
Final Exam Review 2

Kathleen Durant

CS 3200 Northeastern University

Lecture 23

QUERY EVALUATION PLAN

Representation of a SQL Command

• Query Semantics:
1. Take Cartesian product (a.k.a. cross-product) of relations in FROM clause,

projecting only those columns that appear in other clauses

2. If a WHERE clause exists, apply all filters in it

3. If a GROUP BY clause exists, form groups on the result

4. If a HAVING clause exists, filter groups with it

5. If an ORDER BY clause exists, make sure output is in the right order

6. If there is a DISTINCT modifier, remove duplicates

SELECT {DISTINCT} <list of columns>
FROM <list of relations>
{WHERE <list of "Boolean Factors">}
{GROUP BY <list of columns>
{HAVING <list of Boolean Factors>}}
{ORDER BY <list of columns>};

System Catalog
• System information: buffer pool size and page size.
• For each relation:

– relation name, file name, file structure (e.g., heap file)
– attribute name and type of each attribute
– index name of each index on the relation
– integrity constraints…

• For each index:
– index name and structure (B+ tree)
– search key attribute(s)

• For each view:
– view name and definition

• Statistics about each relation (R) and index (I):

Query Evaluation Plan

• Query evaluation plan is an
extended RA tree, with additional
annotations:
– access method for each relation;

– implementation method for each
relational operator.

• Cost Approximation

• Manipulating plans:
– Relational Alebra Equivalence

– Push selections below the join.

– Materialization: store a temporary relation T,

– if the subsequent join needs to scan T multiple
times.

• The opposite is pipelining

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

(File scan) (File scan)

Equivalence Rules
1. Conjunctive selection operations can be deconstructed

into a sequence of individual selections.

2. Selection operations are commutative.

3. Only the last in a sequence of projection operations is
needed, the others can be omitted.

4. Selections can be combined with Cartesian products
and theta joins.
a. (E1 X E2) = E1 E2
b. 1(E1 2 E2) = E1 1 2 E2

))(())((
1221

EE

))(()(
2121

EE

)())))((((
121

EE LLnLL

Equivalence Rules (Slide 2)

5. Theta-join operations (and natural joins) are
commutative.
 E1 E2 = E2 E1

6. (a) Natural join operations are associative:

 (E1 E2) E3 = E1 (E2 E3)

(b) Theta joins are associative in the following manner:

 (E1 1 E2) 2 3 E3 = E1 1 3 (E2 2 E3)

 where 2 involves attributes from only E2 and E3.

Equivalence Rules (Slide 3)
8. The projections operation distributes over the theta

join operation as follows:
 (a) if involves only attributes from L1 L2:

 (b) Consider a join E1 E2.
– Let L1 and L2 be sets of attributes from E1 and E2,

respectively.
– Let L3 be attributes of E1 that are involved in join

condition , but are not in L1 L2, and
– let L4 be attributes of E2 that are involved in join

condition , but are not in L1 L2.

)) (()) (() (2 1 2 1 2 1 2 1
E E E E L L L L

))) (()) ((() (2 1 2 1 4 2 3 1 2 1 2 1
E E E E L L L L L L L L

Equivalence Rules (Slide 4)
9. The set operations union and intersection are commutative

 E1 E2 = E2 E1
 E1 E2 = E2 E1
 (set difference is not commutative).

10. Set union and intersection are associative.
 (E1 E2) E3 = E1 (E2 E3)

 (E1 E2) E3 = E1 (E2 E3)
11. The selection operation distributes over , and –.

 (E1 – E2) = (E1) – (E2)
 and similarly for and in place of –
Also: (E1 – E2) = (E1) – E2
 and similarly for in place of –, but not for

12. The projection operation distributes over union
 L(E1 E2) = (L(E1)) (L(E2))

Pictorial Depiction of Equivalence Rules

Query Blocks: Units of Optimization

• An SQL query is parsed into
a collection of query blocks,
and these are optimized
one block at a time.

SELECT S.sname

FROM Sailors S

WHERE S.age IN

 (SELECT MAX (S2.age)

 FROM Sailors S2

 GROUP BY S2.rating)

Nested block Outer block

 Nested blocks are usually treated as calls to a
subroutine, made once per outer tuple.

Cost Estimation for Multi-relation Plans

• Consider a query block:

• Reduction factor (RF) is associated with each term.

• Max number tuples in result = the product of the
cardinalities of relations in the FROM clause.

• Result cardinality = max # tuples * product of all RF’s.

• Multi-relation plans are built up by joining one new
relation at a time.

– Cost of join method, plus estimate of join cardinality gives
us both cost estimate and result size estimate.

SELECT attribute list

FROM relation list

WHERE term1 AND ... AND termk

Query Optimization: Summary

• Two parts to optimizing a query:

– Consider a set of alternative plans.

• Must prune search space; typically, left-deep plans only.

– Must estimate cost of each plan that is considered.

• Must estimate size of result and cost for each plan node.

• Key issues: Statistics, indexes, operator implementations.

Query Optimization: Summary
• Single-relation queries:

– All access paths considered, cheapest is chosen.

– Issues: Selections that match index, whether index key has
all needed fields and/or provides tuples in a desired order.

• Multiple-relation queries:
– All single-relation plans are first enumerated.

• Selections/projections considered as early as possible.

– Next, for each 1-relation plan, all ways of joining another
relation (as inner) are considered.

– Next, for each 2-relation plan that is `retained’, all ways of
joining another relation (as inner) are considered, etc.

– At each level, for each subset of relations, only best plan for
each interesting order of tuples is `retained’.

NO SQL

Typical NoSQL architecture

Hashing function

maps each key

to a server

K

16

The search problem: No Hash key

Locating a record
without the hash key
requires searching
multiple servers

17

The Fault Tolerance problem

Many NOSQL system’s
default settings
consider a write
complete after writing
to just 1 node

18

The consistency problem

Clients may read
inconsistent data
and writes may be
lost

19

Theory of NOSQL: CAP
GIVEN:

• Many nodes

• Nodes contain replicas of
partitions of the data

• Consistency
– all replicas contain the same

version of data

• Availability
– system remains operational

on failing nodes

• Partition tolarence
– multiple entry points

– system remains operational
on system split

CAP Theorem:

satisfying all three at

the same time is

impossible

A P

C

20

Replica Sets

• Redundancy and Failover

• Zero downtime for
upgrades and
mainentance

• Master-slave replication
– Strong Consistency

– Delayed Consistency

• Geospatial features

Host1:10000

Host2:10001

Host3:10002

replica1

Client

21

How does it vary from SQL?

• Looser schema definition
• Various schema models

– Key value pair
– Document oriented
– Graph
– Column based

• Applications written to deal with specific documents
– Applications aware of the schema definition as opposed to

the data

• Designed to handle distributed, large databases
• Trade off: ad hoc queries for speed and growth of

database

22

ACID - BASE

Pritchett, D.: BASE: An Acid Alternative (queue.acm.org/detail.cfm?id=1394128)

Atomicity

Consistency

Isolation

Durability

Basically

Available (CP)

Soft-state

Eventually consistent
 (Asynchronous
propagation)

23

What is MapReduce?

• Programming model for expressing distributed
computations on massive amounts of data

 AND

• An execution framework for large-scale data
processing on clusters of commodity servers

Programming Model

• Transforms set of input key-value pairs to set of
output key-value pairs
– Map function written by user
– Map: (k1, v1) list (k2, v2)
– MapReduce library groups all intermediate pairs with

same key together

• Reduce written by user
– Reduce: (k2, list (v2)) list (v2)
– Usually zero or one output value per group
– Intermediate values supplied via iterator (to handle

lists that do not fit in memory)

Execution Framework

• Handles scheduling of the tasks

– Assigns workers to maps and reduce tasks

– Handles data distribution

• Moves the process to the data

– Handles synchronization

• Gathers, sorts and shuffles intermediate data

– Handles faults

• Detects worker failures and restarts

– Understands the distributed file system

MongoDB Basics

• A MongoDB instance may have zero or more
databases

• A database may have zero or more ‘collections’.

• A collection may have zero or more ‘documents’.

• A document may have one or more ‘fields’.

• MongoDB ‘Indexes’ function much like their RDBMS
counterparts.

27

RDB Concepts to NO SQL

RDBMS MongoDB

Database Database

Table, View Collection

Row Document (JSON, BSON)

Column Field

Index Index

Join Embedded Document

Foreign Key Reference

Partition Shard

 Collection is not strict about what it

Stores

Schema-less

Hierarchy is evident in the design

Embedded Document ?

28

HyperDex Key Points

• Maps records to a Hypercube Space
– object’s key are stored in a dedicated one-dimensional

subspace for efficient lookup

– only need to contact the servers which match the regions
of the hyperspace assigned for the search attributes

• Value-dependent chaining
– Keeps replicas consistent without heavy overhead from

coordination of servers
• Uses the hypercube space

– Appoints a point leader that contains the most recent
update of a record
• Other replicas are updated from the point leader

Each server is responsible for a region
of the hyperspace

FINAL EXAM: LAST NOTES

Topics for the final exam

Topics
• File storage mechanisms

– Abstraction:collection of records
– Formats
– Heap-based, Sorted, Indexed
– RAID

• Buffer management
– In relationship to the data manager

• Indexes
– Primary vs. Secondary
– Clustered vs. Unclustered
– Tree-structured: ISAM, B+ trees
– Hash-based indexes

• External Sort
• Query Evaluation
• Query Optimization
• NO SQL

Algorithms

• Cost model
– Given a query, the approximate

number of I/O’s for different
file storage mechanisms

• B+ tree bulk load

• Insertion/Deletion of records
– B+ tree

– ISAM

– Extendible hashing

– Linear hashing

• Query plan selection

Format of the final exam

• 1-2 Algorithmic/Calculation problems (40%)
– I/O calculations
– B+ tree insertion/deletion
– Construct or Choose a query plan

• 1-2 open-ended responses (30%)
– SQL vs. NO SQL

• ACID vs. BASE
• CAP theorem

– Comparison of Join algorithms
– Sort algorithms

• Some close-ended responses (30%)
– Short collection of True and False
– Multiple choice
– Short definitions

Final Exam

• April 19, 2013 8:00 AM Shillman Hall 135

• Open books and open notes

– But no portable devices (no laptops, no phones,
etc.)

• 2 hour time period

That’s it

• Go over the lecture notes

• Read the book

• Go over homework 3
– final exam questions will not be as difficult as

homework problems

• Ask questions in piazza or via email

• Organize a study sheet

• Complete the example mid-term

• Practice problems

