
Final Exam Review

Kathleen Durant

CS 3200 Northeastern University

Lecture 22

Outline for today

• Identify topics for the final exam

• Discuss format of the final exam

– What will be provided for you and what you can
bring (and not bring)

• Review content

Final Exam

• April 19, 2013 8:00 AM Shillman Hall

• Open books and open notes

– But no portable devices (no laptops, no phones,
etc.)

• 2 hour time period

Lectures for the final exam

• 9 lectures – all presentations are numbered
with the corresponding lecture number

• All lectures included

Text chapters for the final exam

• Chapters 8-11
8. Overview of storage and indexing

9. Storing data: disks and files

10. Tree-structured indexing
• Including section on B+ trees in Chapter 17 (17.5.2)

11. Hash-based indexing

• Chapters 12-15
12. Query Evaluation

13. External Sorting

14. Evaluating Relational Operators

15. Typical Relational Operator

Topics for the final exam

Topics
• File storage mechanisms

– Abstraction:collection of records
– Formats
– Heap-based, Sorted, Indexed
– RAID

• Buffer management
– In relationship to the data manager

• Indexes
– Primary vs. Secondary
– Clustered vs. Unclustered
– Tree-structured: ISAM, B+ trees
– Hash-based indexes

• External Sort
• Query Evaluation
• Query Optimization
• NO SQL

Algorithms

• Cost model
– Given a query, the approximate

number of I/O’s for different
file storage mechanisms

• B+ tree bulk load

• Insertion/Deletion of records
– B+ tree

– ISAM

– Extendible hashing

– Linear hashing

• Query plan selection

Format of the final exam

• 1-2 Algorithmic/Calculation problems (40%)
– I/O calculations
– B+ tree insertion/deletion
– Construct or Choose a query plan

• 1-2 open-ended responses (30%)
– SQL vs. NO SQL

• ACID vs. BASE
• CAP theorem

– Comparison of Join algorithms
– Sort algorithms

• Some close-ended responses (30%)
– Short collection of True and False
– Multiple choice
– Short definitions

Study Steps

• Go over the lecture notes

• Read the book

– Summary section of the chapters are written well

• Go over homework 3

• Ask questions in piazza or via email

• Organize a study sheet

• Review algorithms

CONTENT REVIEW

Disk Space Manager

• Lowest layer of DBMS software manages
space on disk.

• Higher levels call upon this layer to:
– allocate/de-allocate a page

– read/write a page

• Request for a sequence of pages must be
satisfied by allocating the pages sequentially
on disk! Higher levels don’t need to know
how this is done, or how free space is
managed.

Buffer Management in a DBMS

• Data must be in RAM for DBMS to operate on it!

• Table of <frame#, pageid> pairs is maintained.

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

File structure types

• Heap (random order) files
– Suitable when typical access is a file scan retrieving all

records.

• Sorted Files
– Best if records must be retrieved in some order, or only a

`range’ of records is needed.

• Indexes = data structures to organize records via trees
or hashing.
– Like sorted files, they speed up searches for a subset of

records, based on values in certain (“search key”) fields

– Updates are much faster than in sorted files.

Record Formats: Fixed Length

• Information about field types same for all
records in a file; stored in system catalogs.

• Finding i’th field requires scan of record.

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

Page Formats: Fixed Length Records

Record id = <page id, slot #>. In first alternative,
moving records for free space management
changes rid; may not be acceptable.

Slot 1
Slot 2

Slot N

.

N M 1 0 . . .

M ... 3 2 1

PACKED UNPACKED, BITMAP

Slot 1
Slot 2

Slot N

Free
Space

Slot M

1 1

number
of records

number
of slots

Index classification

• Primary vs. secondary: If search key contains
primary key, then called primary index.

– Unique index: Search key contains a candidate key.

• Clustered vs. unclustered: If order of data
records is the same as, or `close to’, order of
data entries, then called clustered index.

– A file can be clustered on at most one search key.

– Cost of retrieving data records through index
varies greatly based on whether index is clustered
or not.

Clustered vs. Unclustered Index

CLUSTERED UNCLUSTERED

Index
File

Data
File

Data records Data records

Cost Model Analysis
• We ignore CPU costs, for simplicity:

– B: The number of data pages (Blocks)
– R: Number of records per page (Records)
– D: (Average) time to read or write a single disk page

• Measuring number of page I/O’s
– ignores gains of pre-fetching a sequence of pages; thus, even

I/O cost is only approximated

• Average-case analysis; based on several simplifying
assumptions

• Operations to measure
– Scan whole table
– Equality search
– Range selection
– Insert a record
– Delete a record

Summary of workload

File Type Scan Equality
Search

Range
Search

Insert Delete

Heap BD .5BD BD 2D Search + D

Sorted BD D log2B Dlog2B + #
matching p.

Search + BD Search + BD

Clustered 1.5BD D LogF1.5B DLogF1.5B +
matched
pages

Search + D Search + D

Unclustered
tree index

BD(R + 0.15) D(1+
logF0.15B)

D(LogF0.15B
+ # matching
records)

D(3 +
logF0.15B)

Search + 2D

Unclustered
Hash index

BD(R +
0.125)

2D BD 4D Searches +
2D

RAID Goals

• Disk Array: Arrangement of several disks that gives
abstraction of a single, large disk

• Goals: Increase performance and reliability.
– high capacity and high speed by using multiple disks in

parallel
– high reliability by storing data redundantly, so that data

can be recovered even if a disk fails

• Two main techniques:
– Data striping: Data is partitioned; size of a partition is

called the striping unit. Partitions are distributed over
several disks.

– Redundancy: More disks -> more failures. Redundant
information allows reconstruction of data if a disk fails.

Levels of Raid
• RAID Level 0: Block striping; non-redundant.

– Used in high-performance applications where data lost is not critical.
• RAID Level 1: Mirrored disks with block striping

– Offers best write performance.

– Popular for applications such as storing log files in a database system.
• RAID Level 2: Memory-Style Error-Correcting-Codes (ECC) with bit striping.
• RAID Level 3: Bit-Interleaved Parity

– a single parity bit is enough for error correction, not just detection

• When writing data, corresponding parity bits must also be computed
and written to a parity bit disk

• To recover data in a damaged disk, compute XOR of bits from other
disks (including parity bit disk)

• RAID Level 4: Block-Interleaved Parity; uses block-level striping, and keeps a
parity block on a separate disk for corresponding blocks from N other disks.

• RAID Level 5: Block-Interleaved Distributed Parity; partitions data and parity
among all N + 1 disks, rather than storing data in N disks and parity in 1 disk.

• RAID Level 6: P+Q Redundancy scheme; similar to Level 5, but stores extra
redundant information to guard against multiple disk failures

INDEXES

Extendible Hashing Algorithm

• Situation: Hash Bucket (primary page) becomes
full. Why not re-organize file by doubling # of
buckets?
– Reading and writing all pages is expensive!

– Idea: Use directory of pointers to buckets, double # of
buckets by doubling the directory, splitting just the
bucket that overflowed!

– Directory much smaller than file, so doubling it is much
cheaper. Only one page of data entries is split. No
overflow page!

– Trick lies in how hash function is adjusted!

Example

• Directory is array of size 4.

• To find bucket for r, take last
`global depth’ # bits of h(r); we
denote r by h(r).

– If h(r) = 5 = binary 101, it
is in bucket pointed to by
01.

 Insert: If bucket is full, split it (allocate new page, re-distribute).

 If necessary, double the directory. (As we will see, splitting a
 bucket does not always require doubling; we can tell by
 comparing global depth with local depth for the split bucket.)

13* 00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

Insert h(r)=20 (Causes Doubling)

20*

00

01

10

11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

1* 5* 21* 13*

32* 16*

10*

15* 7* 19*

4* 12*

19*

2

2

2

000

001

010

011

100

101

110

111

3

3

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

(`split image'
of Bucket A)

32*

1* 5* 21* 13*

16*

10*

15* 7*

4* 20* 12*

LOCAL DEPTH

GLOBAL DEPTH

Extendible hashing details

• 20 = binary 10100. Last 2 bits (00) tell us r belongs in
A or A2. Last 3 bits needed to tell which.
– Global depth of directory: Max # of bits needed to tell

which bucket an entry belongs to.

– Local depth of a bucket: # of bits used to determine if an
entry belongs to this bucket.

• When does bucket split cause directory doubling?
– Before insert, local depth of bucket = global depth. Insert

causes local depth to become > global depth; directory is
doubled by copying it over and `fixing’ pointer to split
image page. (Use of least significant bits enables efficient
doubling via copying of directory!)

Linear Hashing

• LH handles the problem of long overflow chains
without using a directory, and handles duplicates.

• Idea: Use a family of hash functions h0, h1, h2, ...

– hi(key) = h(key) mod(2iN); N = initial # buckets

– h is some hash function (range is not 0 to N-1)

– If N = 2d0, for some d0, hi consists of applying h and
looking at the last di bits, where di = d0 + i.

– hi+1 doubles the range of hi (similar to directory
doubling)

Linear Hashing (Contd.)

• Directory avoided in LH by using overflow pages,
and choosing bucket to split round-robin.

– Splitting proceeds in `rounds’. Round ends when all NR

initial (for round R) buckets are split. Buckets 0 to Next-
1 have been split; Next to NR yet to be split.

– Current round number is Level.

– Search: To find bucket for data entry r, find hLevel(r):

• If hLevel(r) in range `Next to NR’ , r belongs here.

• Else, r could belong to bucket hLevel(r) or bucket hLevel(r) + NR;
must apply hLevel+1(r) to find out.

Example of Linear Hashing

• On split, hLevel+1 is used to
redistribute entries.

0
h h

1

(This info
is for illustration
only!)

Level=0, N=4

00

01

10

11

000

001

010

011

(The actual contents
of the linear hashed
file)

Next=0

PRIMARY
PAGES

Data entry r
with h(r)=5

Primary

bucket page

44* 36* 32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

0
h h

1

Level=0

00

01

10

11

000

001

010

011

Next=1

PRIMARY
PAGES

44* 36*

32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

OVERFLOW
PAGES

43*

00 100

Insert record with h(key) = 43*

Example: End of a Round

0 h h 1

22*

00

01

10

11

000

001

010

011

00 100

Next=3

01

10

101

110

Level=0

PRIMARY
PAGES

OVERFLOW
PAGES

32*

9*

5*

14*

25*

66* 10* 18* 34*

35* 31* 7* 11* 43*

44* 36*

37* 29*

30*

0 h h 1

37*

00

01

10

11

000

001

010

011

00 100

10

101

110

Next=0

Level=1

111

11

PRIMARY
PAGES

OVERFLOW
PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31* 7*

50*

Summary: Hash-Based Indexes

• Hash-based indexes: best for equality searches,
cannot support range searches.

• Static Hashing can lead to long overflow chains.

• Extendible Hashing avoids overflow pages by splitting
a full bucket when a new data entry is to be added to
it. (Duplicates may require overflow pages.)

– Directory to keep track of buckets, doubles periodically.

– Can get large with skewed data; additional I/O if this does
not fit in main memory.

Summary: Linear hashing

• Linear Hashing avoids directory by splitting buckets
round-robin, and using overflow pages.
– Overflow pages not likely to be long.

– Duplicates handled easily.

– Space utilization could be lower than Extendible Hashing,
since splits not concentrated on `dense’ data areas.
• Can tune criterion for triggering splits to trade-off slightly longer

chains for better space utilization.

• For hash-based indexes, a skewed data distribution is
one in which the hash values of data entries are not
uniformly distributed!

Tree Structured Indexes

• Tree-structured indexing techniques support
both range searches and equality searches.

• Tree structures with search keys on value-
based domains

– ISAM: static structure

– B+ tree: dynamic, adjusts gracefully under
inserts and deletes.

ISAM

• Leaf pages contain sorted data records (e.g., Alt 1 index).

• Non-leaf part directs searches to the data records; static once built!

• Inserts/deletes: use overflow pages, bad for frequent inserts.

P 0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

(static!)

Pages
Overflow

page
Primary pages

Leaf

Comments on ISAM

• Main problem
– Long overflow chains after many inserts, high I/O

cost for retrieval.

• Advantages
– Simple when updates are rare.

– Leaf pages are allocated in sequence, leading to
sequential I/O.

– Non-leaf pages are static; for concurrent access,
no need to lock non-leaf pages

• Good performance for frequent updates?

 B+tree!

B-tree Organization
A B-tree helps minimize access to the index / directory
A B-tree is a tree where:

• Each node contains s slots for a index record and s + 1 pointers
• Each node is always at least ½ full

Order: the maximum number of keys in a non-leaf node
Fanout of a node x: the number of assigned pointers out of the node x

Definition of B+ Tree

• A B-tree of order n is a height-balanced tree ,
where each node may have up to n children,
and in which:

– All leaves (leaf nodes) are on the same level

– No node can contain more than n children

– All nodes except the root have at least n/2
children

– The root is either a leaf node, or it has at least n/2
children

Example B+ Tree

• Search begins at root, and key comparisons
direct it to a leaf (as in ISAM).

• Search for 5*, 15*, all data entries >= 24* ...
Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

<13
13 <17

17 <24 24 <30
30

Inserting a Data Entry into a B+ Tree

• Find correct leaf L.

• Put data entry onto L.
– If L has enough space, done!

– Else, must split L (into L and a new node L2)
• Redistribute entries evenly, copy up middle key.

• Insert index entry pointing to L2 into parent of L.

• This can happen recursively
– To split index node, redistribute entries evenly, but

push up middle key. (Contrast with leaf splits.)

• Splits “grow” tree; root split increases height.
– Tree growth: gets wider or one level taller at top.

Deleting a Data Entry from a B+ Tree

• Start at root, find leaf L where entry belongs.

• Remove the entry.
– If L is at least half-full, done!

– If L has only n/2 - 1 entries,
• Try to re-distribute, borrowing from sibling (adjacent node with

same parent as L).

• If re-distribution fails, merge L and sibling.

• If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

• Merge could propagate to root, decreasing height.

Bulk Loading Algorithm

• Initialization:

– Sort all data entries

– Insert pointer to the first (leaf) page in a new (root)
page.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

Bulk Loading Algorithm (Contd.)

• Index entries for leaf
pages always enter
into r*, right-most
index page just above
leaf level.

• When the r* node fills
up, it splits.

• Split may go up right-
most path to the root.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Root

Data entry pages

not yet in B+ tree
35 23 12 6

10 20

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree

Data entry pages

QUERY EVALUATION AND
QUERY OPTIMIZATION

Tree of relational operators

SELECT sid

FROM Sailors NATURAL JOIN Reserves

WHERE bid = 100 AND rating > 5;

sid (bid=100 AND rating>5 (Sailors Reserves))

sid

bd=100 AND rating>5

Sailors Reserves

RA expressions are
represented by an

expression tree.

An algorithm is chosen
for each node in the

expression tree.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: date, rname: string)

43

Approaches to Evaluation

• Algorithms for evaluating relational operators use
some simple ideas extensively:

– Indexing: Can use WHERE conditions to retrieve small
set of tuples (selections, joins)

– Iteration: Sometimes, faster to scan all tuples even if
there is an index. (And sometimes, we can scan the
data entries in an index instead of the table itself.)

– Partitioning: By using sorting or hashing, we can
partition the input tuples and replace an expensive
operation by similar operations on smaller inputs.

44

Relational Operations

• Operators to implement:
– Selection () Selects a subset of rows from relation.

– Projection () Deletes unwanted columns from relation.

– Join () Allows us to combine two relations.

– Set-difference () Tuples in reln. 1, but not in reln. 2.

– Union () Tuples in reln. 1 and in reln. 2.

– Aggregation (SUM, MIN, etc.) and GROUP BY

– Order By Returns tuples in specified order.

• Since each op returns a relation, ops can be composed.
After we cover the operations, we will discuss how to
optimize queries formed by composing them.









45

Project functionality other Algorithms

• Block Nested Loop Join

• Index Nested Loop

• Sort Merge Join

– Influences sorting and hashing

– General selection criteria

– Answering question via record ids

JOIN Algorithms

Select functionality

Block Nested Loops Join

• How can we utilize additional buffer pages?
– If the smaller relation fits in memory, use it as outer,

read the inner only once.

– Otherwise, read a big chunk of it each time,
resulting in reduced # times of reading the inner.

• Block Nested Loops Join:
– Take the smaller relation, say R, as outer, the other

as inner.

– Buffer allocation: one buffer for scanning the inner
S, one buffer for output, all remaining buffers for
holding a ``block’’ of outer R.

47

Block Nested Loops Join Diagram

. . .

. . .

R & S
Hash table for block of R
(block size k < B-1 pages)

Input buffer for S Output buffer

. . .

Join Result

foreach block in R do
 build a hash table on R-block
 foreach S page
 for each matching tuple r in R-block, s in S-page do
 add <r, s> to result

48

Examples of Block Nested Loops

• Cost: Scan of outer table + #outer blocks * scan of
inner table
– #outer blocks =  # pages of outer / block size
– Given available buffer size B, block size is at most B-2.

• With Sailors (S) as outer, a block has 100 pages of S:
– Cost of scanning S is 500 I/Os; a total of 5 blocks.
– Per block of S, we scan Reserves; 5*1000 I/Os.
– Total = 500 + 5 * 1000 = 5,500 I/Os.

49

• Sailors:
– Each tuple is 50

bytes long,
– 80 tuples per page,
– 500 pages.

• Reserves:
– Each tuple is 40

bytes long,
– 100 tuples per page,
– 1000 pages.

Index Nested Loops Join

• If there is an index on the join column of one relation
(say S), can make it the inner and exploit the index.
– Cost: M + ((M*pR) * cost of finding matching S tuples)

• For each R tuple, cost of probing S index is about 1.2
for hash index, 2-4 for B+ tree. Cost of then finding S
tuples (assuming Alt. (2) or (3) for data entries)
depends on clustering.
– Clustered index: 1 I/O (typical).
– Unclustered: up to 1 I/O per matching S tuple.

foreach tuple r in R do
 foreach tuple s in S where ri == sj do
 add <r, s> to result

50

Sort-Merge Join (R S)

• Sort R and S on join column using external sorting.

• Merge R and S on join column, output result tuples.

 Repeat until either R or S is finished:
– Scanning:

• Advance scan of R until current R-tuple >=current S tuple,

• Advance scan of S until current S-tuple>=current R tuple;

• Do this until current R tuple = current S tuple.

– Matching:
• Match all R tuples and S tuples with same value; output <r, s>

for all pairs of such tuples.

• Data access patterns for R and S?


i=j

51 R is scanned once, each S partition scanned once per matching R tuple

Refinement of Sort-Merge Join

• Idea:

– Sorting of R and S has respective merging phases

– Join of R and S also has a merging phase

– Combine all these merging phases!

• Two-pass algorithm for sort-merge join:

– Pass 0: sort subfiles of R, S individually

– Pass 1: merge sorted runs of R, merge sorted runs
of S, and merge the resulting R and S files as they
are generated by checking the join condition.

52

 Idea: Partition both R and S using a hash function s.t. R tuples will only
match S tuples in partition i.

Hash-Join

 Probing: Read in partition
i of R, build hash table on
Ri using h2 (<> h!). Scan
partition i of S, search for
matches.

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffers Disk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers Disk Disk

Original
Relation OUTPUT

2 INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

• Partitioning: Partition
both relations using
hash fn h: Ri tuples will
only match with Si
tuples.

Hash Join

Approach 1 to General Selections
• (1) Find the most selective access path, retrieve

tuples using it, and (2) apply any remaining terms
that don’t match the index on the fly.
– Most selective access path: An index or file scan that is

expected to require the smallest # I/Os.
• Terms that match this index reduce the number of tuples

retrieved;

• Other terms are used to discard some retrieved tuples, but do
not affect I/O cost.

– Consider day<8/9/94 AND bid=5 AND sid=3.
• A B+ tree index on day can be used; then, bid=5 and sid=3 must

be checked for each retrieved tuple.

• A hash index on <bid, sid> could be used; day<8/9/94 must then
be checked on the fly. 54

Approach 2: SELECT Intersection of
Rids

• If we have 2 or more matching indexes that use
Alternatives (2) or (3) for data entries:

– Get sets of rids of data records using each matching index.

– Intersect these sets of rids.

– Retrieve the records and apply any remaining terms.

– Consider day<8/9/94 AND bid=5 AND sid=3. If we have a B+
tree index on day and an index on sid, both using
Alternative (2), we can:

• retrieve rids of records satisfying day<8/9/94 using the first, rids of
records satisfying sid=3 using the second,

• intersect these rids,

• retrieve records and check bid=5. 55

Projection Based on Sorting

• Modify Pass 0 of external sort to eliminate unwanted fields.
– Runs of about 2B pages are produced,

– But tuples in runs are smaller than input tuples. (Size ratio depends
on # and size of fields that are dropped.)

• Modify merging passes to eliminate duplicates.

– # result tuples smaller than input. Difference depends on # of
duplicates.

• Cost: In Pass 0, read input relation (size M), write out same
number of smaller tuples. In merging passes, fewer tuples
written out in each pass.

– Using Reserves example, 1000 input pages reduced to 250 in Pass 0
if size ratio is 0.25.

56

Projection Based on Hashing
• Partitioning phase: Read R using one input buffer. For each

tuple, discard unwanted fields, apply hash function h1 to choose
one of B-1 output buffers.

– Result is B-1 partitions (of tuples with no unwanted fields). 2 tuples
from different partitions guaranteed to be distinct.

• Duplicate elimination phase: For each partition, read it and build
an in-memory hash table, using hash fn h2 (<> h1) on all fields,
while discarding duplicates.

– If partition does not fit in memory, can apply hash-based projection
algorithm recursively to this partition.

• Cost: For partitioning, read R, write out each tuple, but with
fewer fields. This is read in next phase.

57

EXTERNAL SORT

2-Way Sort: Requires 3 Buffers

• Pass 1: Read a page, sort it, write it.

– only one buffer page is used

• Pass 2, 3, …, etc.:

– three buffer pages used.

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

Disk Disk

59

Partition data
Pass determines
Size of partition

General External Merge Sort

• To sort a file with N pages using B buffer pages:
– Pass 0: use B buffer pages. Produce N/B sorted runs of B

pages each.

– Pass 2, 3…, etc.: merge B-1 runs.

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

Disk Disk

INPUT 2

.

 More than 3 buffer pages. How can we utilize them?

60

Cost of External Merge Sort

• Number of passes = 1 + log B-1 N/B 

 Cost = 2N * (# of passes)

 E.g., with 5 (B) buffer pages, sort 108 (N) page file:

Pass 0 108/5 = 22 sorted runs of 5 pages
each (last run is only 3 pages)

N/B sorted runs of B pages
each

Pass 1 22/4 = 6 sorted runs of 20 pages
each (last run is only 8 pages)

N/B /(B-1) sorted runs of
B(B-1) pages each

Pass 2 2 sorted runs, 80 pages and 28 pages N/B /(B-1)2 sorted runs of
B(B-1)2 pages

Pass 3 Sorted file of 108 pages N/B /(B-1)3 sorted runs of
B(B-1)3 (N) pages

Output
(1 buffer)

12

4

3

5

2

8

10

Input
(1 buffer)

Current Set
(B-2 buffers)

Replacement Sort

• Organize B available buffers:
– 1 buffer for input

– B-2 buffers for current set

– 1 buffer for output

 Pick tuple r in the current set with the smallest value that is  largest value in
output, e.g. 8, to extend the current run.

 Fill the space in current set by adding tuples from input.

 Write output buffer out if full, extending the current run.

 Current run terminates if every tuple in the current set is smaller than the largest
tuple in output.

62

Clustered B+ Tree Used for Sorting

• Cost: root to the left-most
leaf, then retrieve all leaf
pages (Alternative 1)

 Almost always better than external sorting!

(Directs search)

Data Records

Index

Data Entries
("Sequential") 

 If Alternative 2 is used?
Additional cost of retrieving
data records: each page fetched
just once.

Refinement of Sort-Merge Join

• Idea:

– Sorting of R and S has respective merging phases

– Join of R and S also has a merging phase

– Combine all these merging phases!

• Two-pass algorithm for sort-merge join:

– Pass 0: sort subfiles of R, S individually

– Pass 1: merge sorted runs of R, merge sorted runs
of S, and merge the resulting R and S files as they
are generated by checking the join condition.

64

2-Pass Sort-Merge Algorithm

B Main memory buffers

Run1 of R

RunK of R

OUTPUT

Join Results

Run2 of R

. . .

Relation R

. . .

Run1 of S

RunK of S

Run2 of S

Relation S

. . .

65

Using an Index for Selections
• Cost depends on # qualifying tuples, and clustering.

– Cost of finding data entries (often small) + cost of retrieving
records (could be large w/o clustering).

– For gpa > 3.0, if 10% of tuples qualify (100 pages, 10,000
tuples), cost  100 I/Os with a clustered index; otherwise, up
to 10,000 I/Os!

• Important refinement for unclustered indexes:
1. Find qualifying data entries.
2. Sort the rid’s of the data records to be retrieved.
3. Fetch rids in order.

 Each data page is looked at just once, although # of such pages likely to be
higher than with clustering.

66

Approach 1 to General Selections
• (1) Find the most selective access path, retrieve

tuples using it, and (2) apply any remaining terms
that don’t match the index on the fly.
– Most selective access path: An index or file scan that is

expected to require the smallest # I/Os.
• Terms that match this index reduce the number of tuples

retrieved;

• Other terms are used to discard some retrieved tuples, but do
not affect I/O cost.

– Consider day<8/9/94 AND bid=5 AND sid=3.
• A B+ tree index on day can be used; then, bid=5 and sid=3 must

be checked for each retrieved tuple.

• A hash index on <bid, sid> could be used; day<8/9/94 must then
be checked on the fly. 67

Approach 2: Intersection of Rids

• If we have 2 or more matching indexes that use
Alternatives (2) or (3) for data entries:

– Get sets of rids of data records using each matching index.

– Intersect these sets of rids.

– Retrieve the records and apply any remaining terms.

– Consider day<8/9/94 AND bid=5 AND sid=3. If we have a B+
tree index on day and an index on sid, both using
Alternative (2), we can:

• retrieve rids of records satisfying day<8/9/94 using the first, rids of
records satisfying sid=3 using the second,

• intersect these rids,

• retrieve records and check bid=5. 68

Summary: Query plan

• Many implementation techniques for each
operator; no universally superior technique for
most operators.

• Must consider available alternatives for each
operation in a query and choose best one based
on:
– system state (e.g., memory) and

– statistics (table size, # tuples matching value k).

• This is part of the broader task of optimizing a
query composed of several ops.

69

Representation of a SQL Command

• Query Semantics:
1. Take Cartesian product (a.k.a. cross-product) of relns in FROM, projecting

only to those columns that appear in other clauses

2. If a WHERE clause exists, apply all filters in it

3. If a GROUP BY clause exists, form groups on the result

4. If a HAVING clause exists, filter groups with it

5. If an ORDER BY clause exists, make sure output is in the right order

6. If there is a DISTINCT modifier, remove duplicates

SELECT {DISTINCT} <list of columns>
FROM <list of relations>
{WHERE <list of "Boolean Factors">}
{GROUP BY <list of columns>
{HAVING <list of Boolean Factors>}}
{ORDER BY <list of columns>};

System Catalog
• System information: buffer pool size and page size.
• For each relation:

– relation name, file name, file structure (e.g., heap file)
– attribute name and type of each attribute
– index name of each index on the relation
– integrity constraints…

• For each index:
– index name and structure (B+ tree)
– search key attribute(s)

• For each view:
– view name and definition

• Statistics about each relation (R) and index (I):

Query Evaluation Plan

• Query evaluation plan is an
extended RA tree, with additional
annotations:
– access method for each relation;

– implementation method for each
relational operator.

• Cost Approximation

• Manipulating plans:
– Relational Alebra Equivalence

– Push selections below the join.

– Materialization: store a temporary relation T,

– if the subsequent join needs to scan T multiple
times.

• The opposite is pipelining

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

(File scan) (File scan)

Query Blocks: Units of Optimization

• An SQL query is parsed into
a collection of query blocks,
and these are optimized
one block at a time.

SELECT S.sname

FROM Sailors S

WHERE S.age IN

 (SELECT MAX (S2.age)

 FROM Sailors S2

 GROUP BY S2.rating)

Nested block Outer block

 Nested blocks are usually treated as calls to a
subroutine, made once per outer tuple.

Cost Estimation for Multi-relation Plans

• Consider a query block:

• Reduction factor (RF) is associated with each term.

• Max number tuples in result = the product of the
cardinalities of relations in the FROM clause.

• Result cardinality = max # tuples * product of all RF’s.

• Multi-relation plans are built up by joining one new
relation at a time.

– Cost of join method, plus estimate of join cardinality gives
us both cost estimate and result size estimate.

SELECT attribute list

FROM relation list

WHERE term1 AND ... AND termk

Query Optimization: Summary

• Two parts to optimizing a query:

– Consider a set of alternative plans.

• Must prune search space; typically, left-deep plans only.

– Must estimate cost of each plan that is considered.

• Must estimate size of result and cost for each plan node.

• Key issues: Statistics, indexes, operator implementations.

Query Optimization: Summary
• Single-relation queries:

– All access paths considered, cheapest is chosen.

– Issues: Selections that match index, whether index key has
all needed fields and/or provides tuples in a desired order.

• Multiple-relation queries:
– All single-relation plans are first enumerated.

• Selections/projections considered as early as possible.

– Next, for each 1-relation plan, all ways of joining another
relation (as inner) are considered.

– Next, for each 2-relation plan that is `retained’, all ways of
joining another relation (as inner) are considered, etc.

– At each level, for each subset of relations, only best plan for
each interesting order of tuples is `retained’.

NO SQL

Typical NoSQL architecture

Hashing function

maps each key

to a server

K

78

The search problem: No Hash key

Locating a record
without the hash key
requires searching
multiple servers

79

The Fault Tolerance problem

Many NOSQL system’s
default settings
consider a write
complete after writing
to just 1 node

80

The consistency problem

Clients may read
inconsistent data
and writes may be
lost

81

Theory of NOSQL: CAP
GIVEN:

• Many nodes

• Nodes contain replicas of
partitions of the data

• Consistency
– all replicas contain the same

version of data

• Availability
– system remains operational

on failing nodes

• Partition tolarence
– multiple entry points

– system remains operational
on system split

CAP Theorem:

satisfying all three at

the same time is

impossible

A P

C

82

Replica Sets

• Redundancy and Failover

• Zero downtime for
upgrades and
mainentance

• Master-slave replication
– Strong Consistency

– Delayed Consistency

• Geospatial features

Host1:10000

Host2:10001

Host3:10002

replica1

Client

83

How does it vary from SQL?

• Looser schema definition
• Various schema models

– Key value pair
– Document oriented
– Graph
– Column based

• Applications written to deal with specific documents
– Applications aware of the schema definition as opposed to

the data

• Designed to handle distributed, large databases
• Trade off: ad hoc queries for speed and growth of

database

84

ACID - BASE

Pritchett, D.: BASE: An Acid Alternative (queue.acm.org/detail.cfm?id=1394128)

Atomicity

Consistency

Isolation

Durability

Basically

Available (CP)

Soft-state

Eventually consistent
 (Asynchronous
propagation)

85

What is MapReduce?

• Programming model for expressing distributed
computations on massive amounts of data

 AND

• An execution framework for large-scale data
processing on clusters of commodity servers

Programming Model

• Transforms set of input key-value pairs to set of
output key-value pairs
– Map function written by user
– Map: (k1, v1)  list (k2, v2)
– MapReduce library groups all intermediate pairs with

same key together

• Reduce written by user
– Reduce: (k2, list (v2))  list (v2)
– Usually zero or one output value per group
– Intermediate values supplied via iterator (to handle

lists that do not fit in memory)

Execution Framework

• Handles scheduling of the tasks

– Assigns workers to maps and reduce tasks

– Handles data distribution

• Moves the process to the data

– Handles synchronization

• Gathers, sorts and shuffles intermediate data

– Handles faults

• Detects worker failures and restarts

– Understands the distributed file system

MongoDB Basics

• A MongoDB instance may have zero or more
databases

• A database may have zero or more ‘collections’.

• A collection may have zero or more ‘documents’.

• A document may have one or more ‘fields’.

• MongoDB ‘Indexes’ function much like their RDBMS
counterparts.

89

RDB Concepts to NO SQL

RDBMS MongoDB

Database Database

Table, View Collection

Row Document (JSON, BSON)

Column Field

Index Index

Join Embedded Document

Foreign Key Reference

Partition Shard

 Collection is not strict about what it

Stores

Schema-less

Hierarchy is evident in the design

Embedded Document ?

90

HyperDex Key Points

• Maps records to a Hypercube Space
– object’s key are stored in a dedicated one-dimensional

subspace for efficient lookup

– only need to contact the servers which match the regions
of the hyperspace assigned for the search attributes

• Value-dependent chaining
– Keeps replicas consistent without heavy overhead from

coordination of servers
• Uses the hypercube space

– Appoints a point leader that contains the most recent
update of a record
• Other replicas are updated from the point leader

Each server is responsible for a region
of the hyperspace

That’s it

• Go over the lecture notes

• Read the book

• Go over homework 3
– final exam questions will not be as difficult as

homework problems

• Ask questions in piazza or via email

• Organize a study sheet

• Complete the example mid-term

• Practice problems

Summary: RAID Levels

• Level 0: No redundancy

• Level 1: Mirrored (two identical copies)

– Each disk has a mirror image (check disk)

– Parallel reads, a write involves two disks.

– Maximum transfer rate = transfer rate of one disk

• Level 0+1: Striping and Mirroring

– Parallel reads, a write involves two disks.

– Maximum transfer rate = aggregate bandwidth

Summary: RAID Levels (Contd.)

• Level 3: Bit-Interleaved Parity
– Striping Unit: One bit. One check disk.
– Each read and write request involves all disks; disk

array can process one request at a time.

• Level 4: Block-Interleaved Parity
– Striping Unit: One disk block. One check disk.
– Parallel reads possible for small requests, large

requests can utilize full bandwidth
– Writes involve modified block and check disk

• Level 5: Block-Interleaved Distributed Parity
– Similar to RAID Level 4, but parity blocks are

distributed over all disks

