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Outline for today 
• Identify topics for the final exam 
• Discuss format of the final exam 

• What will be provided for you and what you can bring (and not 
bring) 

• Review content 



Final Exam 
• August 20th by appointment or August 25 , 2015  1:00 AM  
• Open books and open notes 

•  But no portable devices (no laptops, no phones, etc.) 
• 2 hour time period  



Lectures for the final exam 
• 10 lectures – all presentations are numbered with the 

corresponding lecture number  
• All content for these last 9 lectures  included 

• Except for MongDB, MapReduce and Hyperdex 
 



Text chapters for the final exam 
• Chapter 18 

• ARIES – recovery algorithm 
• Chapters 8-11 

8. Overview of storage and indexing 
9. Storing data: disks and files  
10. Tree-structured indexing 

• Including section on B+ trees in Chapter 17 (17.5.2) 
11. Hash-based indexing  

• Chapters 12-15 
12. Query Evaluation 
13. External Sorting  
14. Evaluating Relational Operators 
15. Typical Relational Operator  
 

 



Topics for the final exam  
Topics 

• File storage mechanisms  
• Abstraction:collection of records 
• Formats  
• Heap-based, Sorted, Indexed  
• RAID 

• Buffer management 
• In relationship to the data manager  

• Indexes  
• Primary vs. Secondary 
• Clustered vs. Unclustered 
• Tree-structured: ISAM, B+  trees 
• Hash-based indexes 

• External Sort  
• Query Evaluation 
• Query Optimization 
• NO SQL   

 

Algorithms  
• Cost model 

• Given a query, the approximate 
number of  I/O’s for different file 
storage mechanisms 

• B+ tree bulk load 
• Insertion/Deletion of records 

•  B+ tree 
• ISAM 
• Extendible hashing  
• Linear hashing  

• Query plan selection  
 
 
 
 



Format of the final exam 
• 1-2 Algorithmic/Calculation problems (40%) 

• I/O calculations 
• B+ tree insertion/deletion 
• Construct or Choose a query plan  
• ARIES 

• 1-2 open-ended responses  (30%) 
• SQL vs. NO SQL  

• ACID vs. BASE  
• CAP theorem  

• Comparison of Join algorithms  
• Sort algorithms 

• Some close-ended responses (30%) 
• Short collection of True and False 
• Multiple choice 
• Short definitions  



Study Steps 
• Go over the lecture notes 
• Read the book 

• Summary section of the chapters are written well 
• Go over homework 3, 4 
• Ask questions in piazza or via email  
• Organize a study sheet  
• Review algorithms  



CONTENT REVIEW 



Disk Space Manager 
• Lowest layer of DBMS software manages space on disk. 
• Higher levels call upon this layer to: 

• allocate/de-allocate a page 
• read/write a page 

• Request for a sequence of pages must be satisfied by allocating the 
pages sequentially on disk 

• Higher levels don’t need to know how this is done, or how free 
space is managed. 



Buffer Management in a DBMS 

• Data must be in RAM for DBMS to operate on it! 
• Table of <frame#, pageid> pairs is maintained. 

DB 

MAIN MEMORY 

DISK 

disk page 

free frame 

Page Requests from Higher Levels 

BUFFER POOL 

choice of frame dictated 
by replacement policy 



File structure types  
• Heap (random order) files 

• Suitable when typical access is a file scan retrieving all records. 
• Sorted Files 

• Best if records must be retrieved in some order, or only a `range’ 
of records is needed. 

• Indexes = data structures to organize records via trees or 
hashing. 
• Like sorted files, they speed up searches for a subset of records, 

based on values in certain (“search key”) fields 
• Updates are much faster than in sorted files. 



Record Formats:  Fixed Length 

• Information about field types same for all records in a file; 
stored in system catalogs. 

• Finding i’th field requires scan of record. 

Base address (B) 

L1 L2 L3 L4 

F1 F2 F3 F4 

Address = B+L1+L2 



Page Formats: Fixed Length Records 

Record id = <page id, slot #>.  In first alternative, moving records 
for free space management changes rid; may not be acceptable. 

Slot 1 
Slot 2 

Slot N 

. . . . . . 

N M 1 0 . . . 
M  ...    3  2  1 

PACKED UNPACKED, BITMAP 

Slot 1 
Slot 2 

Slot N 

Free 
Space 

Slot M 
1 1 

number  
of records 

number 
of slots 



Index classification 
• Primary vs. secondary: If search key contains primary key, then 

called primary index. 
• Unique index: Search key contains a candidate key. 

• Clustered vs. unclustered: If order of data records is the same as, or 
`close to’, order of data entries, then called clustered index. 
• A file can be clustered on at most one search key. 
• Cost of retrieving data records through index varies greatly based on 

whether index is clustered or not. 



Clustered vs. Unclustered Index 

CLUSTERED UNCLUSTERED 

Index 
File 

Data 
File 

Data records  Data records  



Cost Model Analysis 
• We ignore CPU costs, for simplicity: 

•  B: The number of data pages (Blocks) 
•  R: Number of records per page (Records) 
•  D: (Average) time to read or write a single disk page 

• Measuring number of page I/O’s 
•  ignores gains of pre-fetching a sequence of pages; thus, even I/O cost 

is only approximated 
• Average-case analysis; based on several simplifying  assumptions 
• Operations to measure 

• Scan whole table  
• Equality search 
• Range selection 
• Insert a record 
• Delete a record 



Summary of workload 
File Type Scan Equality 

Search 
Range 
Search 

Insert Delete 

Heap BD .5BD BD 2D Search + D 

Sorted BD D log2B Dlog2B + # 
matching  p. 

Search + BD Search + BD 

Clustered 1.5BD D LogF1.5B DLogF1.5B + 
# matched 
pages 

Search + D Search + D 

Unclustered 
tree index 

BD(R + 
0.15) 

D(1+ 
logF0.15B) 

D(LogF0.15B 
+ # 
matching 
records) 

D(3 + 
logF0.15B) 

Search + 2D 

Unclustered 
Hash  index 

BD(R + 
0.125) 

2D BD 4D Searches + 
2D 



RAID Goals  
• Disk Array: Arrangement of several disks that gives abstraction of a 

single, large disk 
 

• Goals: Increase performance and reliability.  
• high capacity and high speed  by using multiple disks in parallel  
• high reliability by storing data redundantly, so that data can be 

recovered even if  a disk fails  
 

• Two main techniques: 
• Data striping: Data is partitioned; size of a partition is called the striping 

unit. Partitions are distributed over several disks. 
• Redundancy: More disks -> more failures. Redundant information 

allows reconstruction of  data if a disk fails. 



Levels of Raid  
• RAID Level 0:  Block striping; non-redundant.  

•  Used in high-performance applications where data lost is not critical.  
• RAID Level 1:  Mirrored disks with block striping 

• Offers best write performance.   
• Popular for applications such as storing log files in a database system. 

• RAID Level 2:  Memory-Style Error-Correcting-Codes (ECC) with bit striping. 
• RAID Level 3: Bit-Interleaved Parity 

•  a single parity bit is enough for error correction, not just detection 
• When writing data, corresponding parity bits must also be computed 

and written to a parity bit disk 
• To recover data in a damaged disk, compute XOR of bits from other 

disks (including parity bit disk)  
• RAID Level 4:  Block-Interleaved Parity; uses block-level striping, and keeps a 

parity block on a separate disk for corresponding blocks from N other disks. 
• RAID Level 5:  Block-Interleaved Distributed Parity; partitions data and parity 

among all N + 1 disks, rather than storing data in N disks and parity in 1 disk. 
• RAID Level 6: P+Q Redundancy scheme; similar to Level 5, but stores extra 

redundant information to guard against multiple disk failures 
 
 
 



INDEXES 



Extendible Hashing Algorithm 
• Use directory of pointers to buckets, double # of buckets by 

doubling the directory 
•  Split just the bucket that overflowed! 

• Directory much smaller than file, so doubling it is much cheaper.   
• Only one page of data entries is split.  No overflow page! 
• Trick lies in how hash function is adjusted! 



Example 
• Directory is array of size 4. 
• To find bucket for r, take 

last `global depth’ # bits of 
h(r); we denote r by h(r). 
• If h(r) = 5 = binary 101,  it is 

in bucket pointed to by 01. 

 Insert:  If bucket is full, split it (allocate new page, re-distribute). 

 If necessary, double the directory.  (As we will see, splitting a 
    bucket does not always require doubling; we can tell by  
    comparing global depth with local depth for the split bucket.) 
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Insert h(r)=20 (Causes Doubling) 
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Extendible hashing details 
• 20 = binary 10100.  Last 2 bits (00) tell us r belongs in A or A2.  Last 

3 bits needed to tell which. 
• Global depth of directory:  Max # of  bits needed to tell which bucket 

an entry belongs to. 
• Local depth of a bucket: # of bits used to determine if an entry belongs 

to this bucket. 
• When does bucket split cause directory doubling? 

• Before insert, local depth of bucket = global depth.  Insert causes local 
depth to become > global depth; directory is doubled by copying it 
over and `fixing’ pointer to split image page.  (Use of least significant 
bits enables efficient doubling via copying of directory!) 



Linear Hashing 
• LH handles the problem of long overflow chains without using a 

directory, and handles duplicates. 
•  Idea:  Use a family of hash functions h0, h1, h2, ... 

• hi(key) = h(key) mod(2iN);  N = initial # buckets 
• h is some hash function (range is not 0 to N-1) 
• If N = 2d0, for some d0, hi consists of applying h and looking at the last di 

bits, where di = d0 + i. 
• hi+1 doubles the range of hi (similar to directory doubling) 



Linear Hashing (Contd.) 
• Directory avoided in LH by using overflow pages, and choosing 

bucket to split round-robin. 
• Splitting proceeds in `rounds’.  Round ends when all NR initial (for 

round R) buckets are split.  Buckets 0 to Next-1 have been split;  
Next to NR yet to be split. 

• Current round number is Level. 
• Search: To find bucket for data entry r, find hLevel(r): 

• If hLevel(r) in range `Next to NR’ , r belongs here. 
• Else, r could belong to bucket hLevel(r) or bucket 

hLevel(r) + NR; must apply hLevel+1(r) to find out. 



Example of Linear Hashing 
• On split, hLevel+1 is used to 

redistribute entries. 

0 
h h 

1 

(This info 
is for illustration 
only!) 

Level=0, N=4 

00 

01 

10 

11 

000 

001 

010 

011 

(The actual contents 
of the linear hashed 
file) 

Next=0 
PRIMARY 

PAGES 

Data entry r 
with h(r)=5 

Primary  
bucket page 

44* 36* 32* 

25* 9* 5* 

14* 18* 10* 30* 

31* 35* 11* 7* 

0 
h h 

1 

Level=0 

00 

01 

10 

11 

000 

001 

010 

011 

Next=1 

PRIMARY 
PAGES 

44* 36* 

32* 

25* 9* 5* 

14* 18* 10* 30* 

31* 35* 11* 7* 

OVERFLOW 

PAGES 

43* 

00 100 

Insert record with h(key) = 43*  



Example:  End of a Round 
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Summary: Hash-Based Indexes  
• Hash-based indexes: best for equality searches, cannot support 

range searches. 
• Static Hashing can lead to long overflow chains. 
• Extendible Hashing avoids overflow pages by splitting a full bucket 

when a new data entry is to be added to it.  (Duplicates may 
require overflow pages.) 
• Directory to keep track of buckets, doubles periodically. 
• Can get large with skewed data; additional I/O if this does not fit in 

main memory. 



Summary: Linear hashing  
• Linear Hashing avoids directory by splitting buckets round-robin, 

and using overflow pages.  
• Overflow pages not likely to be long. 
• Duplicates handled easily. 
• Space utilization could be lower than Extendible Hashing, since splits 

not concentrated on `dense’ data areas. 

• Can tune criterion for triggering splits to trade-off 
slightly longer chains for better space utilization. 

• For hash-based indexes, a skewed data distribution is one in which 
the hash values of data entries are not uniformly distributed! 



Tree Structured Indexes 

• Tree-structured indexing techniques support both range 
searches and equality searches. 

• Tree structures with search keys on value-based domains 
• ISAM:  static structure  
• B+ tree:  dynamic, adjusts gracefully under inserts and deletes. 



ISAM 

• Leaf pages contain sorted data records (e.g., Alt 1 index). 
• Non-leaf part directs searches to the data records; static once built! 
• Inserts/deletes: use overflow pages, bad for frequent inserts. 

P 0 K 1 P 1 K 2 P 2 K m P m 

index entry 

Non-leaf 
Pages 
(static!) 

Pages 
Overflow  

page 
Primary pages 

Leaf 



Comments on ISAM 
• Main problem 

• Long overflow chains after many inserts, high I/O cost for retrieval. 
• Advantages 

• Simple when updates are rare. 
• Leaf pages are allocated in sequence, leading to sequential I/O. 
• Non-leaf pages are static; for concurrent access, no need to lock 

non-leaf pages 
• Good performance for frequent updates? 
    B+tree! 



Definition of B+ Tree 
• A B-tree of order n is a height-balanced tree , 

where each node may have up to n children, and 
in which: 
• All leaves (leaf nodes) are on the same level  
• No node can contain more than n children 
• All nodes except the root have at least  n/2 children 
• The root is either a leaf node, or it has at least n/2 

children 



Example B+ Tree 
• Search begins at root, and key comparisons direct it to a leaf (as 

in ISAM). 
• Search for 5*, 15*, all data entries >= 24* ... 

Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 

<13 
≥13 <17 

≥17 <24 ≥24 <30 
≥30 



Inserting a Data Entry into a B+ Tree 
• Find correct leaf L.  
• Put data entry onto L. 

• If L has enough space, done! 
• Else, must split  L (into L and a new node L2) 

• Redistribute entries evenly, copy up middle key. 
• Insert index entry pointing to L2 into parent of L. 

• This can happen recursively 
• To split index node, redistribute entries evenly, but push up middle key.  

(Contrast with leaf splits.) 
• Splits “grow” tree; root split increases height.   

• Tree growth: gets wider or one level taller at top. 



Deleting a Data Entry from a B+ Tree 

• Start at root, find leaf L where entry belongs. 
• Remove the entry. 

• If L is at least half-full, done!  
• If L has only n/2 - 1 entries, 

• Try to re-distribute, borrowing from sibling (adjacent 
node with same parent as L). 

• If re-distribution fails, merge L and sibling. 
• If merge occurred, must delete entry (pointing to L or sibling) from 

parent of L. 
• Merge could propagate to root, decreasing height. 



Bulk Loading Algorithm 
• Initialization:   

• Sort all data entries  
• Insert pointer to the first (leaf) page in a new (root) page. 

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

Sorted pages of data entries; not yet in B+ tree 
Root 



Bulk Loading Algorithm (Contd.) 
• Index entries 

for leaf pages 
always enter 
into r*, right-
most index 
page just 
above leaf 
level.   

• When the r* 
node fills up, it 
splits.   

• Split may go up 
right-most 
path to the 
root. 

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

Root 

Data entry pages  
not yet in B+ tree 35 23 12 6 

10 20 

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

6 

Root 

10 

12 23 

20 

35 

38 

not yet in B+ tree 
Data entry pages  



QUERY EVALUATION AND   
QUERY OPTIMIZATION 



Tree of relational operators 
 
SELECT sid 
FROM Sailors NATURAL JOIN Reserves 
WHERE bid = 100 AND rating > 5;  
 
πsid (σbid=100 AND rating>5 (Sailors        Reserves)) 

42 

πsid 

σbd=100 AND rating>5 

Sailors Reserves 

RA expressions are 
represented by an 

expression tree. 

An algorithm is chosen 
for each node in the 

expression tree. 

Sailors (sid: integer, sname: string, rating: integer, age: real) 
Reserves (sid: integer, bid: integer, day: date, rname: string) 



Approaches to Evaluation  
• Algorithms for evaluating relational operators use some 

simple ideas extensively: 
•  Indexing: Can use WHERE conditions to retrieve small set of 

tuples (selections, joins) 
•  Iteration: Sometimes, faster to scan all tuples even if there is an 

index. (And sometimes, we can scan the data entries in an index 
instead of the table itself.) 

• Partitioning: By using sorting or hashing, we can partition the 
input tuples and replace an expensive operation by similar 
operations on smaller inputs. 

 

43 



Relational Operations 
• Operators to implement: 

• Selection  (     )    Selects a subset of rows from relation. 
• Projection  (     )   Deletes unwanted columns from 

relation. 
• Join  (        )  Allows us to combine two relations. 
• Set-difference  (     )  Tuples in reln. 1, but not in reln. 2. 
• Union  (     )  Tuples in reln. 1 and in reln. 2. 
• Aggregation  (SUM, MIN, etc.) and GROUP BY 
• Order By   Returns tuples in specified order. 

• Since each op returns a relation, ops can be composed.  After we cover the 
operations, we will discuss how to optimize queries formed by composing 
them. 

44 
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Project functionality  other Algorithms 

• Block Nested Loop Join 
• Index Nested Loop 
• Sort Merge Join 

 
 

• Influences sorting and hashing 
 
 
 

• General selection criteria 
• Answering question via record ids   

 

JOIN Algorithms  

Select functionality 



Block Nested Loops Join 
• How can we utilize additional buffer pages? 

• If the smaller relation fits in memory, use it as outer, read the inner 
only once. 

• Otherwise, read a big chunk of it each time, resulting in reduced # 
times of reading the inner.  

• Block Nested Loops Join:  
• Take the smaller relation, say R, as outer, the other as inner. 
• Buffer allocation: one buffer for scanning the inner S, one buffer for 

output, all remaining buffers for holding a ``block’’ of outer R. 

46 



Block Nested Loops Join Diagram 

47 
. . . 

. . . 

R & S 
Hash table for block of R 
(block size k < B-1 pages) 

Input buffer for S Output buffer 

. . . 

Join Result 

foreach block  in R do 
    build a hash table on R-block 
    foreach S page 
 for each matching tuple r in R-block, s in S-page do 
     add <r, s> to result 



Examples of Block Nested Loops 
• Cost:  Scan of outer table +  #outer blocks * scan of inner table  

• #outer blocks =  # pages of outer / block size 
• Given available buffer size B, block size is at most B-2. 

• With Sailors (S) as outer, a block has 100 pages of S: 
• Cost of scanning S is 500 I/Os; a total of 5 blocks. 
• Per block of S, we scan Reserves;  5*1000 I/Os. 
• Total = 500 + 5 * 1000 = 5,500 I/Os. 

48 

• Sailors: 
– Each tuple is 50 

bytes long,   
– 80 tuples per page,  
– 500 pages.  

• Reserves: 
– Each tuple is 40 

bytes long,  
– 100 tuples per page,  
– 1000 pages. 



Index Nested Loops Join 

• If there is an index on the join column of one relation (say S), can 
make it the inner and exploit the index. 
• Cost:  M + ( (M*pR) * cost of finding matching S tuples)  

• For each R tuple, cost of probing S index is about 1.2 for hash 
index, 2-4 for B+ tree.  Cost of then finding S tuples (assuming Alt. 
(2) or (3) for data entries) depends on clustering. 
• Clustered index:  1 I/O (typical).  
• Unclustered: up to 1 I/O per matching S tuple. 49 

foreach tuple r in R do 
 foreach tuple s in S where ri == sj  do 
  add <r, s> to result 



Sort-Merge Join  (R     S) 
• Sort R and S on join column using external sorting.  
• Merge R and S on join column, output result tuples. 
    Repeat until either R or S is finished: 

• Scanning:  
• Advance scan of R until current R-tuple >=current S tuple,  
• Advance scan of S until current S-tuple>=current R tuple;  
• Do this until current R tuple = current S tuple. 

• Matching:  
• Match all R tuples and S tuples with same value;  output <r, s> for all pairs of 

such tuples. 

• Data access patterns for R and S? 

50 


i=j 

R is scanned once, each S partition scanned once per matching R tuple  



Refinement of Sort-Merge Join 
• Idea:  

• Sorting of R and S has respective merging phases 
• Join of R and S also has a merging phase 
• Combine all these merging phases! 

• Two-pass algorithm for sort-merge join: 
• Pass 0: sort subfiles of R, S individually 
• Pass 1: merge sorted runs of R, merge sorted runs of S, and merge the 

resulting R and S files as they are generated by checking the join 
condition. 

51 



Hash-Join 
Partitioning: 

Partition both 
relations using hash 
fn h:  Ri tuples will 
only match with Si 
tuples. 

 Probing: Read in 
partition i of R, build 
hash table on Ri 
using h2 (<> h!).  
 

 Scan partition i of S, 
search for matches. 

Partitions 
of R & S 

Input buffer 
for Si 

Hash table for partition 
Ri (k < B-1 pages) 

B main memory buffers Disk 

Output  
 buffer 

Disk 

Join Result 

hash 
fn 
h2 

h2 

B main memory buffers Disk Disk 

Original  
Relation OUTPUT 

2 INPUT 

1 

hash 
function 
h B-1 

Partitions 

1 

2 

B-1 

. . . 



SELECTING ACCESS METHODS 



Approach 1: 
     to General Selections 

• (1) Find the most selective access path, retrieve tuples using it, and (2) 
apply any remaining terms that don’t match the index on the fly. 
• Most selective access path: An index or file scan that is expected to require 

the smallest # I/Os. 
• Terms that match this index reduce the number of tuples retrieved;  
• Other terms are used to discard some retrieved tuples, but do not affect I/O cost. 

• Consider day<8/9/94 AND bid=5 AND sid=3.  
• A B+ tree index on  day can be used; then, bid=5 and sid=3 must be checked for 

each retrieved tuple.   
• A hash index on <bid, sid> could be used; day<8/9/94 must then be checked on 

the fly.  

54 



Approach 2:  
     SELECT Intersection of Rids 
• If we have 2 or more matching indexes that use Alternatives (2) or (3) for 

data entries: 
• Get sets of rids of data records using each matching index. 
• Intersect these sets of rids. 
• Retrieve the records and apply any remaining terms. 
• Consider day<8/9/94 AND bid=5 AND sid=3. If we have a B+ tree index on day 

and an index on sid, both using Alternative (2), we can: 
• retrieve rids of records satisfying day<8/9/94 using the first, rids of records 

satisfying sid=3 using the second,  
• intersect these rids,  
• retrieve records and check bid=5.  

55 



Using an Index for Selection 
• Cost depends on # qualifying tuples, and clustering. 

• Cost of finding data entries (often small) + cost of retrieving records 
(could be large w/o clustering). 

• For gpa > 3.0, if 10% of tuples qualify (100 pages, 10,000 tuples), cost ≈ 
100 I/Os with a clustered index; otherwise, up to 10,000 I/Os! 

• Important refinement for unclustered indexes:   
1. Find qualifying data entries. 
2. Sort the rid’s of the data records to be retrieved. 
3. Fetch rids in order.   

    Each data page is looked at just once, although # of such 
pages likely to be higher than with clustering.  

56 



Projection Based on Sorting 
• Modify Pass 0 of external sort to eliminate unwanted fields.   

• Runs of about 2B pages are produced,  
• But tuples in runs are smaller than input tuples.  (Size ratio 

depends on # and size of fields that are dropped.) 
• Modify merging passes to eliminate duplicates.   

• # result tuples smaller than input.  Difference depends on # of 
duplicates. 

• Cost:  In Pass 0, read input relation (size M), write out same 
number of smaller tuples.  In merging passes, fewer tuples 
written out in each pass.   
• Using Reserves example, 1000 input pages reduced to 250 in 

Pass 0 if size ratio is 0.25.    57 



Projection Based on Hashing 
• Partitioning phase:  Read R using one input buffer.  For each 

tuple, discard unwanted fields, apply hash function h1 to 
choose one of B-1 output buffers. 
• Result is B-1 partitions (of tuples with no unwanted fields).  2 

tuples from different partitions guaranteed to be distinct. 
• Duplicate elimination phase:  For each partition, read it and 

build an in-memory hash table, using hash fn h2 (<> h1) on 
all fields, while discarding duplicates. 
• If partition does not fit in memory, can apply hash-based 

projection algorithm recursively to this partition. 
• Cost:  For partitioning, read R, write out each tuple, but 

with fewer fields.  This is read in next phase. 58 



EXTERNAL SORT 



2-Way Sort: Requires 3 Buffers 

• Pass 1: Read a page, sort it, write it. 
• only one buffer page is used 

• Pass 2, 3, …, etc.: 
•  three buffer pages used. 

60 Main memory buffers 

INPUT 1 

INPUT 2 

OUTPUT 

Disk Disk 

Partition data 
Pass determines  
Size of partition  



General External Merge Sort 

• To sort a file with N pages using B buffer pages: 
• Pass 0: use B buffer pages. Produce N/B sorted runs of B pages each.  
• Pass 2, 3…,  etc.: merge B-1 runs.  

61 

B Main memory buffers 

INPUT 1 

INPUT B-1 

OUTPUT 

Disk Disk 

INPUT 2 
. . . . . . . . . 

 More than 3 buffer pages.  How can we utilize them 



Cost of External Merge Sort 

• Number of passes = 1 + log B-1 N/B   
    Cost = 2N * (# of passes) 

Pass 0 108/5 = 22 sorted runs of 5 
pages each (last run is only 3 
pages) 

N/B sorted runs of B 
pages each 

Pass 1 22/4 = 6 sorted runs of 20 
pages each (last run is only 8 
pages) 

N/B /(B-1) sorted runs of 
B(B-1) pages each 

Pass 2 2 sorted runs, 80 pages and 28 
pages 

N/B /(B-1)2 sorted runs 
of B(B-1)2 pages 

Pass 3 Sorted file of 108 pages N/B /(B-1)3 sorted runs 
of B(B-1)3 (≥N) pages 

E.g., with 5 (B) buffer pages, sort 108 (N) page file: 



Output  
(1 buffer) 

12 
4 

3 

5 

2 
8 
10 

Input  
(1 buffer) 

Current Set  
(B-2 buffers) 

Replacement Sort 
• Organize B available buffers: 

• 1 buffer for input 
• B-2 buffers for current set 
• 1 buffer for output 
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 Pick tuple r in the current set with the smallest value that is ≥ largest value in 
output, e.g. 8, to extend the current run. 

 Fill the space in current set by adding tuples from input. 
 Write output buffer out if full, extending the current run. 
 Current run terminates if every tuple in the current set is smaller than the largest 

tuple in output.  



Clustered B+ Tree Used for Sorting 
Cost: root to the left-
most leaf, then retrieve 
all leaf pages (Alternative 
1) 

  Almost always better than external sorting 

(Directs search) 

Data Records 

Index 

Data Entries 
("Sequential") … 

 
 If Alternative 2 is used?  

Additional cost of 
retrieving data records:  
each page fetched just 
once. 



Refinement of Sort-Merge Join 
 2 Pass Sort-Merge Join 

• Idea:  
• Sorting of R and S has respective merging phases 
• Join of R and S also has a merging phase 
• Combine all these merging phases! 

• Two-pass algorithm for sort-merge join: 
• Pass 0: sort subfiles of R, S individually 
• Pass 1: merge sorted runs of R, merge sorted runs of S, and merge 

the resulting R and S files as they are generated by checking the 
join condition. 
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2-Pass Sort-Merge Algorithm 
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B Main memory buffers 

Run1 of R 

RunK of R 

OUTPUT 

Join Results 
Run2 of R 

. . . 

Relation R 

. . . 

Run1 of S 

RunK of S 

Run2 of S 

Relation S 

. . . 



QUERY EVALUATION PLAN  



Representation of a SQL Command  

Query Semantics: 
1. Take Cartesian product (a.k.a. cross-product) of relations in FROM 

clause, projecting only those columns that appear in other clauses 
2. If a WHERE clause exists, apply all filters in it 
3. If a GROUP BY clause exists, form groups on the result 
4. If a HAVING clause exists, filter groups with it 
5. If an ORDER BY clause exists, make sure output is in the right order 
6. If there is a DISTINCT modifier, remove duplicates 

SELECT        {DISTINCT} <list of columns>  
FROM            <list of relations>  
{WHERE       <list of "Boolean Factors">}  
{GROUP BY <list of columns>  
{HAVING      <list of Boolean Factors>}}  
{ORDER BY <list of columns>};  



System Catalog 
• System information: buffer pool size and page size. 
• For each relation: 

• relation name, file name, file structure (e.g., heap file) 
• attribute name and type of each attribute 
• index name of each index on the relation 
• integrity constraints… 

• For each index: 
• index name and structure (B+ tree) 
• search key attribute(s) 

• For each view: 
• view name and definition 

• Statistics about each relation (R) and index (I): 



Query Evaluation Plan 
• Query evaluation plan is an 

extended RA tree, with additional 
annotations: 
• access method for each relation;  
• implementation method for each 

relational operator. 

• Cost Approximation 

• Manipulating plans:  
• Relational Alebra Equivalence 
• Push selections below the join. 
• Materialization: store a temporary relation T,  
• if the subsequent join needs to scan T multiple 

times. 
• The opposite is pipelining 

Reserves Sailors 

sid=sid 

bid=100  rating > 5 

sname 

(Simple Nested Loops) 

(On-the-fly) 

(On-the-fly) 

(File scan) (File scan) 



Equivalence Rules 
1. Conjunctive selection operations can be deconstructed into a 

sequence of individual selections. 
 

2. Selection operations are commutative. 
 
 

3. Only the last in a sequence of projection operations is needed, the 
others can be omitted. 
 
 

4. Selections can be combined with Cartesian products and theta joins. 
a. σθ(E1 X E2) =  E1     θ E2  
b. σθ1(E1     θ2 E2) =  E1     θ1∧ θ2 E2  

 
 

))(())((
1221

EE θθθθ σσσσ =

))(()(
2121

EE θθθθ σσσ =∧

)())))((((
121

EE LLnLL Π=ΠΠΠ 



Equivalence Rules (Slide 2) 
5. Theta-join operations (and natural joins) are commutative. 

 E1      θ  E2 = E2     θ  E1 

6. (a) Natural join operations are associative: 
   (E1      E2)    E3 = E1      (E2     E3) 

 
(b) Theta joins are associative in the following manner: 
 
  (E1       θ1 E2)     θ2∧ θ3 E3 = E1        θ2∧ θ3 (E2     θ2 E3) 
      
     where θ2 involves attributes from only E2 and E3. 



Equivalence Rules (Slide 3) 
8. The projections operation distributes over the theta join 

operation as follows: 
 (a) if Π  involves only attributes from L1 ∪ L2: 

 
  

 (b) Consider a join E1      θ E2.  
•  Let L1 and L2 be sets of attributes from E1 and E2, respectively.   
• Let L3 be attributes of E1 that are involved in join condition θ, but 

are not in L1 ∪ L2, and 
•  let L4 be attributes of E2 that are involved in join condition θ, but 

are not in L1 ∪ L2. 

)) ( ( )) ( ( ) ( 2 1 2 1 2 1 2 1 
E E E E L L L L ∏ ∏ = ∏ ∪ θ θ 

))) ( ( )) ( (( ) ( 2 1 2 1 4 2 3 1 2 1 2 1 
E E E E L L L L L L L L ∪ ∪ ∪ ∪ ∏ ∏ ∏ = ∏ θ θ 



Pictorial Depiction of Equivalence Rules 



Query Blocks: Units of Optimization 
• An SQL query is parsed 

into a collection of query 
blocks, and these are 
optimized one block at a 
time. 

SELECT  S.sname 
FROM    Sailors S 
WHERE  S.age IN  
     (SELECT  MAX (S2.age) 
       FROM  Sailors S2 
       GROUP BY  S2.rating) 

Nested block Outer block 

 Nested blocks are usually treated as calls to a 
subroutine, made once per outer tuple.  
 



Cost Estimation for Multi-relation Plans 

• Consider a query block: 
• Reduction factor (RF) is associated with each term.  
• Max number tuples in result = the product of the cardinalities of 

relations in the FROM clause. 
• Result cardinality = max # tuples * product of all RF’s. 
• Multi-relation plans are built up by joining one new relation at a 

time. 
• Cost of join method, plus estimate of join cardinality gives us both 

cost estimate and result size estimate. 

 

SELECT  attribute list 
FROM  relation list 
WHERE  term1 AND ... AND termk 



Query Optimization: Summary 
• Two parts to optimizing a query: 

• Consider a set of alternative plans. 
• Must prune search space; typically, left-deep plans only. 

• Must estimate cost of each plan that is considered. 
• Must estimate size of result and cost for each plan node. 
• Key issues: Statistics, indexes, operator implementations. 



Query Optimization: Summary 
• Single-relation queries: 

• All access paths considered, cheapest is chosen. 
• Issues:  Selections that match index, whether index key has all 

needed fields and/or provides tuples in a desired order. 

• Multiple-relation queries: 
• All single-relation plans are first enumerated. 

• Selections/projections considered as early as possible. 
• Next, for each 1-relation plan, all ways of joining another relation (as 

inner) are considered. 
• Next, for each 2-relation plan that is `retained’, all ways of joining 

another relation (as inner) are considered, etc. 
• At each level, for each subset of relations, only best plan for each 

interesting order of tuples is `retained’.  



NO SQL 



Typical NoSQL architecture 
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Hashing function  
maps each key 
to a server  
 

K  



The search problem: No Hash 
key 

81 

Locating a record 
without the hash key 
requires searching 
multiple servers 

 



The Fault Tolerance problem 

82 

Many NOSQL 
system’s default 
settings consider a 
write complete after 
writing to just  1 
node 

 



The consistency problem 

83 

Clients may read 
inconsistent data 
and writes may be 
lost 

 



Theory of NOSQL: CAP 
GIVEN: 
• Many nodes 
• Nodes contain replicas of 

partitions of the data 
 

• Consistency 
• all replicas contain the same 

version of data 

• Availability 
• system remains operational on 

failing nodes 

• Partition tolarence 
• multiple entry points 
• system remains operational on 

system split 
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CAP  Theorem: 
satisfying  all three at 

the same time is 
impossible 

A P 

C  



Replica Sets 
• Redundancy and Failover 
• Zero downtime for 

upgrades and 
mainentance  
 

• Master-slave replication 
• Strong Consistency 
• Delayed Consistency 

 
• Geospatial features 
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Host1:10000 

Host2:10001 

Host3:10002 

replica1 

Client 

 



How does it vary from SQL? 
• Looser schema definition 
• Various schema models 

• Key value pair 
• Document oriented 
• Graph  
• Column based  

• Applications written to deal with specific documents 
• Applications aware of the schema definition as opposed to the 

data  
• Designed to handle distributed, large databases 
• Trade off: ad hoc queries for speed and growth of database 
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RDB ACID to NoSQL BASE 

87 

Pritchett, D.: BASE: An Acid Alternative (queue.acm.org/detail.cfm?id=1394128) 

Atomicity 
 
Consistency 
 
Isolation 
 
Durability 

 

Basically 
 

Available (CP) 
 

Soft-state 
 (State of system may change over 
time) 
 

Eventually 
consistent      
(Asynchronous propagation) 



That’s it  
• Go over the lecture notes 
• Read the book 
• Go over homework  4 

• final exam questions will not be as difficult as homework 
problems  

• Ask questions in piazza or  via email  
• Organize a study sheet  
• Complete the example mid-term 
• Practice problems  
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