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Outline for today 

• Identify topics for the final exam 

• Discuss format of the final exam 

– What will be provided for you and what you can 
bring (and not bring) 

• Review content 



Final Exam 

• April 19, 2013 8:00 AM Shillman Hall  

•  Open books and open notes 

–  But no portable devices (no laptops, no phones, 
etc.) 

• 2 hour time period  



Lectures for the final exam 

• 9 lectures – all presentations are numbered 
with the corresponding lecture number  

• All lectures included 

 



Text chapters for the final exam 

• Chapters 8-11 
8. Overview of storage and indexing 

9. Storing data: disks and files  

10. Tree-structured indexing 
• Including section on B+ trees in Chapter 17 (17.5.2) 

11. Hash-based indexing  

• Chapters 12-15 
12. Query Evaluation 

13. External Sorting  

14. Evaluating Relational Operators 

15. Typical Relational Operator  

 

 



Topics for the final exam  

Topics 
• File storage mechanisms  

– Abstraction:collection of records 
– Formats  
– Heap-based, Sorted, Indexed  
– RAID 

• Buffer management 
– In relationship to the data manager  

• Indexes  
– Primary vs. Secondary 
– Clustered vs. Unclustered 
– Tree-structured: ISAM, B+  trees 
– Hash-based indexes 

• External Sort  
• Query Evaluation 
• Query Optimization 
• NO SQL   

 

Algorithms  

• Cost model 
– Given a query, the approximate 

number of  I/O’s for different 
file storage mechanisms 

• B+ tree bulk load 

• Insertion/Deletion of records 
–  B+ tree 

– ISAM 

– Extendible hashing  

– Linear hashing  

• Query plan selection  

 

 

 

 



Format of the final exam 

• 1-2 Algorithmic/Calculation problems (40%) 
– I/O calculations 
– B+ tree insertion/deletion 
– Construct or Choose a query plan  

• 1-2 open-ended responses  (30%) 
– SQL vs. NO SQL  

• ACID vs. BASE  
• CAP theorem  

– Comparison of Join algorithms  
– Sort algorithms 

• Some close-ended responses (30%) 
– Short collection of True and False 
– Multiple choice 
– Short definitions  



Study Steps 

• Go over the lecture notes 

• Read the book 

– Summary section of the chapters are written well 

• Go over homework 3 

• Ask questions in piazza or via email  

• Organize a study sheet  

• Review algorithms  



CONTENT REVIEW 



Disk Space Manager 

• Lowest layer of DBMS software manages 
space on disk. 

• Higher levels call upon this layer to: 
– allocate/de-allocate a page 

– read/write a page 

• Request for a sequence of pages must be 
satisfied by allocating the pages sequentially 
on disk!  Higher levels don’t need to know 
how this is done, or how free space is 
managed. 



Buffer Management in a DBMS 

• Data must be in RAM for DBMS to operate on it! 

• Table of <frame#, pageid> pairs is maintained. 

DB 

MAIN MEMORY 

DISK 

disk page 

free frame 

Page Requests from Higher Levels 

BUFFER POOL 

choice of frame dictated 
by replacement policy 



File structure types  

• Heap (random order) files 
– Suitable when typical access is a file scan retrieving all 

records. 

• Sorted Files 
– Best if records must be retrieved in some order, or only a 

`range’ of records is needed. 

• Indexes = data structures to organize records via trees 
or hashing. 
– Like sorted files, they speed up searches for a subset of 

records, based on values in certain (“search key”) fields 

– Updates are much faster than in sorted files. 



Record Formats:  Fixed Length 

• Information about field types same for all 
records in a file; stored in system catalogs. 

• Finding i’th field requires scan of record. 

Base address (B) 

L1 L2 L3 L4 

F1 F2 F3 F4 

Address = B+L1+L2 



Page Formats: Fixed Length Records 

Record id = <page id, slot #>.  In first alternative, 
moving records for free space management 
changes rid; may not be acceptable. 

Slot 1 
Slot 2 

Slot N 

. . . . . . 

N M 1 0 . . . 

M  ...    3  2  1 

PACKED UNPACKED, BITMAP 

Slot 1 
Slot 2 

Slot N 

Free 
Space 

Slot M 

1 1 

number  
of records 

number 
of slots 



Index classification 

• Primary vs. secondary: If search key contains 
primary key, then called primary index. 

– Unique index: Search key contains a candidate key. 

• Clustered vs. unclustered: If order of data 
records is the same as, or `close to’, order of 
data entries, then called clustered index. 

– A file can be clustered on at most one search key. 

– Cost of retrieving data records through index 
varies greatly based on whether index is clustered 
or not. 



Clustered vs. Unclustered Index 

CLUSTERED UNCLUSTERED 

Index 
File 

Data 
File 

Data records  Data records  



Cost Model Analysis 
• We ignore CPU costs, for simplicity: 

–  B: The number of data pages (Blocks) 
–  R: Number of records per page (Records) 
–  D: (Average) time to read or write a single disk page 

• Measuring number of page I/O’s 
–  ignores gains of pre-fetching a sequence of pages; thus, even 

I/O cost is only approximated 

• Average-case analysis; based on several simplifying  
assumptions 

• Operations to measure 
– Scan whole table  
– Equality search 
– Range selection 
– Insert a record 
– Delete a record 



Summary of workload 

File Type Scan Equality 
Search 

Range 
Search 

Insert Delete 

Heap BD .5BD BD 2D Search + D 

Sorted BD D log2B Dlog2B + # 
matching  p. 

Search + BD Search + BD 

Clustered 1.5BD D LogF1.5B DLogF1.5B + 
# matched 
pages 

Search + D Search + D 

Unclustered 
tree index 

BD(R + 0.15) D(1+ 
logF0.15B) 

D(LogF0.15B 
+ # matching 
records) 

D(3 + 
logF0.15B) 

Search + 2D 

Unclustered 
Hash  index 

BD(R + 
0.125) 

2D BD 4D Searches + 
2D 



RAID Goals  

• Disk Array: Arrangement of several disks that gives 
abstraction of a single, large disk 
 

• Goals: Increase performance and reliability.  
– high capacity and high speed  by using multiple disks in 

parallel  
– high reliability by storing data redundantly, so that data 

can be recovered even if  a disk fails  
 

• Two main techniques: 
– Data striping: Data is partitioned; size of a partition is 

called the striping unit. Partitions are distributed over 
several disks. 

– Redundancy: More disks -> more failures. Redundant 
information allows reconstruction of  data if a disk fails. 



Levels of Raid  
• RAID Level 0:  Block striping; non-redundant.  

–  Used in high-performance applications where data lost is not critical.  
• RAID Level 1:  Mirrored disks with block striping 

– Offers best write performance.   

– Popular for applications such as storing log files in a database system. 
• RAID Level 2:  Memory-Style Error-Correcting-Codes (ECC) with bit striping. 
• RAID Level 3: Bit-Interleaved Parity 

–  a single parity bit is enough for error correction, not just detection 

• When writing data, corresponding parity bits must also be computed 
and written to a parity bit disk 

• To recover data in a damaged disk, compute XOR of bits from other 
disks (including parity bit disk)  

• RAID Level 4:  Block-Interleaved Parity; uses block-level striping, and keeps a 
parity block on a separate disk for corresponding blocks from N other disks. 

• RAID Level 5:  Block-Interleaved Distributed Parity; partitions data and parity 
among all N + 1 disks, rather than storing data in N disks and parity in 1 disk. 

• RAID Level 6: P+Q Redundancy scheme; similar to Level 5, but stores extra 
redundant information to guard against multiple disk failures 
 

 
 



INDEXES 



Extendible Hashing Algorithm 

• Situation: Hash Bucket (primary page) becomes 
full. Why not re-organize file by doubling # of 
buckets? 
– Reading and writing all pages is expensive! 

– Idea:  Use directory of pointers to buckets, double # of 
buckets by doubling the directory, splitting just the 
bucket that overflowed! 

– Directory much smaller than file, so doubling it is much 
cheaper.  Only one page of data entries is split.  No 
overflow page! 

– Trick lies in how hash function is adjusted! 



Example 

• Directory is array of size 4. 

• To find bucket for r, take last 
`global depth’ # bits of h(r); we 
denote r by h(r). 

– If h(r) = 5 = binary 101,  it 
is in bucket pointed to by 
01. 

 Insert:  If bucket is full, split it (allocate new page, re-distribute). 

 If necessary, double the directory.  (As we will see, splitting a 
    bucket does not always require doubling; we can tell by  
    comparing global depth with local depth for the split bucket.) 

13* 00 

01 

10 

11 

2 

2 

2 

2 

2 

LOCAL DEPTH 

GLOBAL DEPTH 

DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

DATA PAGES 

10* 

1* 21* 

4* 12* 32* 16* 

15* 7* 19* 

5* 



Insert h(r)=20 (Causes Doubling) 

20* 

00 

01 

10 

11 

2 2 

2 

2 

LOCAL DEPTH 2 

2 

DIRECTORY 

GLOBAL DEPTH 
Bucket A 

Bucket B 

Bucket C 

Bucket D 

Bucket A2 
(`split image' 
of Bucket A) 

1* 5* 21* 13* 

32* 16* 

10* 

15* 7* 19* 

4* 12* 

19* 

2 

2 

2 

000 

001 

010 

011 

100 

101 

110 

111 

3 

3 

3 

DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

Bucket A2 

(`split image' 
of Bucket A) 

32* 

1* 5* 21* 13* 

16* 

10* 

15* 7* 

4* 20* 12* 

LOCAL DEPTH 

GLOBAL DEPTH 



Extendible hashing details 

• 20 = binary 10100.  Last 2 bits (00) tell us r belongs in 
A or A2.  Last 3 bits needed to tell which. 
– Global depth of directory:  Max # of  bits needed to tell 

which bucket an entry belongs to. 

– Local depth of a bucket: # of bits used to determine if an 
entry belongs to this bucket. 

• When does bucket split cause directory doubling? 
– Before insert, local depth of bucket = global depth.  Insert 

causes local depth to become > global depth; directory is 
doubled by copying it over and `fixing’ pointer to split 
image page.  (Use of least significant bits enables efficient 
doubling via copying of directory!) 



Linear Hashing 

• LH handles the problem of long overflow chains 
without using a directory, and handles duplicates. 

•  Idea:  Use a family of hash functions h0, h1, h2, ... 

– hi(key) = h(key) mod(2iN);  N = initial # buckets 

– h is some hash function (range is not 0 to N-1) 

– If N = 2d0, for some d0, hi consists of applying h and 
looking at the last di bits, where di = d0 + i. 

– hi+1 doubles the range of hi (similar to directory 
doubling) 



Linear Hashing (Contd.) 

• Directory avoided in LH by using overflow pages, 
and choosing bucket to split round-robin. 

– Splitting proceeds in `rounds’.  Round ends when all NR 

initial (for round R) buckets are split.  Buckets 0 to Next-
1 have been split;  Next to NR yet to be split. 

– Current round number is Level. 

– Search: To find bucket for data entry r, find hLevel(r): 

• If hLevel(r) in range `Next to NR’ , r belongs here. 

• Else, r could belong to bucket hLevel(r) or bucket hLevel(r) + NR; 
must apply hLevel+1(r) to find out. 



Example of Linear Hashing 

• On split, hLevel+1 is used to 
redistribute entries. 

0 
h h 

1 

(This info 
is for illustration 
only!) 

Level=0, N=4 

00 

01 

10 

11 

000 

001 

010 

011 

(The actual contents 
of the linear hashed 
file) 

Next=0 

PRIMARY 
PAGES 

Data entry r 
with h(r)=5 

Primary  

bucket page 

44* 36* 32* 

25* 9* 5* 

14* 18* 10* 30* 

31* 35* 11* 7* 

0 
h h 

1 

Level=0 

00 

01 

10 

11 

000 

001 

010 

011 

Next=1 

PRIMARY 
PAGES 

44* 36* 

32* 

25* 9* 5* 

14* 18* 10* 30* 

31* 35* 11* 7* 

OVERFLOW 
PAGES 

43* 

00 100 

Insert record with h(key) = 43*  



Example:  End of a Round 

0 h h 1 

22* 

00 

01 

10 

11 

000 

001 

010 

011 

00 100 

Next=3 

01 

10 
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110 

Level=0 

PRIMARY 
PAGES 

OVERFLOW 
PAGES 

32* 

9* 

5* 

14* 

25* 

66* 10* 18* 34* 
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44* 36* 

37* 29* 

30* 

0 h h 1 

37* 

00 

01 

10 

11 

000 

001 

010 

011 

00 100 

10 

101 

110 

Next=0 

Level=1 

111 

11 

PRIMARY 
PAGES 

OVERFLOW 
PAGES 

11 

32* 

9* 25* 

66* 18* 10* 34* 

35* 11* 

44* 36* 

5* 29* 

43* 

14* 30* 22* 

31* 7* 

50* 



Summary: Hash-Based Indexes  

• Hash-based indexes: best for equality searches, 
cannot support range searches. 

• Static Hashing can lead to long overflow chains. 

• Extendible Hashing avoids overflow pages by splitting 
a full bucket when a new data entry is to be added to 
it.  (Duplicates may require overflow pages.) 

– Directory to keep track of buckets, doubles periodically. 

– Can get large with skewed data; additional I/O if this does 
not fit in main memory. 



Summary: Linear hashing  

• Linear Hashing avoids directory by splitting buckets 
round-robin, and using overflow pages.  
– Overflow pages not likely to be long. 

– Duplicates handled easily. 

– Space utilization could be lower than Extendible Hashing, 
since splits not concentrated on `dense’ data areas. 
• Can tune criterion for triggering splits to trade-off slightly longer 

chains for better space utilization. 

• For hash-based indexes, a skewed data distribution is 
one in which the hash values of data entries are not 
uniformly distributed! 



Tree Structured Indexes 

• Tree-structured indexing techniques support 
both range searches and equality searches. 

• Tree structures with search keys on value-
based domains 

– ISAM:  static structure  

– B+ tree:  dynamic, adjusts gracefully under 
inserts and deletes. 



ISAM 

• Leaf pages contain sorted data records (e.g., Alt 1 index). 

• Non-leaf part directs searches to the data records; static once built! 

• Inserts/deletes: use overflow pages, bad for frequent inserts. 

P 0 K 1 P 1 K 2 P 2 K m P m 

index entry 

Non-leaf 
Pages 

(static!) 

Pages 
Overflow  

page 
Primary pages 

Leaf 



Comments on ISAM 

• Main problem 
– Long overflow chains after many inserts, high I/O 

cost for retrieval. 

• Advantages 
– Simple when updates are rare. 

– Leaf pages are allocated in sequence, leading to 
sequential I/O. 

– Non-leaf pages are static; for concurrent access, 
no need to lock non-leaf pages 

• Good performance for frequent updates? 

    B+tree! 



B-tree Organization  
A B-tree helps minimize access to the index  / directory  
A B-tree is a tree where: 

• Each node contains s slots for a index record and s + 1 pointers 
• Each node is always at least ½ full  

Order: the maximum number of keys in a non-leaf node 
Fanout of a node x: the number of assigned pointers out of the node x 



Definition of B+ Tree 

• A B-tree of order n is a height-balanced tree , 
where each node may have up to n children, 
and in which: 

– All leaves (leaf nodes) are on the same level  

– No node can contain more than n children 

– All nodes except the root have at least  n/2 
children 

– The root is either a leaf node, or it has at least n/2 
children 



Example B+ Tree 

• Search begins at root, and key comparisons 
direct it to a leaf (as in ISAM). 

• Search for 5*, 15*, all data entries >= 24* ... 
Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 

<13 
13 <17 

17 <24 24 <30 
30 



Inserting a Data Entry into a B+ Tree 

• Find correct leaf L.  

• Put data entry onto L. 
– If L has enough space, done! 

– Else, must split  L (into L and a new node L2) 
• Redistribute entries evenly, copy up middle key. 

• Insert index entry pointing to L2 into parent of L. 

• This can happen recursively 
– To split index node, redistribute entries evenly, but 

push up middle key.  (Contrast with leaf splits.) 

• Splits “grow” tree; root split increases height.   
– Tree growth: gets wider or one level taller at top. 



Deleting a Data Entry from a B+ Tree 

• Start at root, find leaf L where entry belongs. 

• Remove the entry. 
– If L is at least half-full, done!  

– If L has only n/2 - 1 entries, 
• Try to re-distribute, borrowing from sibling (adjacent node with 

same parent as L). 

• If re-distribution fails, merge L and sibling. 

• If merge occurred, must delete entry (pointing to L 
or sibling) from parent of L. 

• Merge could propagate to root, decreasing height. 



Bulk Loading Algorithm 

• Initialization:   

– Sort all data entries  

– Insert pointer to the first (leaf) page in a new (root) 
page. 

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

Sorted pages of data entries; not yet in B+ tree 
Root 



Bulk Loading Algorithm (Contd.) 

• Index entries for leaf 
pages always enter 
into r*, right-most 
index page just above 
leaf level.   

• When the r* node fills 
up, it splits.   

• Split may go up right-
most path to the root. 

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

Root 

Data entry pages  

not yet in B+ tree 
35 23 12 6 

10 20 

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

6 

Root 

10 

12 23 

20 

35 

38 

not yet in B+ tree 

Data entry pages  



QUERY EVALUATION AND   
QUERY OPTIMIZATION 



Tree of relational operators 

 

SELECT sid 

FROM Sailors NATURAL JOIN Reserves 

WHERE bid = 100 AND rating > 5;  

 

sid (bid=100 AND rating>5 (Sailors        Reserves)) 

sid 

bd=100 AND rating>5 

Sailors Reserves 

RA expressions are 
represented by an 

expression tree. 

An algorithm is chosen 
for each node in the 

expression tree. 

Sailors (sid: integer, sname: string, rating: integer, age: real) 
Reserves (sid: integer, bid: integer, day: date, rname: string) 

43 



Approaches to Evaluation  

• Algorithms for evaluating relational operators use 
some simple ideas extensively: 

–  Indexing: Can use WHERE conditions to retrieve small 
set of tuples (selections, joins) 

–  Iteration: Sometimes, faster to scan all tuples even if 
there is an index. (And sometimes, we can scan the 
data entries in an index instead of the table itself.) 

– Partitioning: By using sorting or hashing, we can 
partition the input tuples and replace an expensive 
operation by similar operations on smaller inputs. 

 
44 



Relational Operations 

• Operators to implement: 
– Selection  (     )    Selects a subset of rows from relation. 

– Projection  (     )   Deletes unwanted columns from relation. 

– Join  (        )  Allows us to combine two relations. 

– Set-difference  (     )  Tuples in reln. 1, but not in reln. 2. 

– Union  (     )  Tuples in reln. 1 and in reln. 2. 

– Aggregation  (SUM, MIN, etc.) and GROUP BY 

– Order By   Returns tuples in specified order. 

• Since each op returns a relation, ops can be composed.  
After we cover the operations, we will discuss how to 
optimize queries formed by composing them. 









45 



Project functionality  other Algorithms 

• Block Nested Loop Join 

• Index Nested Loop 

• Sort Merge Join 

 

– Influences sorting and hashing 

 

– General selection criteria 

– Answering question via record ids   

 

JOIN Algorithms  

Select functionality 



Block Nested Loops Join 

• How can we utilize additional buffer pages? 
– If the smaller relation fits in memory, use it as outer, 

read the inner only once. 

– Otherwise, read a big chunk of it each time, 
resulting in reduced # times of reading the inner.  

• Block Nested Loops Join:  
– Take the smaller relation, say R, as outer, the other 

as inner. 

– Buffer allocation: one buffer for scanning the inner 
S, one buffer for output, all remaining buffers for 
holding a ``block’’ of outer R. 

47 



Block Nested Loops Join Diagram 

. . . 

. . . 

R & S 
Hash table for block of R 
(block size k < B-1 pages) 

Input buffer for S Output buffer 

. . . 

Join Result 

foreach block  in R do 
    build a hash table on R-block 
    foreach S page 
 for each matching tuple r in R-block, s in S-page do 
     add <r, s> to result 

48 



Examples of Block Nested Loops 

• Cost:  Scan of outer table +  #outer blocks * scan of 
inner table  
– #outer blocks =  # pages of outer / block size 
– Given available buffer size B, block size is at most B-2. 

• With Sailors (S) as outer, a block has 100 pages of S: 
– Cost of scanning S is 500 I/Os; a total of 5 blocks. 
– Per block of S, we scan Reserves;  5*1000 I/Os. 
– Total = 500 + 5 * 1000 = 5,500 I/Os. 

49 

• Sailors: 
– Each tuple is 50 

bytes long,   
– 80 tuples per page,  
– 500 pages.  

• Reserves: 
– Each tuple is 40 

bytes long,  
– 100 tuples per page,  
– 1000 pages. 



Index Nested Loops Join 

• If there is an index on the join column of one relation 
(say S), can make it the inner and exploit the index. 
– Cost:  M + ( (M*pR) * cost of finding matching S tuples)  

• For each R tuple, cost of probing S index is about 1.2 
for hash index, 2-4 for B+ tree.  Cost of then finding S 
tuples (assuming Alt. (2) or (3) for data entries) 
depends on clustering. 
– Clustered index:  1 I/O (typical).  
– Unclustered: up to 1 I/O per matching S tuple. 

foreach tuple r in R do 
 foreach tuple s in S where ri == sj  do 
  add <r, s> to result 

50 



Sort-Merge Join  (R     S) 

• Sort R and S on join column using external sorting.  

• Merge R and S on join column, output result tuples. 

    Repeat until either R or S is finished: 
– Scanning:  

• Advance scan of R until current R-tuple >=current S tuple,  

• Advance scan of S until current S-tuple>=current R tuple;  

• Do this until current R tuple = current S tuple. 

– Matching:  
• Match all R tuples and S tuples with same value;  output <r, s> 

for all pairs of such tuples. 

• Data access patterns for R and S? 


i=j 

51 R is scanned once, each S partition scanned once per matching R tuple  



Refinement of Sort-Merge Join 

• Idea:  

– Sorting of R and S has respective merging phases 

– Join of R and S also has a merging phase 

– Combine all these merging phases! 

• Two-pass algorithm for sort-merge join: 

– Pass 0: sort subfiles of R, S individually 

– Pass 1: merge sorted runs of R, merge sorted runs 
of S, and merge the resulting R and S files as they 
are generated by checking the join condition. 

52 



 Idea: Partition both R and S using a hash function s.t. R tuples will only 
match S tuples in partition i. 

Hash-Join 

 Probing: Read in partition 
i of R, build hash table on 
Ri using h2 (<> h!). Scan 
partition i of S, search for 
matches. 

Partitions 
of R & S 

Input buffer 
for Si 

Hash table for partition 
Ri (k < B-1 pages) 

B main memory buffers Disk 

Output  
 buffer 

Disk 

Join Result 

hash 
fn 
h2 

h2 

B main memory buffers Disk Disk 

Original  
Relation OUTPUT 

2 INPUT 

1 

hash 
function 

h B-1 

Partitions 

1 

2 

B-1 

. . . 

• Partitioning: Partition 
both relations using 
hash fn h:  Ri tuples will 
only match with Si 
tuples. 

Hash Join  



Approach 1 to General Selections 
• (1) Find the most selective access path, retrieve 

tuples using it, and (2) apply any remaining terms 
that don’t match the index on the fly. 
– Most selective access path: An index or file scan that is 

expected to require the smallest # I/Os. 
• Terms that match this index reduce the number of tuples 

retrieved;  

• Other terms are used to discard some retrieved tuples, but do 
not affect I/O cost. 

– Consider day<8/9/94 AND bid=5 AND sid=3.  
• A B+ tree index on  day can be used; then, bid=5 and sid=3 must 

be checked for each retrieved tuple.   

• A hash index on <bid, sid> could be used; day<8/9/94 must then 
be checked on the fly.  54 



Approach 2: SELECT Intersection of 
Rids 

• If we have 2 or more matching indexes that use 
Alternatives (2) or (3) for data entries: 

– Get sets of rids of data records using each matching index. 

– Intersect these sets of rids. 

– Retrieve the records and apply any remaining terms. 

– Consider day<8/9/94 AND bid=5 AND sid=3. If we have a B+ 
tree index on day and an index on sid, both using 
Alternative (2), we can: 

• retrieve rids of records satisfying day<8/9/94 using the first, rids of 
records satisfying sid=3 using the second,  

• intersect these rids,  

• retrieve records and check bid=5.  55 



Projection Based on Sorting 

• Modify Pass 0 of external sort to eliminate unwanted fields.   
– Runs of about 2B pages are produced,  

– But tuples in runs are smaller than input tuples.  (Size ratio depends 
on # and size of fields that are dropped.) 

• Modify merging passes to eliminate duplicates.   

– # result tuples smaller than input.  Difference depends on # of 
duplicates. 

• Cost:  In Pass 0, read input relation (size M), write out same 
number of smaller tuples.  In merging passes, fewer tuples 
written out in each pass.   

– Using Reserves example, 1000 input pages reduced to 250 in Pass 0 
if size ratio is 0.25.    

56 



Projection Based on Hashing 
• Partitioning phase:  Read R using one input buffer.  For each 

tuple, discard unwanted fields, apply hash function h1 to choose 
one of B-1 output buffers. 

– Result is B-1 partitions (of tuples with no unwanted fields).  2 tuples 
from different partitions guaranteed to be distinct. 

• Duplicate elimination phase:  For each partition, read it and build 
an in-memory hash table, using hash fn h2 (<> h1) on all fields, 
while discarding duplicates. 

– If partition does not fit in memory, can apply hash-based projection 
algorithm recursively to this partition. 

• Cost:  For partitioning, read R, write out each tuple, but with 
fewer fields.  This is read in next phase. 
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EXTERNAL SORT 



2-Way Sort: Requires 3 Buffers 

• Pass 1: Read a page, sort it, write it. 

– only one buffer page is used 

• Pass 2, 3, …, etc.: 

–  three buffer pages used. 

Main memory buffers 

INPUT 1 

INPUT 2 

OUTPUT 

Disk Disk 
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Partition data 
Pass determines  
Size of partition  



General External Merge Sort 

• To sort a file with N pages using B buffer pages: 
– Pass 0: use B buffer pages. Produce N/B sorted runs of B 

pages each.  

– Pass 2, 3…,  etc.: merge B-1 runs.  

B Main memory buffers 

INPUT 1 

INPUT B-1 

OUTPUT 

Disk Disk 

INPUT 2 

. . . . . . . . . 

 More than 3 buffer pages.  How can we utilize them? 
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Cost of External Merge Sort 

• Number of passes = 1 + log B-1 N/B   

    Cost = 2N * (# of passes) 

 E.g., with 5 (B) buffer pages, sort 108 (N) page file: 

Pass 0 108/5 = 22 sorted runs of 5 pages 
each (last run is only 3 pages) 

N/B sorted runs of B pages 
each 

Pass 1 22/4 = 6 sorted runs of 20 pages 
each (last run is only 8 pages) 

N/B /(B-1) sorted runs of 
B(B-1) pages each 

Pass 2 2 sorted runs, 80 pages and 28 pages N/B /(B-1)2 sorted runs of 
B(B-1)2 pages 

Pass 3 Sorted file of 108 pages N/B /(B-1)3 sorted runs of 
B(B-1)3 (N) pages 



Output  
(1 buffer) 

12 

4 

3 

5 

2 

8 

10 

Input  
(1 buffer) 

Current Set  
(B-2 buffers) 

Replacement Sort 

• Organize B available buffers: 
– 1 buffer for input 

– B-2 buffers for current set 

– 1 buffer for output 

 Pick tuple r in the current set with the smallest value that is  largest value in 
output, e.g. 8, to extend the current run. 

 Fill the space in current set by adding tuples from input. 

 Write output buffer out if full, extending the current run. 

 Current run terminates if every tuple in the current set is smaller than the largest 
tuple in output.  

62 



Clustered B+ Tree Used for Sorting 
 

• Cost: root to the left-most 
leaf, then retrieve all leaf 
pages (Alternative 1) 

  Almost always better than external sorting! 

(Directs search) 

Data Records 

Index 

Data Entries 
("Sequential")  

 

 If Alternative 2 is used?  
Additional cost of retrieving 
data records:  each page fetched 
just once. 



Refinement of Sort-Merge Join 

• Idea:  

– Sorting of R and S has respective merging phases 

– Join of R and S also has a merging phase 

– Combine all these merging phases! 

• Two-pass algorithm for sort-merge join: 

– Pass 0: sort subfiles of R, S individually 

– Pass 1: merge sorted runs of R, merge sorted runs 
of S, and merge the resulting R and S files as they 
are generated by checking the join condition. 
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2-Pass Sort-Merge Algorithm 

B Main memory buffers 

Run1 of R 

RunK of R 

OUTPUT 

Join Results 

Run2 of R 

. . . 

Relation R 

. . . 

Run1 of S 

RunK of S 

Run2 of S 

Relation S 

. . . 
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Using an Index for Selections 
• Cost depends on # qualifying tuples, and clustering. 

– Cost of finding data entries (often small) + cost of retrieving 
records (could be large w/o clustering). 

– For gpa > 3.0, if 10% of tuples qualify (100 pages, 10,000 
tuples), cost  100 I/Os with a clustered index; otherwise, up 
to 10,000 I/Os! 

• Important refinement for unclustered indexes:   
1. Find qualifying data entries. 
2. Sort the rid’s of the data records to be retrieved. 
3. Fetch rids in order.   

    Each data page is looked at just once, although # of such pages likely to be 
higher than with clustering.  
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Approach 1 to General Selections 
• (1) Find the most selective access path, retrieve 

tuples using it, and (2) apply any remaining terms 
that don’t match the index on the fly. 
– Most selective access path: An index or file scan that is 

expected to require the smallest # I/Os. 
• Terms that match this index reduce the number of tuples 

retrieved;  

• Other terms are used to discard some retrieved tuples, but do 
not affect I/O cost. 

– Consider day<8/9/94 AND bid=5 AND sid=3.  
• A B+ tree index on  day can be used; then, bid=5 and sid=3 must 

be checked for each retrieved tuple.   

• A hash index on <bid, sid> could be used; day<8/9/94 must then 
be checked on the fly.  67 



Approach 2: Intersection of Rids 

• If we have 2 or more matching indexes that use 
Alternatives (2) or (3) for data entries: 

– Get sets of rids of data records using each matching index. 

– Intersect these sets of rids. 

– Retrieve the records and apply any remaining terms. 

– Consider day<8/9/94 AND bid=5 AND sid=3. If we have a B+ 
tree index on day and an index on sid, both using 
Alternative (2), we can: 

• retrieve rids of records satisfying day<8/9/94 using the first, rids of 
records satisfying sid=3 using the second,  

• intersect these rids,  

• retrieve records and check bid=5.  68 



Summary: Query plan 

• Many implementation techniques for each 
operator; no universally superior technique for 
most operators.   

• Must consider available alternatives for each 
operation in a query and choose best one based 
on: 
– system state (e.g., memory) and  

– statistics (table size, # tuples matching value k).   

• This is part of the broader task of optimizing a 
query composed of several ops.  
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Representation of a SQL Command  

• Query Semantics: 
1. Take Cartesian product (a.k.a. cross-product) of relns in FROM, projecting 

only to those columns that appear in other clauses 

2. If a WHERE clause exists, apply all filters in it 

3. If a GROUP BY clause exists, form groups on the result 

4. If a HAVING clause exists, filter groups with it 

5. If an ORDER BY clause exists, make sure output is in the right order 

6. If there is a DISTINCT modifier, remove duplicates 

SELECT        {DISTINCT} <list of columns>  
FROM            <list of relations>  
{WHERE       <list of "Boolean Factors">}  
{GROUP BY <list of columns>  
{HAVING      <list of Boolean Factors>}}  
{ORDER BY <list of columns>};  



System Catalog 
• System information: buffer pool size and page size. 
• For each relation: 

– relation name, file name, file structure (e.g., heap file) 
– attribute name and type of each attribute 
– index name of each index on the relation 
– integrity constraints… 

• For each index: 
– index name and structure (B+ tree) 
– search key attribute(s) 

• For each view: 
– view name and definition 

• Statistics about each relation (R) and index (I): 



Query Evaluation Plan 

• Query evaluation plan is an 
extended RA tree, with additional 
annotations: 
– access method for each relation;  

– implementation method for each 
relational operator. 

• Cost Approximation 

• Manipulating plans:  
– Relational Alebra Equivalence 

– Push selections below the join. 

– Materialization: store a temporary relation T,  

– if the subsequent join needs to scan T multiple 
times. 

• The opposite is pipelining 

Reserves Sailors 

sid=sid 

bid=100  rating > 5 

sname 

(Simple Nested Loops) 

(On-the-fly) 

(On-the-fly) 

(File scan) (File scan) 



Query Blocks: Units of Optimization 

• An SQL query is parsed into 
a collection of query blocks, 
and these are optimized 
one block at a time. 

SELECT  S.sname 

FROM    Sailors S 

WHERE  S.age IN  

     (SELECT  MAX (S2.age) 

       FROM  Sailors S2 

       GROUP BY  S2.rating) 

Nested block Outer block 

 Nested blocks are usually treated as calls to a 
subroutine, made once per outer tuple.  

 



Cost Estimation for Multi-relation Plans 

• Consider a query block: 

• Reduction factor (RF) is associated with each term.  

• Max number tuples in result = the product of the 
cardinalities of relations in the FROM clause. 

• Result cardinality = max # tuples * product of all RF’s. 

• Multi-relation plans are built up by joining one new 
relation at a time. 

– Cost of join method, plus estimate of join cardinality gives 
us both cost estimate and result size estimate. 

 

SELECT  attribute list 

FROM  relation list 

WHERE  term1 AND ... AND termk 



Query Optimization: Summary 

• Two parts to optimizing a query: 

– Consider a set of alternative plans. 

• Must prune search space; typically, left-deep plans only. 

– Must estimate cost of each plan that is considered. 

• Must estimate size of result and cost for each plan node. 

• Key issues: Statistics, indexes, operator implementations. 



Query Optimization: Summary 
• Single-relation queries: 

– All access paths considered, cheapest is chosen. 

– Issues:  Selections that match index, whether index key has 
all needed fields and/or provides tuples in a desired order. 

• Multiple-relation queries: 
– All single-relation plans are first enumerated. 

• Selections/projections considered as early as possible. 

– Next, for each 1-relation plan, all ways of joining another 
relation (as inner) are considered. 

– Next, for each 2-relation plan that is `retained’, all ways of 
joining another relation (as inner) are considered, etc. 

– At each level, for each subset of relations, only best plan for 
each interesting order of tuples is `retained’.  



NO SQL 



Typical NoSQL architecture 

Hashing function  

maps each key 

to a server  

 

K  

78 



The search problem: No Hash key 

Locating a record 
without the hash key 
requires searching 
multiple servers 
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The Fault Tolerance problem 

Many NOSQL system’s 
default settings 
consider a write 
complete after writing 
to just  1 node 
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The consistency problem 

Clients may read 
inconsistent data 
and writes may be 
lost 
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Theory of NOSQL: CAP 
GIVEN: 

• Many nodes 

• Nodes contain replicas of 
partitions of the data 
 

• Consistency 
– all replicas contain the same 

version of data 

• Availability 
– system remains operational 

on failing nodes 

• Partition tolarence 
– multiple entry points 

– system remains operational 
on system split 

CAP  Theorem: 

satisfying  all three at 

the same time is 

impossible 

A P 

C 
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Replica Sets 

• Redundancy and Failover 

• Zero downtime for 
upgrades and 
mainentance  

 

• Master-slave replication 
– Strong Consistency 

– Delayed Consistency 

 

• Geospatial features 

Host1:10000 

Host2:10001 

Host3:10002 

replica1 

Client 
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How does it vary from SQL? 

• Looser schema definition 
• Various schema models 

– Key value pair 
– Document oriented 
– Graph  
– Column based  

• Applications written to deal with specific documents 
– Applications aware of the schema definition as opposed to 

the data  

• Designed to handle distributed, large databases 
• Trade off: ad hoc queries for speed and growth of 

database 
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ACID - BASE 

Pritchett, D.: BASE: An Acid Alternative (queue.acm.org/detail.cfm?id=1394128) 

Atomicity 
 
Consistency 
 
Isolation 
 
Durability 

Basically 
 
Available (CP) 
 
Soft-state 
 
Eventually  consistent  
 (Asynchronous 
propagation) 
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What is MapReduce? 

• Programming model for expressing distributed 
computations on massive amounts of data  

   AND  

• An execution framework for large-scale data 
processing on clusters of commodity servers 



Programming Model 

• Transforms set of input key-value pairs to set of 
output key-value pairs 
– Map function written by user 
– Map: (k1, v1)   list (k2, v2) 
– MapReduce library groups all intermediate pairs with 

same key together 

• Reduce written by user 
– Reduce: (k2, list (v2))   list (v2) 
– Usually zero or one output value per group 
– Intermediate values supplied via iterator (to handle 

lists that do not fit in memory) 



Execution Framework 

• Handles scheduling of the tasks 

– Assigns workers to maps and reduce tasks 

– Handles data distribution 

• Moves the process to the data  

– Handles synchronization 

• Gathers, sorts and shuffles intermediate data 

– Handles faults 

• Detects worker failures and restarts  

– Understands the  distributed file system  

 



MongoDB Basics 

• A MongoDB instance may have zero or more 
databases 

• A database may have zero or more ‘collections’. 

• A collection may have zero or more ‘documents’. 

• A document may have one or more ‘fields’. 

• MongoDB ‘Indexes’ function much like their RDBMS 
counterparts. 
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RDB Concepts to NO SQL 

RDBMS MongoDB 

Database Database 

Table, View Collection 

Row Document (JSON, BSON) 

Column Field 

Index Index 

Join Embedded Document 

Foreign Key Reference 

Partition Shard 

  

 Collection is not strict about what it  

Stores 

 

Schema-less  

 

Hierarchy is evident in the design 

 

Embedded Document ? 
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HyperDex Key Points  

• Maps records to a Hypercube Space  
– object’s key  are stored in a dedicated one-dimensional 

subspace for efficient lookup 

– only need to contact the servers which match the regions 
of the hyperspace assigned for the search attributes 

• Value-dependent chaining 
– Keeps replicas consistent without heavy overhead from 

coordination of servers 
• Uses the hypercube space  

– Appoints a point leader that contains the most recent 
update of a record  
• Other replicas are updated from the point leader  



Each server is responsible for a region 
of the hyperspace  



That’s it  

• Go over the lecture notes 

• Read the book 

• Go over homework 3 
– final exam questions will not be as difficult as 

homework problems  

• Ask questions in piazza or  via email  

• Organize a study sheet  

• Complete the example mid-term 

• Practice problems  



Summary: RAID Levels 

• Level 0: No redundancy 

• Level 1: Mirrored (two identical copies) 

– Each disk has a mirror image (check disk) 

– Parallel reads, a write involves two disks. 

– Maximum transfer rate = transfer rate of one disk 

• Level 0+1: Striping and Mirroring 

– Parallel reads, a write involves two disks. 

– Maximum transfer rate = aggregate bandwidth 

 

 



Summary: RAID Levels (Contd.) 

• Level 3: Bit-Interleaved Parity 
– Striping Unit: One bit. One check disk. 
– Each read and write request involves all disks; disk 

array can process one request at a time. 

• Level 4: Block-Interleaved Parity 
– Striping Unit: One disk block. One check disk. 
– Parallel reads possible for small requests, large 

requests can utilize full bandwidth 
– Writes involve modified block and check disk 

• Level 5: Block-Interleaved Distributed Parity 
– Similar to RAID Level 4, but parity blocks are 

distributed over all disks 
 


