
Final Exam Review
Kathleen Durant PhD
CS 3200 Northeastern University
Lecture 22

Outline for today
• Identify topics for the final exam
• Discuss format of the final exam

• What will be provided for you and what you can bring (and not
bring)

• Review content

Final Exam
• August 20th by appointment or August 25 , 2015 1:00 AM
• Open books and open notes

• But no portable devices (no laptops, no phones, etc.)
• 2 hour time period

Lectures for the final exam
• 10 lectures – all presentations are numbered with the

corresponding lecture number
• All content for these last 9 lectures included

• Except for MongDB, MapReduce and Hyperdex

Text chapters for the final exam
• Chapter 18

• ARIES – recovery algorithm
• Chapters 8-11

8. Overview of storage and indexing
9. Storing data: disks and files
10. Tree-structured indexing

• Including section on B+ trees in Chapter 17 (17.5.2)
11. Hash-based indexing

• Chapters 12-15
12. Query Evaluation
13. External Sorting
14. Evaluating Relational Operators
15. Typical Relational Operator

Topics for the final exam
Topics

• File storage mechanisms
• Abstraction:collection of records
• Formats
• Heap-based, Sorted, Indexed
• RAID

• Buffer management
• In relationship to the data manager

• Indexes
• Primary vs. Secondary
• Clustered vs. Unclustered
• Tree-structured: ISAM, B+ trees
• Hash-based indexes

• External Sort
• Query Evaluation
• Query Optimization
• NO SQL

Algorithms
• Cost model

• Given a query, the approximate
number of I/O’s for different file
storage mechanisms

• B+ tree bulk load
• Insertion/Deletion of records

• B+ tree
• ISAM
• Extendible hashing
• Linear hashing

• Query plan selection

Format of the final exam
• 1-2 Algorithmic/Calculation problems (40%)

• I/O calculations
• B+ tree insertion/deletion
• Construct or Choose a query plan
• ARIES

• 1-2 open-ended responses (30%)
• SQL vs. NO SQL

• ACID vs. BASE
• CAP theorem

• Comparison of Join algorithms
• Sort algorithms

• Some close-ended responses (30%)
• Short collection of True and False
• Multiple choice
• Short definitions

Study Steps
• Go over the lecture notes
• Read the book

• Summary section of the chapters are written well
• Go over homework 3, 4
• Ask questions in piazza or via email
• Organize a study sheet
• Review algorithms

CONTENT REVIEW

Disk Space Manager
• Lowest layer of DBMS software manages space on disk.
• Higher levels call upon this layer to:

• allocate/de-allocate a page
• read/write a page

• Request for a sequence of pages must be satisfied by allocating the
pages sequentially on disk

• Higher levels don’t need to know how this is done, or how free
space is managed.

Buffer Management in a DBMS

• Data must be in RAM for DBMS to operate on it!
• Table of <frame#, pageid> pairs is maintained.

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

File structure types
• Heap (random order) files

• Suitable when typical access is a file scan retrieving all records.
• Sorted Files

• Best if records must be retrieved in some order, or only a `range’
of records is needed.

• Indexes = data structures to organize records via trees or
hashing.
• Like sorted files, they speed up searches for a subset of records,

based on values in certain (“search key”) fields
• Updates are much faster than in sorted files.

Record Formats: Fixed Length

• Information about field types same for all records in a file;
stored in system catalogs.

• Finding i’th field requires scan of record.

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

Page Formats: Fixed Length Records

Record id = <page id, slot #>. In first alternative, moving records
for free space management changes rid; may not be acceptable.

Slot 1
Slot 2

Slot N

.

N M 1 0 . . .
M ... 3 2 1

PACKED UNPACKED, BITMAP

Slot 1
Slot 2

Slot N

Free
Space

Slot M
1 1

number
of records

number
of slots

Index classification
• Primary vs. secondary: If search key contains primary key, then

called primary index.
• Unique index: Search key contains a candidate key.

• Clustered vs. unclustered: If order of data records is the same as, or
`close to’, order of data entries, then called clustered index.
• A file can be clustered on at most one search key.
• Cost of retrieving data records through index varies greatly based on

whether index is clustered or not.

Clustered vs. Unclustered Index

CLUSTERED UNCLUSTERED

Index
File

Data
File

Data records Data records

Cost Model Analysis
• We ignore CPU costs, for simplicity:

• B: The number of data pages (Blocks)
• R: Number of records per page (Records)
• D: (Average) time to read or write a single disk page

• Measuring number of page I/O’s
• ignores gains of pre-fetching a sequence of pages; thus, even I/O cost

is only approximated
• Average-case analysis; based on several simplifying assumptions
• Operations to measure

• Scan whole table
• Equality search
• Range selection
• Insert a record
• Delete a record

Summary of workload
File Type Scan Equality

Search
Range
Search

Insert Delete

Heap BD .5BD BD 2D Search + D

Sorted BD D log2B Dlog2B + #
matching p.

Search + BD Search + BD

Clustered 1.5BD D LogF1.5B DLogF1.5B +
matched
pages

Search + D Search + D

Unclustered
tree index

BD(R +
0.15)

D(1+
logF0.15B)

D(LogF0.15B
+ #
matching
records)

D(3 +
logF0.15B)

Search + 2D

Unclustered
Hash index

BD(R +
0.125)

2D BD 4D Searches +
2D

RAID Goals
• Disk Array: Arrangement of several disks that gives abstraction of a

single, large disk

• Goals: Increase performance and reliability.
• high capacity and high speed by using multiple disks in parallel
• high reliability by storing data redundantly, so that data can be

recovered even if a disk fails

• Two main techniques:
• Data striping: Data is partitioned; size of a partition is called the striping

unit. Partitions are distributed over several disks.
• Redundancy: More disks -> more failures. Redundant information

allows reconstruction of data if a disk fails.

Levels of Raid
• RAID Level 0: Block striping; non-redundant.

• Used in high-performance applications where data lost is not critical.
• RAID Level 1: Mirrored disks with block striping

• Offers best write performance.
• Popular for applications such as storing log files in a database system.

• RAID Level 2: Memory-Style Error-Correcting-Codes (ECC) with bit striping.
• RAID Level 3: Bit-Interleaved Parity

• a single parity bit is enough for error correction, not just detection
• When writing data, corresponding parity bits must also be computed

and written to a parity bit disk
• To recover data in a damaged disk, compute XOR of bits from other

disks (including parity bit disk)
• RAID Level 4: Block-Interleaved Parity; uses block-level striping, and keeps a

parity block on a separate disk for corresponding blocks from N other disks.
• RAID Level 5: Block-Interleaved Distributed Parity; partitions data and parity

among all N + 1 disks, rather than storing data in N disks and parity in 1 disk.
• RAID Level 6: P+Q Redundancy scheme; similar to Level 5, but stores extra

redundant information to guard against multiple disk failures

INDEXES

Extendible Hashing Algorithm
• Use directory of pointers to buckets, double # of buckets by

doubling the directory
• Split just the bucket that overflowed!

• Directory much smaller than file, so doubling it is much cheaper.
• Only one page of data entries is split. No overflow page!
• Trick lies in how hash function is adjusted!

Example
• Directory is array of size 4.
• To find bucket for r, take

last `global depth’ # bits of
h(r); we denote r by h(r).
• If h(r) = 5 = binary 101, it is

in bucket pointed to by 01.

 Insert: If bucket is full, split it (allocate new page, re-distribute).

 If necessary, double the directory. (As we will see, splitting a
 bucket does not always require doubling; we can tell by
 comparing global depth with local depth for the split bucket.)

13* 00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

Insert h(r)=20 (Causes Doubling)

20*

00
01
10
11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

1* 5* 21* 13*

32* 16*

10*

15* 7* 19*

4* 12*

19*

2

2

2

000

001
010

011
100

101

110
111

3

3

3
DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

32*

1* 5* 21* 13*

16*

10*

15* 7*

4* 20* 12*

LOCAL DEPTH

GLOBAL DEPTH

Extendible hashing details
• 20 = binary 10100. Last 2 bits (00) tell us r belongs in A or A2. Last

3 bits needed to tell which.
• Global depth of directory: Max # of bits needed to tell which bucket

an entry belongs to.
• Local depth of a bucket: # of bits used to determine if an entry belongs

to this bucket.
• When does bucket split cause directory doubling?

• Before insert, local depth of bucket = global depth. Insert causes local
depth to become > global depth; directory is doubled by copying it
over and `fixing’ pointer to split image page. (Use of least significant
bits enables efficient doubling via copying of directory!)

Linear Hashing
• LH handles the problem of long overflow chains without using a

directory, and handles duplicates.
• Idea: Use a family of hash functions h0, h1, h2, ...

• hi(key) = h(key) mod(2iN); N = initial # buckets
• h is some hash function (range is not 0 to N-1)
• If N = 2d0, for some d0, hi consists of applying h and looking at the last di

bits, where di = d0 + i.
• hi+1 doubles the range of hi (similar to directory doubling)

Linear Hashing (Contd.)
• Directory avoided in LH by using overflow pages, and choosing

bucket to split round-robin.
• Splitting proceeds in `rounds’. Round ends when all NR initial (for

round R) buckets are split. Buckets 0 to Next-1 have been split;
Next to NR yet to be split.

• Current round number is Level.
• Search: To find bucket for data entry r, find hLevel(r):

• If hLevel(r) in range `Next to NR’ , r belongs here.
• Else, r could belong to bucket hLevel(r) or bucket

hLevel(r) + NR; must apply hLevel+1(r) to find out.

Example of Linear Hashing
• On split, hLevel+1 is used to

redistribute entries.

0
h h

1

(This info
is for illustration
only!)

Level=0, N=4

00

01

10

11

000

001

010

011

(The actual contents
of the linear hashed
file)

Next=0
PRIMARY

PAGES

Data entry r
with h(r)=5

Primary
bucket page

44* 36* 32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

0
h h

1

Level=0

00

01

10

11

000

001

010

011

Next=1

PRIMARY
PAGES

44* 36*

32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

OVERFLOW

PAGES

43*

00 100

Insert record with h(key) = 43*

Example: End of a Round

0 h h 1

22*

00

01

10

11

000

001

010

011

00 100

Next=3

01

10

101

110

Level=0
PRIMARY
PAGES

OVERFLOW
PAGES

32*

9*

5*

14*

25*

66* 10* 18* 34*

35* 31* 7* 11* 43*

44* 36*

37* 29*

30*

0 h h 1

37*

00

01

10

11

000

001

010

011

00 100

10

101

110

Next=0

Level=1

111

11

PRIMARY
PAGES OVERFLOW

PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31* 7*

50*

Summary: Hash-Based Indexes
• Hash-based indexes: best for equality searches, cannot support

range searches.
• Static Hashing can lead to long overflow chains.
• Extendible Hashing avoids overflow pages by splitting a full bucket

when a new data entry is to be added to it. (Duplicates may
require overflow pages.)
• Directory to keep track of buckets, doubles periodically.
• Can get large with skewed data; additional I/O if this does not fit in

main memory.

Summary: Linear hashing
• Linear Hashing avoids directory by splitting buckets round-robin,

and using overflow pages.
• Overflow pages not likely to be long.
• Duplicates handled easily.
• Space utilization could be lower than Extendible Hashing, since splits

not concentrated on `dense’ data areas.

• Can tune criterion for triggering splits to trade-off
slightly longer chains for better space utilization.

• For hash-based indexes, a skewed data distribution is one in which
the hash values of data entries are not uniformly distributed!

Tree Structured Indexes

• Tree-structured indexing techniques support both range
searches and equality searches.

• Tree structures with search keys on value-based domains
• ISAM: static structure
• B+ tree: dynamic, adjusts gracefully under inserts and deletes.

ISAM

• Leaf pages contain sorted data records (e.g., Alt 1 index).
• Non-leaf part directs searches to the data records; static once built!
• Inserts/deletes: use overflow pages, bad for frequent inserts.

P 0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages
(static!)

Pages
Overflow

page
Primary pages

Leaf

Comments on ISAM
• Main problem

• Long overflow chains after many inserts, high I/O cost for retrieval.
• Advantages

• Simple when updates are rare.
• Leaf pages are allocated in sequence, leading to sequential I/O.
• Non-leaf pages are static; for concurrent access, no need to lock

non-leaf pages
• Good performance for frequent updates?
 B+tree!

Definition of B+ Tree
• A B-tree of order n is a height-balanced tree ,

where each node may have up to n children, and
in which:
• All leaves (leaf nodes) are on the same level
• No node can contain more than n children
• All nodes except the root have at least n/2 children
• The root is either a leaf node, or it has at least n/2

children

Example B+ Tree
• Search begins at root, and key comparisons direct it to a leaf (as

in ISAM).
• Search for 5*, 15*, all data entries >= 24* ...

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

<13
≥13 <17

≥17 <24 ≥24 <30
≥30

Inserting a Data Entry into a B+ Tree
• Find correct leaf L.
• Put data entry onto L.

• If L has enough space, done!
• Else, must split L (into L and a new node L2)

• Redistribute entries evenly, copy up middle key.
• Insert index entry pointing to L2 into parent of L.

• This can happen recursively
• To split index node, redistribute entries evenly, but push up middle key.

(Contrast with leaf splits.)
• Splits “grow” tree; root split increases height.

• Tree growth: gets wider or one level taller at top.

Deleting a Data Entry from a B+ Tree

• Start at root, find leaf L where entry belongs.
• Remove the entry.

• If L is at least half-full, done!
• If L has only n/2 - 1 entries,

• Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

• If re-distribution fails, merge L and sibling.
• If merge occurred, must delete entry (pointing to L or sibling) from

parent of L.
• Merge could propagate to root, decreasing height.

Bulk Loading Algorithm
• Initialization:

• Sort all data entries
• Insert pointer to the first (leaf) page in a new (root) page.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

Bulk Loading Algorithm (Contd.)
• Index entries

for leaf pages
always enter
into r*, right-
most index
page just
above leaf
level.

• When the r*
node fills up, it
splits.

• Split may go up
right-most
path to the
root.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Root

Data entry pages
not yet in B+ tree 35 23 12 6

10 20

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree
Data entry pages

QUERY EVALUATION AND
QUERY OPTIMIZATION

Tree of relational operators

SELECT sid
FROM Sailors NATURAL JOIN Reserves
WHERE bid = 100 AND rating > 5;

πsid (σbid=100 AND rating>5 (Sailors Reserves))

42

πsid

σbd=100 AND rating>5

Sailors Reserves

RA expressions are
represented by an

expression tree.

An algorithm is chosen
for each node in the

expression tree.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: date, rname: string)

Approaches to Evaluation
• Algorithms for evaluating relational operators use some

simple ideas extensively:
• Indexing: Can use WHERE conditions to retrieve small set of

tuples (selections, joins)
• Iteration: Sometimes, faster to scan all tuples even if there is an

index. (And sometimes, we can scan the data entries in an index
instead of the table itself.)

• Partitioning: By using sorting or hashing, we can partition the
input tuples and replace an expensive operation by similar
operations on smaller inputs.

43

Relational Operations
• Operators to implement:

• Selection () Selects a subset of rows from relation.
• Projection () Deletes unwanted columns from

relation.
• Join () Allows us to combine two relations.
• Set-difference () Tuples in reln. 1, but not in reln. 2.
• Union () Tuples in reln. 1 and in reln. 2.
• Aggregation (SUM, MIN, etc.) and GROUP BY
• Order By Returns tuples in specified order.

• Since each op returns a relation, ops can be composed. After we cover the
operations, we will discuss how to optimize queries formed by composing
them.

44

σ
π

−

Project functionality other Algorithms

• Block Nested Loop Join
• Index Nested Loop
• Sort Merge Join

• Influences sorting and hashing

• General selection criteria
• Answering question via record ids

JOIN Algorithms

Select functionality

Block Nested Loops Join
• How can we utilize additional buffer pages?

• If the smaller relation fits in memory, use it as outer, read the inner
only once.

• Otherwise, read a big chunk of it each time, resulting in reduced #
times of reading the inner.

• Block Nested Loops Join:
• Take the smaller relation, say R, as outer, the other as inner.
• Buffer allocation: one buffer for scanning the inner S, one buffer for

output, all remaining buffers for holding a ``block’’ of outer R.

46

Block Nested Loops Join Diagram

47
. . .

. . .

R & S
Hash table for block of R
(block size k < B-1 pages)

Input buffer for S Output buffer

. . .

Join Result

foreach block in R do
 build a hash table on R-block
 foreach S page
 for each matching tuple r in R-block, s in S-page do
 add <r, s> to result

Examples of Block Nested Loops
• Cost: Scan of outer table + #outer blocks * scan of inner table

• #outer blocks = # pages of outer / block size
• Given available buffer size B, block size is at most B-2.

• With Sailors (S) as outer, a block has 100 pages of S:
• Cost of scanning S is 500 I/Os; a total of 5 blocks.
• Per block of S, we scan Reserves; 5*1000 I/Os.
• Total = 500 + 5 * 1000 = 5,500 I/Os.

48

• Sailors:
– Each tuple is 50

bytes long,
– 80 tuples per page,
– 500 pages.

• Reserves:
– Each tuple is 40

bytes long,
– 100 tuples per page,
– 1000 pages.

Index Nested Loops Join

• If there is an index on the join column of one relation (say S), can
make it the inner and exploit the index.
• Cost: M + ((M*pR) * cost of finding matching S tuples)

• For each R tuple, cost of probing S index is about 1.2 for hash
index, 2-4 for B+ tree. Cost of then finding S tuples (assuming Alt.
(2) or (3) for data entries) depends on clustering.
• Clustered index: 1 I/O (typical).
• Unclustered: up to 1 I/O per matching S tuple. 49

foreach tuple r in R do
 foreach tuple s in S where ri == sj do
 add <r, s> to result

Sort-Merge Join (R S)
• Sort R and S on join column using external sorting.
• Merge R and S on join column, output result tuples.
 Repeat until either R or S is finished:

• Scanning:
• Advance scan of R until current R-tuple >=current S tuple,
• Advance scan of S until current S-tuple>=current R tuple;
• Do this until current R tuple = current S tuple.

• Matching:
• Match all R tuples and S tuples with same value; output <r, s> for all pairs of

such tuples.

• Data access patterns for R and S?

50

i=j

R is scanned once, each S partition scanned once per matching R tuple

Refinement of Sort-Merge Join
• Idea:

• Sorting of R and S has respective merging phases
• Join of R and S also has a merging phase
• Combine all these merging phases!

• Two-pass algorithm for sort-merge join:
• Pass 0: sort subfiles of R, S individually
• Pass 1: merge sorted runs of R, merge sorted runs of S, and merge the

resulting R and S files as they are generated by checking the join
condition.

51

Hash-Join
Partitioning:

Partition both
relations using hash
fn h: Ri tuples will
only match with Si
tuples.

 Probing: Read in
partition i of R, build
hash table on Ri
using h2 (<> h!).

 Scan partition i of S,
search for matches.

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffers Disk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers Disk Disk

Original
Relation OUTPUT

2 INPUT

1

hash
function
h B-1

Partitions

1

2

B-1

. . .

SELECTING ACCESS METHODS

Approach 1:
 to General Selections

• (1) Find the most selective access path, retrieve tuples using it, and (2)
apply any remaining terms that don’t match the index on the fly.
• Most selective access path: An index or file scan that is expected to require

the smallest # I/Os.
• Terms that match this index reduce the number of tuples retrieved;
• Other terms are used to discard some retrieved tuples, but do not affect I/O cost.

• Consider day<8/9/94 AND bid=5 AND sid=3.
• A B+ tree index on day can be used; then, bid=5 and sid=3 must be checked for

each retrieved tuple.
• A hash index on <bid, sid> could be used; day<8/9/94 must then be checked on

the fly.

54

Approach 2:
 SELECT Intersection of Rids
• If we have 2 or more matching indexes that use Alternatives (2) or (3) for

data entries:
• Get sets of rids of data records using each matching index.
• Intersect these sets of rids.
• Retrieve the records and apply any remaining terms.
• Consider day<8/9/94 AND bid=5 AND sid=3. If we have a B+ tree index on day

and an index on sid, both using Alternative (2), we can:
• retrieve rids of records satisfying day<8/9/94 using the first, rids of records

satisfying sid=3 using the second,
• intersect these rids,
• retrieve records and check bid=5.

55

Using an Index for Selection
• Cost depends on # qualifying tuples, and clustering.

• Cost of finding data entries (often small) + cost of retrieving records
(could be large w/o clustering).

• For gpa > 3.0, if 10% of tuples qualify (100 pages, 10,000 tuples), cost ≈
100 I/Os with a clustered index; otherwise, up to 10,000 I/Os!

• Important refinement for unclustered indexes:
1. Find qualifying data entries.
2. Sort the rid’s of the data records to be retrieved.
3. Fetch rids in order.

 Each data page is looked at just once, although # of such
pages likely to be higher than with clustering.

56

Projection Based on Sorting
• Modify Pass 0 of external sort to eliminate unwanted fields.

• Runs of about 2B pages are produced,
• But tuples in runs are smaller than input tuples. (Size ratio

depends on # and size of fields that are dropped.)
• Modify merging passes to eliminate duplicates.

• # result tuples smaller than input. Difference depends on # of
duplicates.

• Cost: In Pass 0, read input relation (size M), write out same
number of smaller tuples. In merging passes, fewer tuples
written out in each pass.
• Using Reserves example, 1000 input pages reduced to 250 in

Pass 0 if size ratio is 0.25. 57

Projection Based on Hashing
• Partitioning phase: Read R using one input buffer. For each

tuple, discard unwanted fields, apply hash function h1 to
choose one of B-1 output buffers.
• Result is B-1 partitions (of tuples with no unwanted fields). 2

tuples from different partitions guaranteed to be distinct.
• Duplicate elimination phase: For each partition, read it and

build an in-memory hash table, using hash fn h2 (<> h1) on
all fields, while discarding duplicates.
• If partition does not fit in memory, can apply hash-based

projection algorithm recursively to this partition.
• Cost: For partitioning, read R, write out each tuple, but

with fewer fields. This is read in next phase. 58

EXTERNAL SORT

2-Way Sort: Requires 3 Buffers

• Pass 1: Read a page, sort it, write it.
• only one buffer page is used

• Pass 2, 3, …, etc.:
• three buffer pages used.

60 Main memory buffers

INPUT 1

INPUT 2

OUTPUT

Disk Disk

Partition data
Pass determines
Size of partition

General External Merge Sort

• To sort a file with N pages using B buffer pages:
• Pass 0: use B buffer pages. Produce N/B sorted runs of B pages each.
• Pass 2, 3…, etc.: merge B-1 runs.

61

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

Disk Disk

INPUT 2
.

 More than 3 buffer pages. How can we utilize them

Cost of External Merge Sort

• Number of passes = 1 + log B-1 N/B
 Cost = 2N * (# of passes)

Pass 0 108/5 = 22 sorted runs of 5
pages each (last run is only 3
pages)

N/B sorted runs of B
pages each

Pass 1 22/4 = 6 sorted runs of 20
pages each (last run is only 8
pages)

N/B /(B-1) sorted runs of
B(B-1) pages each

Pass 2 2 sorted runs, 80 pages and 28
pages

N/B /(B-1)2 sorted runs
of B(B-1)2 pages

Pass 3 Sorted file of 108 pages N/B /(B-1)3 sorted runs
of B(B-1)3 (≥N) pages

E.g., with 5 (B) buffer pages, sort 108 (N) page file:

Output
(1 buffer)

12
4

3

5

2
8
10

Input
(1 buffer)

Current Set
(B-2 buffers)

Replacement Sort
• Organize B available buffers:

• 1 buffer for input
• B-2 buffers for current set
• 1 buffer for output

63

 Pick tuple r in the current set with the smallest value that is ≥ largest value in
output, e.g. 8, to extend the current run.

 Fill the space in current set by adding tuples from input.
 Write output buffer out if full, extending the current run.
 Current run terminates if every tuple in the current set is smaller than the largest

tuple in output.

Clustered B+ Tree Used for Sorting
Cost: root to the left-
most leaf, then retrieve
all leaf pages (Alternative
1)

 Almost always better than external sorting

(Directs search)

Data Records

Index

Data Entries
("Sequential") …

 If Alternative 2 is used?

Additional cost of
retrieving data records:
each page fetched just
once.

Refinement of Sort-Merge Join
 2 Pass Sort-Merge Join

• Idea:
• Sorting of R and S has respective merging phases
• Join of R and S also has a merging phase
• Combine all these merging phases!

• Two-pass algorithm for sort-merge join:
• Pass 0: sort subfiles of R, S individually
• Pass 1: merge sorted runs of R, merge sorted runs of S, and merge

the resulting R and S files as they are generated by checking the
join condition.

65

2-Pass Sort-Merge Algorithm

66

B Main memory buffers

Run1 of R

RunK of R

OUTPUT

Join Results
Run2 of R

. . .

Relation R

. . .

Run1 of S

RunK of S

Run2 of S

Relation S

. . .

QUERY EVALUATION PLAN

Representation of a SQL Command

Query Semantics:
1. Take Cartesian product (a.k.a. cross-product) of relations in FROM

clause, projecting only those columns that appear in other clauses
2. If a WHERE clause exists, apply all filters in it
3. If a GROUP BY clause exists, form groups on the result
4. If a HAVING clause exists, filter groups with it
5. If an ORDER BY clause exists, make sure output is in the right order
6. If there is a DISTINCT modifier, remove duplicates

SELECT {DISTINCT} <list of columns>
FROM <list of relations>
{WHERE <list of "Boolean Factors">}
{GROUP BY <list of columns>
{HAVING <list of Boolean Factors>}}
{ORDER BY <list of columns>};

System Catalog
• System information: buffer pool size and page size.
• For each relation:

• relation name, file name, file structure (e.g., heap file)
• attribute name and type of each attribute
• index name of each index on the relation
• integrity constraints…

• For each index:
• index name and structure (B+ tree)
• search key attribute(s)

• For each view:
• view name and definition

• Statistics about each relation (R) and index (I):

Query Evaluation Plan
• Query evaluation plan is an

extended RA tree, with additional
annotations:
• access method for each relation;
• implementation method for each

relational operator.

• Cost Approximation

• Manipulating plans:
• Relational Alebra Equivalence
• Push selections below the join.
• Materialization: store a temporary relation T,
• if the subsequent join needs to scan T multiple

times.
• The opposite is pipelining

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

(File scan) (File scan)

Equivalence Rules
1. Conjunctive selection operations can be deconstructed into a

sequence of individual selections.

2. Selection operations are commutative.

3. Only the last in a sequence of projection operations is needed, the
others can be omitted.

4. Selections can be combined with Cartesian products and theta joins.
a. σθ(E1 X E2) = E1 θ E2
b. σθ1(E1 θ2 E2) = E1 θ1∧ θ2 E2

))(())((
1221

EE θθθθ σσσσ =

))(()(
2121

EE θθθθ σσσ =∧

)())))((((
121

EE LLnLL Π=ΠΠΠ

Equivalence Rules (Slide 2)
5. Theta-join operations (and natural joins) are commutative.

 E1 θ E2 = E2 θ E1

6. (a) Natural join operations are associative:
 (E1 E2) E3 = E1 (E2 E3)

(b) Theta joins are associative in the following manner:

 (E1 θ1 E2) θ2∧ θ3 E3 = E1 θ2∧ θ3 (E2 θ2 E3)

 where θ2 involves attributes from only E2 and E3.

Equivalence Rules (Slide 3)
8. The projections operation distributes over the theta join

operation as follows:
 (a) if Π involves only attributes from L1 ∪ L2:

 (b) Consider a join E1 θ E2.
• Let L1 and L2 be sets of attributes from E1 and E2, respectively.
• Let L3 be attributes of E1 that are involved in join condition θ, but

are not in L1 ∪ L2, and
• let L4 be attributes of E2 that are involved in join condition θ, but

are not in L1 ∪ L2.

)) (()) (() (2 1 2 1 2 1 2 1
E E E E L L L L ∏ ∏ = ∏ ∪ θ θ

))) (()) ((() (2 1 2 1 4 2 3 1 2 1 2 1
E E E E L L L L L L L L ∪ ∪ ∪ ∪ ∏ ∏ ∏ = ∏ θ θ

Pictorial Depiction of Equivalence Rules

Query Blocks: Units of Optimization
• An SQL query is parsed

into a collection of query
blocks, and these are
optimized one block at a
time.

SELECT S.sname
FROM Sailors S
WHERE S.age IN
 (SELECT MAX (S2.age)
 FROM Sailors S2
 GROUP BY S2.rating)

Nested block Outer block

 Nested blocks are usually treated as calls to a
subroutine, made once per outer tuple.

Cost Estimation for Multi-relation Plans

• Consider a query block:
• Reduction factor (RF) is associated with each term.
• Max number tuples in result = the product of the cardinalities of

relations in the FROM clause.
• Result cardinality = max # tuples * product of all RF’s.
• Multi-relation plans are built up by joining one new relation at a

time.
• Cost of join method, plus estimate of join cardinality gives us both

cost estimate and result size estimate.

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Query Optimization: Summary
• Two parts to optimizing a query:

• Consider a set of alternative plans.
• Must prune search space; typically, left-deep plans only.

• Must estimate cost of each plan that is considered.
• Must estimate size of result and cost for each plan node.
• Key issues: Statistics, indexes, operator implementations.

Query Optimization: Summary
• Single-relation queries:

• All access paths considered, cheapest is chosen.
• Issues: Selections that match index, whether index key has all

needed fields and/or provides tuples in a desired order.

• Multiple-relation queries:
• All single-relation plans are first enumerated.

• Selections/projections considered as early as possible.
• Next, for each 1-relation plan, all ways of joining another relation (as

inner) are considered.
• Next, for each 2-relation plan that is `retained’, all ways of joining

another relation (as inner) are considered, etc.
• At each level, for each subset of relations, only best plan for each

interesting order of tuples is `retained’.

NO SQL

Typical NoSQL architecture

80

Hashing function
maps each key
to a server

K

The search problem: No Hash
key

81

Locating a record
without the hash key
requires searching
multiple servers

The Fault Tolerance problem

82

Many NOSQL
system’s default
settings consider a
write complete after
writing to just 1
node

The consistency problem

83

Clients may read
inconsistent data
and writes may be
lost

Theory of NOSQL: CAP
GIVEN:
• Many nodes
• Nodes contain replicas of

partitions of the data

• Consistency
• all replicas contain the same

version of data

• Availability
• system remains operational on

failing nodes

• Partition tolarence
• multiple entry points
• system remains operational on

system split

84

CAP Theorem:
satisfying all three at

the same time is
impossible

A P

C

Replica Sets
• Redundancy and Failover
• Zero downtime for

upgrades and
mainentance

• Master-slave replication
• Strong Consistency
• Delayed Consistency

• Geospatial features

85

Host1:10000

Host2:10001

Host3:10002

replica1

Client

How does it vary from SQL?
• Looser schema definition
• Various schema models

• Key value pair
• Document oriented
• Graph
• Column based

• Applications written to deal with specific documents
• Applications aware of the schema definition as opposed to the

data
• Designed to handle distributed, large databases
• Trade off: ad hoc queries for speed and growth of database

86

RDB ACID to NoSQL BASE

87

Pritchett, D.: BASE: An Acid Alternative (queue.acm.org/detail.cfm?id=1394128)

Atomicity

Consistency

Isolation

Durability

Basically

Available (CP)

Soft-state
 (State of system may change over
time)

Eventually
consistent
(Asynchronous propagation)

That’s it
• Go over the lecture notes
• Read the book
• Go over homework 4

• final exam questions will not be as difficult as homework
problems

• Ask questions in piazza or via email
• Organize a study sheet
• Complete the example mid-term
• Practice problems

	Final Exam Review
	Outline for today
	Final Exam
	Lectures for the final exam
	Text chapters for the final exam
	Topics for the final exam
	Format of the final exam
	Study Steps
	Content review
	Disk Space Manager
	Buffer Management in a DBMS
	File structure types
	Record Formats: Fixed Length
	Page Formats: Fixed Length Records
	Index classification
	Clustered vs. Unclustered Index
	Cost Model Analysis
	Summary of workload
	RAID Goals
	Levels of Raid
	Indexes
	Extendible Hashing Algorithm
	Example
	Insert h(r)=20 (Causes Doubling)
	Extendible hashing details
	Linear Hashing
	Linear Hashing (Contd.)
	Example of Linear Hashing
	Example: End of a Round
	Summary: Hash-Based Indexes
	Summary: Linear hashing
	Tree Structured Indexes
	ISAM
	Comments on ISAM
	Definition of B+ Tree
	Example B+ Tree
	Inserting a Data Entry into a B+ Tree
	Deleting a Data Entry from a B+ Tree
	Bulk Loading Algorithm
	Bulk Loading Algorithm (Contd.)
	Query evaluation and 	�query optimization
	Tree of relational operators
	Approaches to Evaluation
	Relational Operations
	Project functionality other Algorithms
	Block Nested Loops Join
	Block Nested Loops Join Diagram
	Examples of Block Nested Loops
	Index Nested Loops Join
	Sort-Merge Join (R S)
	Refinement of Sort-Merge Join
	Hash-Join
	Selecting access methods
	Approach 1:� to General Selections
	Approach 2: � SELECT Intersection of Rids
	Using an Index for Selection
	Projection Based on Sorting
	Projection Based on Hashing
	External sort
	2-Way Sort: Requires 3 Buffers
	General External Merge Sort
	Cost of External Merge Sort
	Replacement Sort
	Clustered B+ Tree Used for Sorting
	Refinement of Sort-Merge Join�	2 Pass Sort-Merge Join
	2-Pass Sort-Merge Algorithm
	Query evaluation Plan
	Representation of a SQL Command
	System Catalog
	Query Evaluation Plan
	Equivalence Rules
	Equivalence Rules (Slide 2)
	Equivalence Rules (Slide 3)
	Pictorial Depiction of Equivalence Rules
	Query Blocks: Units of Optimization
	Cost Estimation for Multi-relation Plans
	Query Optimization: Summary
	Query Optimization: Summary
	NO SQL
	Typical NoSQL architecture
	The search problem: No Hash key
	The Fault Tolerance problem
	The consistency problem
	Theory of NOSQL: CAP
	Replica Sets
	How does it vary from SQL?
	RDB ACID to NoSQL BASE
	That’s it

