	jones@hist	Feb 11, 1992	2.98
55517	Ali	ali@math	Sep 22, 1989	3.11
55518	Smith	smith@math	Nov 30, 1991	3.32

Select * from Students S where S.name = 'Smith'

SID	Name	Login	DoB	GPA
55515	Smith	smith@ccs	Jan 10,1990	3.82
55518	Smith	smith@math	Nov 30, 1991	3.32

26

Selecting fields from multiple tables

 Select S.name, S.ssid, E.cid from Students S join Enrolled E on S.ssid = E.ssid where E.grade ='A'

SID	Name	Login	DoB	GPA	Sid	Cld	Grade
55515	Smith	smith@ccs	Jan 10,1990	3.82	55515	History 101	С
55516	Jones	jones@hist	Feb 11, 1992	2.98	55516	Biology 220	А
55517	Ali	ali@math	Sep 22, 1989	3.11	55517	Anthro 320	В
55518	Smith	smith@math	Nov 30, 1991	3.32	55518	Music 101	А

name	ssid	cid
Jones	55516	Biology 220
Smith	55518	Music 101

Create a table

- Specify name of table, names of fields (columns) as well as date type for each field
 - Type (domain) of each field is enforced by the DBMS whenever tuples are added or modified.
- Create table Students (ssid int, sname char(20), slogin char(40), dob date, gpa real)
- Create table Enrolled (ssid int, cid int, grade char(2))
- Create table <tablename> (fieldname type , ...)

Destroying and Altering tables

- The DROP TABLE statement allows you to remove tables from your schema
- Drop table <tablename> to remove a table from a database
 - Example:
 - Drop table Students
- ALTER TABLE statement will change the schema of a table
 - ALTER TABLE <name> add column <column name> <column type>
 - Increase the –arity of the table
 - Example:

Alter table Students Add column GradYear int

Adding and Deleting Tuples

- INSERT into <TableName> (f₁,...,f_n) VALUES (v₁,...,v_n)
 - INSERT INTO Students (sid, name, login, dob, gpa) VALUES (53688, 'Chen', 'Chen@ee', 'Jan 03, 1992', 3.2)
- Delete from <TableName> conditional
- Can delete all tuples satisfying some condition
 - DELETE FROM Students S WHERE S.name = 'Smith'
- Simple Introduction to SQL Commands more functionality described later

Relational Model: Summary

- A tabular representation of data.
 - Simple and intuitive, currently the most widely used.
 - Integrity constraints can be specified by the DBA, based on application semantics. DBMS checks for violations.
- Powerful and natural query languages exist.