
MapReduce &
HyperDex
Kathleen Durant PhD
Lecture 21 CS 3200
Northeastern University

1

Distributing Processing Mantra
• Scale “out,” not “up.”
• Assume failures are common.
• Move processing to the data.
• Process data sequentially and avoid random access.
• Hide system-level details from the application developer.
• Incorporate seamless scalability.

2

Drivers to MapReduce
• Our ability to store data is fast overwhelming our ability to

process what we store
• So you can write it you just can’t use it for any calculations

• Increases in capacity are outpacing improvements in
bandwidth
• So you can write it you just can’t read it back in a reasonable time

3

Introduction to Parallelization
• Writing algorithms for a cluster

• On the order of 10,000 or more machines
• Failure or crash is not an exception, but common phenomenon
• Parallelize computation
• Distribute data
• Balance load

• Makes implementation of conceptually straightforward
computations challenging

4

MapReduce
• Wanted: A model to express computation while hiding the

messy details of the execution
• Inspired by map and reduce primitives in functional

programming
• Apply map to each input record to create a set of intermediate

key-value pairs
• Apply reduce to all values that share the same key (like GROUP

BY)
• Automatically parallelized
• Re-execution as primary mechanism for fault tolerance

5

What is MapReduce?
• Programming model for expressing distributed computations

on massive amounts of data
 AND
• An execution framework for large-scale data processing on

clusters of commodity servers

6

Typical MapReduce
Application

MAP
• Iterate over a large number of records
• Extract something of interest from each
• Shuffle and sort intermediate results

REDUCE
• Aggregate intermediate results
• Generate final outcome

7

Programming Model
• Transforms set of input key-value pairs to set of output key-

value pairs
• Map function written by user
• Map: (k1, v1)  list (k2, v2)
• MapReduce library groups all intermediate pairs with same key

together
• Reduce written by user

• Reduce: (k2, list (v2))  list (v2)
• Usually zero or one output value per group
• Intermediate values supplied via iterator (to handle lists that do

not fit in memory)

8

Execution Framework
• Handles scheduling of the tasks

• Assigns workers to maps and reduce tasks
• Handles data distribution

• Moves the process to the data
• Handles synchronization

• Gathers, sorts and shuffles intermediate data
• Handles faults

• Detects worker failures and restarts
• Understands the distributed file system

9

EXAMPLE: Count occurrences of each
word in a document collection

Map(String key,
 String value):
 // key: document name
 // value: document
contents
 for each word w in value:
 EmitIntermediate(w, "1“);

Reduce(String key,
 Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));

10

Distributing work to nodes
• Focuses on large clusters

• Relies on existence of reliable and highly available distributed file
system

• Map invocations
• Automatically partition input data into M chunks (16-64 MB

typically)
• Chunks processed in parallel

• Reduce invocations
• Partition intermediate key space into R pieces, e.g., using

hash(key) mod R
• Master node controls program execution

11

Dealing with failing nodes
• Master monitors tasks on mappers and reducers: idle, in

progress, completed
• Worker failure (common)

• Master pings workers periodically
• No response => assumes worker failed

• Resets worker’s map tasks, completed or in progress, to idle state
(tasks now available for scheduling on other workers)
• Completed tasks only on local disk, hence inaccessible

• Same for reducer’s in-progress tasks
• Completed tasks stored in global file system, hence accessible

• Reducers notified about change of mapper assignment
• Master failure (unlikely)

• Checkpointing or simply abort computation 12

Other considerations
• Conserve network bandwidth (“Locality optimization”)

• Distributed file system assigns data chunks to local disks
• Schedule map task on machine that already has a copy of the chunk,

or one “nearby”
• Choose M and R much larger than number of worker machines

• Load balancing and faster recovery (many small tasks from failed
machine)

• Limitation: O(M+R) scheduling decisions and O(M*R) in-memory
state at master

• Common choice: M so that chunk size is 16-64 MB, R a small multiple
of number of workers

• Backup tasks to deal with machines that take unusually long for last
few tasks
• For in-progress tasks when MapReduce near completion

13

MapReduce
• Execution flow

14

Master

Input Files Output

Map workers
Reduce workers

M

M

M

R

R

Input files sent to
map tasks Intermediate keys

partitioned into
reduce tasks

Map
• Interface

• Input: <in_key, in_value> pair => <url, content>
• Output: list of intermediate <key, value> pairs

=> list of <word, url>

15

key = http://url0.com
value = “every happy family is
alike.”

<every, http://url0.com>
<happy, http://url0.com>
<family, http://url0.com>
…

map()

Map Input: <url, content>

<every, http://url1.com>
<unhappy, http://url1.com>
<family, http://url1.com>
…

key = http://url1.com
value = “every unhappy family
is unhappy in its own way.”

Map Output: list of <word, url>

http://url0.com
http://url0.com
http://url0.com
http://url0.com
http://url1.com
http://url1.com
http://url1.com
http://url1.com

Shuffle
• MapReduce system

• Collects outputs from all map executions
• Groups all intermediate values by the same key

16

every -> http://url0.com
 http://url1.com

<every, http://url0.com>
<happy, http://url0.com>
<family, http://url0.com>
…

<every, http://url1.com>
<unhappy, http://url1.com>
<family, http://url1.com>
…

Map Output: list of <word, url> Reduce Input: <word, list of urls>

happy -> http://url0.com

unhappy ->
http://url1.com

family -> http://url0.com
 http://url1.com

http://url0.com
http://url1.com
http://url0.com
http://url0.com
http://url0.com
http://url1.com
http://url1.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com

Reduce
• Interface

• Input: <out_key, list of intermediate_value>
• Output: <out_key, out_value>

17

every -> http://url0.com
 http://url1.com

Reduce Input: <word, list of urls>

happy -> http://url0.com

unhappy ->
http://url1.com

family -> http://url0.com
 http://url1.com

<every, “http://url0.com,
http://url1.com”>

<happy,
“http://url0.com”>

<unhappy,
“http://url1.com”>
<family, “http://url0.com,
 http://url1.com”
>

Reduce Output: <word, string of urls>

reduce()

http://url0.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com

Parallel Database
• SQL specifies what to compute, not how to do it

• Perfect for parallel and distributed implementation
• “Just” need an optimizer that can choose best plan in given

parallel/distributed system
• Cost estimate includes disk, CPU, and network cost

• Recent benchmarks show parallel DBMS can significantly
outperform MapReduce
• But many programmers prefer writing Map and Reduce in familiar

PL (C++, Java)
• Recent trend: High-level PL for writing MapReduce programs

with DBMS-inspired operators

18

19

My SQL vs.
 MongoDB
SELECT ‘goalType’,
SUM(distancekm) as ‘totalkm’,
COUNT(*) AS ‘workouts’,
count(powerSOngAlbum) as “soungcount’,
avg(distancekm) as ‘avgkm’, max(distancekm) as
maxkm,
Min(distancekm) as minkm from workouts group
by goaltype;

db.runCommand({ mapreduce: "workouts", map:
function () { emit(this.goalType, { '_cfcount': 1,
'distancekm_cfsum': isNaN(this.distancekm) ? null :
this.distancekm, 'distancekm_cfnum':
isNaN(this.distancekm) ? 0 : 1,
'powerSongAlbum_cfcount': (this.powerSongAlbum ==
null) ? 0 : 1, 'distancekm_cfmax': isNaN(this.distancekm)
? null : this.distancekm, 'distancekm_cfmin':
isNaN(this.distancekm) ? null : this.distancekm }); },
reduce: function (key,vals) { var ret = {
'distancekm_cfmax': null, 'distancekm_cfsum': null,
'distancekm_cfmin': null, 'distancekm_cfnum': 0,
'powerSongAlbum_cfcount': 0, '_cfcount': 0 }; for(var i =
0; i < vals.length; i++) { var v = vals[i];
ret['distancekm_cfnum'] += v['distancekm_cfnum'];
if(!isNaN(v['distancekm_cfmax']))
ret['distancekm_cfmax'] = (ret['distancekm_cfmax'] ==
null) ? v['distancekm_cfmax'] : (ret['distancekm_cfmax']
> v['distancekm_cfmax']) ? ret['distancekm_cfmax'] :
v['distancekm_cfmax']; ret['_cfcount'] += v['_cfcount'];
if(!isNaN(v['distancekm_cfmin'])) ret['distancekm_cfmin']
= (ret['distancekm_cfmin'] == null) ?
v['distancekm_cfmin'] : (v['distancekm_cfmin'] >
ret['distancekm_cfmin']) ? ret['distancekm_cfmin'] :
v['distancekm_cfmin']; ret['powerSongAlbum_cfcount']
+= v['powerSongAlbum_cfcount'];
if(!isNaN(v['distancekm_cfsum']))
ret['distancekm_cfsum'] = v['distancekm_cfsum'] +
(ret['distancekm_cfsum'] == null ? 0 :
ret['distancekm_cfsum']); } return ret; }, finalize: function
(key,val) { return { 'totalkm' : val['distancekm_cfsum'],
'workouts' : val['_cfcount'], 'songcount' :
val['powerSongAlbum_cfcount'], 'avgkm' :
(isNaN(val['distancekm_cfnum']) ||
isNaN(val['distancekm_cfsum'])) ? null :
val['distancekm_cfsum'] / val['distancekm_cfnum'],
'maxkm' : val['distancekm_cfmax'], 'minkm' :
val['distancekm_cfmin'] }; }, out: "s2mr", verbose: true });

http://rickosborne.org/blog/2010/02/yes-virginia-thats-automated-sql-to-mongodb-mapreduce/

Database gurus have spoken out against
MapReduce
 Dave DeWitt, Michael Stonebraker

20

MapReduce Summary
• MapReduce = programming model that hides details of

parallelization, fault tolerance, locality optimization, and load
balancing

• Simple model, but fits many common problems
• Implementation on cluster scales to 1000s of machines and more

• Open source implementation, Hadoop, is available
• Parallel DBMS, SQL are more powerful than MapReduce and

similarly allow automatic parallelization of “sequential code”
• Never really achieved mainstream acceptance or broad open-source

support like Hadoop
• Recent trend: simplify coding in MapReduce by using DBMS ideas

• (Variants of) relational operators and BI being implemented on top
of Hadoop 21

HyperDex
Adapted from
Hyperdex a Distributed, Searchable Key-value Store
Robert Escriva, Bernard Wong, Emin Gun Sirer
ACM SIGCOMM Conference, August 14, 2012

22

CAP Review
• Strong Consistency : all clients see the same view, even in the

presence of updates
• High Availability : all clients can find some replica of the data,

even in the presence of failures
• Partition-tolerance: the system properties hold even when the

system is partitioned or not fully operational

23

Typical NoSQL architecture

24

Hashing function
maps each key to a
server (node)

K

The search problem: No Hash
key

25

Locating a record
without the hash key
requires searching
multiple servers

The Fault tolerance problem

26

Many NOSQL system’s
default settings
consider a write
complete after writing
to just 1 node

The consistency problem

27

Clients may read
inconsistent data
and writes may be
lost

HyperDex Key Points
• Maps records to a Hypercube Space

• object’s key are stored in a dedicated one-dimensional subspace
for efficient lookup

• only need to contact the servers which match the regions of the
hyperspace assigned for the search attributes

• Value-dependent chaining
• Keeps replicas consistent without heavy overhead from

coordination of servers
• Uses the hypercube space

• Appoints a point leader that contains the most recent update of a
record

• Other replicas are updated from the point leader
28

Attributes map to dimensions in a
multidimensional hyperspace

29

Attributes values are hashed
independently
Any hash function may be used

30

Objects reside at the coordinate
specified by the hashes

31

Different objects reside at different
coordinates

32

The hyperspace is divided into regions
Each object resides in exactly one region

33

Each server is responsible for a
region of the hyperspace

34

Each search intersects a subset of
regions in the hyperspace

35

Example: All people name Neil
mapped to the yellow plane

36

All people named Armstrong map
to the grey plane

37

A more restrictive search for Neil
Armstrong contacts fewer servers

38

Range searches are natively
supported

39

Space Partitioning: Subspaces
• The hyperspace would grow exponentially in the number of

dimensions
• Space partitioning prevents exponential growth in the number

of searchable attributes

• A search is performed in the most restrictive subspace

k a1 a2 a3 a4 … aD-3 aD-2 aD-1 aD

40

Hyperspace Hashing Index
• Searches are efficient
• Hyperspace hashing is a mapping not an index

• No per-object updates to a shared data structure
• No overhead for building and maintaining B-trees
• Functionality gained solely through careful placement

41

Update a record: Value dependent
chaining • A put involves one node

from each subspace
• Servers are replicated in

each region to hold
replicas of the data
providing fault
tolerance

• Updates propagate
from a ‘point leader’
that contains the most
recent update of a
record – proceed to the
tail (last dimension)

Since the values of the fields
determine where in the
hypercube the record is stored

Must update the record in
an ordered method – since
it may involve a move of the
data

Commits start at the tail
and move to the head

42

Hyperdex features
• Consistent: linearizable; GET requests will always return the

latest PUT.
• High Availability: the system will stay up in the presence of ≤ f

failures.
• Partition-Tolerant: for partitions with ≤ f nodes, you can be

certain your system is still operational.
• Horizontally Scalable: you can grow your system by adding

additional servers.
• Performance: high throughput and low variance.
• Searchable: it provides an expressive API for searching your

data.
 43

Summary: HyperDex
• Hyperspace hashing
• Value-dependent chaining
• High-Performance: High throughput with low variance
• Strong Consistency: Strong safety guarantees
• Fault Tolerance: Tolerates a threshold of failures
• Scalable: Adding resources increases performance
• Rich API: Support for complex data structures and search

44

	MapReduce & HyperDex
	Distributing Processing Mantra
	Drivers to MapReduce
	Introduction to Parallelization
	MapReduce
	What is MapReduce?
	Typical MapReduce Application
	Programming Model
	Execution Framework
	EXAMPLE: Count occurrences of each word in a document collection
	Distributing work to nodes
	Dealing with failing nodes
	Other considerations
	MapReduce
	Map
	Shuffle
	Reduce
	Parallel Database
	Slide Number 19
	My SQL vs.� MongoDB
	MapReduce Summary
	HyperDex
	CAP Review
	Typical NoSQL architecture
	The search problem: No Hash key
	The Fault tolerance problem
	The consistency problem
	HyperDex Key Points
	Attributes map to dimensions in a multidimensional hyperspace
	Attributes values are hashed independently�Any hash function may be used
	Objects reside at the coordinate specified by the hashes
	Different objects reside at different coordinates
	The hyperspace is divided into regions�Each object resides in exactly one region
	Each server is responsible for a region of the hyperspace
	Each search intersects a subset of regions in the hyperspace
	Example: All people name Neil mapped to the yellow plane
	All people named Armstrong map to the grey plane
	A more restrictive search for Neil Armstrong contacts fewer servers
	Range searches are natively supported
	Space Partitioning: Subspaces
	Hyperspace Hashing Index
	Update a record: Value dependent chaining
	Hyperdex features
	Summary: HyperDex

