Final Exam Review 2

Kathleen Durant
CS 3200 Northeastern University
Lecture 23

QUERY EVALUATION PLAN

Representation of a SQL Command

SELECT {DISTINCT} <list of columns>
FROM <list of relations>

{WHERE <list of "Boolean Factors'>}
{GROUP BY <list of columns>

{HAVING <list of Boolean Factors>}}
{ORDER BY <list of columns>};

Query Semantics:

1. Take Cartesian product (a.k.a. cross-product) of relations in FROM clause,
projecting only those columns that appear in other clauses

If a WHERE clause exists, apply all filters in it

If a GROUP BY clause exists, form groups on the result

If a HAVING clause exists, filter groups with it

If an ORDER BY clause exists, make sure output is in the right order

o Uk W

If there is a DISTINCT modifier, remove duplicates

System Catalog

System information: buffer pool size and page size.

For each relation:

— relation name, file name, file structure (e.g., heap file)
— attribute name and type of each attribute

— index name of each index on the relation

— Integrity constraints...

For each index:

— index name and structure (B+ tree)

— search key attribute(s)

For each view:

— view name and definition

Statistics about each relation (R) and index (l):

Query Evaluation Plan

/ - 17 On-the-fl
Query evaluation plan is an sname (On-the-fly)

extended RA tree, with additional

annotations: O—bidzloo/\ rating>5 (On-the-fly)
— access method for each relation; ‘

— Implementation method for each

relational operator. ><1 (Simple Nested Loops)
sid=sid
Cost Approximation / \
Manipulating plans: Reserves Sailors
— Relational Alebra Equivalence (File scan) (File scan)

— Push selections below the join.

— Materialization: store a temporary relation T,

— if the subsequent join needs to scan T multiple
times.

* The opposite is pipelining

Equivalence Rules

1.

Conjunctive selection operations can be deconstructed
into a sequence of individual selections.

Oy, r6, (E)= Oy, (092 (E))

. Selection operations are commutative.

O (5492 (E)) = Oy, ((791 (E))

. Only the last in a sequence of projection operations is

needed, the others can be omitted.
IT, (1, (..(I1,(E))..)) =11 (E)

. Selections can be combined with Cartesian products

and theta joins.
d. Ge(Elx EZ) = E1 MeEz
b. Gel(El Nez Ez) = E1 Memez EZ

Equivalence Rules (Slide 2)

5. Theta-join operations (and natural joins) are
commutative.
E, W E,=E, Mg Ey
6. (a) Natural join operations are associative:
(E,}E,)XE, = E, M(E, X E,)

(b) Theta joins are associative in the following manner:
(E; Mo1 E5) Moan 03 E3= Ex M g1, 03 (B3 Mg, E3)

where 0, involves attributes from only E, and E,.

Equivalence Rules (Slide 3)

8. The projections operation distributes over the theta
join operation as follows:

(a) if IT involves only attributes from L, U L,:
HL1UL2 (EsXpE;) = (HL1 (El))MQ(HLz (E2))

(b) Consider a join E, ¢ E,.
— Let L, and L, be sets of attributes from E, and E,,
respectively.

— Let L, be attributes of E, that are involved in join
condition O, but are notin L, U L,, and

— let L, be attributes of E, that are involved in join
condition O, but are notin L, U L,.

HL1UL2 (B, MoEy) = HLluLz ((H UL, (E) I (H L,UL, (E»))

Equivalence Rules (Slide 4)

9. The set operations union and intersection are commutative
E,UE, =E, UE,
E,NE, =E,NE
B (set difference is not commutative).
10. Set union and intersection are associative.
(E,VE)UE;=E, U (E, UE,)
(E,NE)NE;=E, N (E,NE)
11. The selection operation distributes over U, m and —.
Oy (El _ Ez) = Oy (E1) — Ue(Ez).
and similarly for U and min place of —
Also: o, (E; — E,) = o(E;) — E,
and similarly for n in place of —, but not for U
12. The projection operation distributes over union

HL(El U Ez) = (HL(El)) J (HL(Ez))

Pictorial Depiction of Equivalence Rules

X) - Rule 5 _ X)
/N 7N
El E2 E2 El
M - Rule 6a _]
7N\ /N
X E3 El X
7\ /N
E1 E2 E2 E3
A Rule 7a N
DL]) If @ only has i / \E2
attributes from E1 Og
7N\ \
El E2 El

Query Blocks: Units of Optimization

 An SQL query is parsed into
a collection of query blocks,
and these are optimized
one block at a time.

| SELECT S.sname

FROM Sailors S

WHERE S.age IN
(SELECT MAX (S2.age)
FROM Sailors S2

GROUP BY S2.rating) \

Outer block Nested block

% Nested blocks are usually treated as calls to a
subroutine, made once per outer tuple.

Cost Estimation for Multi-relation Plans

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Consider a query block:

Reduction factor (RF) is associated with each term.

Max number tuples in result = the product of the
cardinalities of relations in the FrRom clause.

Result cardinality = max # tuples * product of all RF’s.

Multi-relation plans are built up by joining one new
relation at a time.

— Cost of join method, plus estimate of join cardinality gives
us both cost estimate and result size estimate.

Query Optimization: Summary

* Two parts to optimizing a query:
— Consider a set of alternative plans.
* Must prune search space; typically, left-deep plans only.

— Must estimate cost of each plan that is considered.
* Must estimate size of result and cost for each plan node.
* Key issues: Statistics, indexes, operator implementations.

Query Optimization: Summary

* Single-relation queries:
— All access paths considered, cheapest is chosen.

— Issues: Selections that match index, whether index key has
all needed fields and/or provides tuples in a desired order.

 Multiple-relation queries:
— All single-relation plans are first enumerated.
 Selections/projections considered as early as possible.
— Next, for each 1-relation plan, all ways of joining another
relation (as inner) are considered.

— Next, for each 2-relation plan that is retained’, all ways of
joining another relation (as inner) are considered, etc.

— At each level, for each subset of relations, only best plan for
each interesting order of tuples is retained’.

NO SQL

Typical NoSQL architecture

Hashing function
maps each key
to a server

16

The search problem: No Hash key

Locating a record
without the hash key
requires searching
multiple servers

17

The Fault Tolerance problem

77"\

Tl

Many NOSQL system’s
default settings
consider a write
complete after writing
to just 1 node

18

The consistency problem

Clients may read
inconsistent data
and writes may be
lost

19

Theory of NOSQL: CAP

GIVEN: C
* Many nodes

* Nodes contain replicas of
partitions of the data

* Consistency \
— all replicas contain the same

version of data

* Availability A P
— system remains operational
on failing nodes
 Partition tolarence CAP Theorem:
— multiple entry points Satisfying all three at
— system remains operational the same time IS
on system split : .
Impossible

20

Replica Sets

 Redundancy and Failover

e Zero downtime for
upgrades and
mainentance

« Master-slave replication
— Strong Consistency
— Delayed Consistency

* Geospatial features

Host1:10000

Host2:10001

Host3:10002

replical

g

21

How does it vary from SQL?

Looser schema definition

Various schema models

— Key value pair

— Document oriented

— Graph

— Column based

Applications written to deal with specific documents

— Applications aware of the schema definition as opposed to
the data

Designed to handle distributed, large databases

Trade off: ad hoc queries for speed and growth of
database

ACID - BASE

i Basicall
Atomicity Y

Available (CP)
Consistency

Isolation

Eventually consistent
Durability (Asynchronous
propagation)

Pritchett, D.: BASE: An Acid Alternative (queue.acm.org/detail.cfm?id=1394128)

What is MapReduce?

* Programming model for expressing distributed
computations on massive amounts of data

AND

* An execution framework for large-scale data
processing on clusters of commodity servers

Programming Model

* Transforms set of input key-value pairs to set of
output key-value pairs

— Map function written by user
— Map: (k1, v1) = list (k2, v2)

— MapReduce library groups all intermediate pairs with
same key together

* Reduce written by user
— Reduce: (k2, list (v2)) = list (v2)
— Usually zero or one output value per group

— Intermediate values supplied via iterator (to handle
lists that do not fit in memory)

Execution Framework

* Handles scheduling of the tasks

— Assigns workers to maps and reduce tasks

— Handles data distribution
* Moves the process to the data

— Handles synchronization
e Gathers, sorts and shuffles intermediate data

— Handles faults
 Detects worker failures and restarts

— Understands the distributed file system

MongoDB Basics

* A MongoDB instance may have zero or more
databases

* A database may have zero or more ‘collections’.
e A collection may have zero or more ‘documents’.
A document may have one or more ‘fields’.

* MongoDB ‘Indexes’ function much like their RDBMS
counterparts.

RDB Concepts to NO SQL
RDBMS | |MongoDB

Database m=) Database Collection is not strict about what it
Table, View =) Collection Stores
= Schema-less
Row mm) Document (JSON, BSON)
=) Hierarchy is evident in the design
Column Field
Index = Index Embedded Document ?
Join - Embedded Document
. =
Foreign Key Reference
Partition m=) Shard

28

HyperDex Key Points

 Maps records to a Hypercube Space

— object’s key are stored in a dedicated one-dimensional
subspace for efficient lookup

— only need to contact the servers which match the regions
of the hyperspace assigned for the search attributes

* Value-dependent chaining

— Keeps replicas consistent without heavy overhead from
coordination of servers

* Uses the hypercube space

— Appoints a point leader that contains the most recent
update of a record

* Other replicas are updated from the point leader

Each server is responsible for a region
of the hyperspace

Pfone Number Nl Armstrong

. #Lance Armstrong
. oMeil Diamond

FINAL EXAM: LAST NOTES

Topics for the final exam

Topics Algorithms
* File storage mechanisms e Cost model
— Abstraction:collection of records
_ Formats — Given a query, the approximate
— Heap-based, Sorted, Indexed number of 1/Q’s for different
— RAID file storage mechanisms

e Buffer management
— In relationship to the data manager

* Indexes * Insertion/Deletion of records
— Primary vs. Secondary

— Clustered vs. Unclustered — B+ tree
— Tree-structured: ISAM, B+ trees — ISAM
— Hash-based indexes

e External Sort

e Query Evaluation
e Query Optimization * Query plan selection
* NOSQL

e B+ tree bulk load

— Extendible hashing
— Linear hashing

Format of the final exam

e 1-2 Algorithmic/Calculation problems (40%)
— 1/0 calculations
— B+ tree insertion/deletion
— Construct or Choose a query plan

* 1-2 open-ended responses (30%)

— SQL vs. NO SQL
* ACID vs. BASE
e CAP theorem

— Comparison of Join algorithms
— Sort algorithms
 Some close-ended responses (30%)
— Short collection of True and False
— Multiple choice
— Short definitions

Final Exam

* April 19, 2013 8:00 AM Shillman Hall 135
 Open books and open notes

— But no portable devices (no laptops, no phones,
etc.)

e 2 hour time period

That's it

Go over the lecture notes
Read the book

Go over homework 3

— final exam questions will not be as difficult as
homework problems

Ask questions in piazza or via email
Organize a study sheet

Complete the example mid-term
Practice problems

