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Distributing Processing Mantra 
• Scale “out,” not “up.” 
•  Assume failures are common. 
•  Move processing to the data. 
•  Process data sequentially and avoid random access. 
•  Hide system-level details from the application developer. 
•  Incorporate seamless scalability. 
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Drivers to MapReduce 
• Our ability to store data is fast overwhelming our ability to 

process what we store 
• So you can write it you just can’t use it for any calculations  

• Increases in capacity are outpacing improvements in 
bandwidth 
• So you can write it you just can’t read it back in a reasonable time   
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Introduction to Parallelization 
• Writing algorithms for a cluster 

• On the order of 10,000 or more machines 
• Failure or crash is not an exception, but common phenomenon 
• Parallelize computation 
• Distribute data 
• Balance load 

• Makes implementation of conceptually straightforward 
computations challenging 
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MapReduce 
• Wanted: A model to express computation while hiding the 

messy details of the execution  
• Inspired by map and reduce primitives in functional 

programming 
•  Apply map to each input record to create a set of intermediate 

key-value pairs 
• Apply reduce to all values that share the same key (like GROUP 

BY) 
• Automatically parallelized 
• Re-execution as primary mechanism for fault tolerance 
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What is MapReduce? 
• Programming model for expressing distributed computations 

on massive amounts of data  
   AND  
• An execution framework for large-scale data processing on 

clusters of commodity servers 
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Typical MapReduce 
Application  

 

MAP 
• Iterate over a large number of records 
• Extract something of interest from each 
• Shuffle and sort intermediate results 

 
 
 
 

REDUCE 
• Aggregate intermediate results 
• Generate final outcome  
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Programming Model 
• Transforms set of input key-value pairs to set of output key-

value pairs 
• Map function written by user 
• Map: (k1, v1)   list (k2, v2) 
• MapReduce library groups all intermediate pairs with same key 

together 
• Reduce written by user 

• Reduce: (k2, list (v2))   list (v2) 
• Usually zero or one output value per group 
• Intermediate values supplied via iterator (to handle lists that do 

not fit in memory) 
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Execution Framework 
• Handles scheduling of the tasks 

• Assigns workers to maps and reduce tasks 
• Handles data distribution 

• Moves the process to the data  
• Handles synchronization 

• Gathers, sorts and shuffles intermediate data 
• Handles faults 

• Detects worker failures and restarts  
• Understands the  distributed file system  
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EXAMPLE: Count occurrences of each 
word in a document collection 

Map( String key,  
                String value ): 
   // key: document name 
  // value: document 
contents 
   for each word w in value: 
    EmitIntermediate( w, "1“ ); 

Reduce( String key,  
                 Iterator values ): 
   // key: a word 
  // values: a list of counts 
   int result = 0; 
    for each v in values: 
         result += ParseInt( v ); 
          Emit( AsString(result) ); 
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Distributing work to nodes  
• Focuses on large clusters 

•  Relies on existence of reliable and highly available distributed file 
system 

• Map invocations 
• Automatically partition input data into M chunks (16-64 MB 

typically) 
• Chunks processed in parallel 

• Reduce invocations 
• Partition intermediate key space into R pieces, e.g., using 

hash(key) mod R 
• Master node controls program execution 
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Dealing with failing nodes  
• Master monitors tasks on mappers and reducers: idle, in 

progress, completed 
• Worker failure (common) 

•  Master pings workers periodically 
• No response => assumes worker failed 

• Resets worker’s map tasks, completed or in progress, to idle state 
(tasks now available for scheduling on other workers) 
•  Completed tasks only on local disk, hence inaccessible 

• Same for reducer’s in-progress tasks 
•  Completed tasks stored in global file system, hence accessible 

• Reducers notified about change of mapper assignment 
• Master failure (unlikely) 

• Checkpointing or simply abort computation 12 



Other considerations  
• Conserve network bandwidth (“Locality optimization”) 

•  Distributed file system assigns data chunks to local disks 
• Schedule map task on machine that already has a copy of the chunk, 

or one “nearby” 
• Choose M and R much larger than number of worker machines 

• Load balancing and faster recovery (many small tasks from failed 
machine) 

• Limitation: O(M+R) scheduling decisions and O(M*R) in-memory 
state at master 

• Common choice: M so that chunk size is 16-64 MB, R a small multiple 
of number of workers 

• Backup tasks to deal with machines that take unusually long for last 
few tasks 
• For in-progress tasks when MapReduce near completion 
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MapReduce 
• Execution flow 
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Master 

Input Files Output 

Map workers 
Reduce workers 

M 

M 

M 

R 

R 

Input files sent to 
map tasks Intermediate keys 

partitioned into 
reduce tasks 



Map 
• Interface 

• Input: <in_key, in_value> pair => <url, content> 
• Output: list of intermediate <key, value> pairs  

=> list of <word, url> 
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key = http://url0.com 
value = “every happy family is 
alike.” 

<every, http://url0.com> 
<happy, http://url0.com> 
<family, http://url0.com> 
… 

map() 

Map Input: <url, content> 

<every, http://url1.com> 
<unhappy, http://url1.com> 
<family, http://url1.com> 
… 

key = http://url1.com 
value = “every unhappy family 
is unhappy in its own way.” 

Map Output: list of <word, url> 

http://url0.com
http://url0.com
http://url0.com
http://url0.com
http://url1.com
http://url1.com
http://url1.com
http://url1.com


Shuffle 
• MapReduce system 

• Collects outputs from all map executions 
• Groups all intermediate values by the same key 
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every -> http://url0.com 
 http://url1.com 

<every, http://url0.com> 
<happy, http://url0.com> 
<family, http://url0.com> 
… 

<every, http://url1.com> 
<unhappy, http://url1.com> 
<family, http://url1.com> 
… 

Map Output: list of <word, url> Reduce Input: <word, list of urls> 

happy -> http://url0.com 

unhappy -> 
http://url1.com 

family -> http://url0.com 
 http://url1.com 

http://url0.com
http://url1.com
http://url0.com
http://url0.com
http://url0.com
http://url1.com
http://url1.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com


Reduce 
• Interface 

• Input: <out_key, list of intermediate_value> 
• Output: <out_key, out_value> 
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every -> http://url0.com 
 http://url1.com 

Reduce Input: <word, list of urls> 

happy -> http://url0.com 

unhappy -> 
http://url1.com 

family -> http://url0.com 
 http://url1.com 

<every, “http://url0.com, 
http://url1.com”> 

<happy,  
“http://url0.com”> 

<unhappy,  
“http://url1.com”> 
<family, “http://url0.com, 
 http://url1.com”
> 

Reduce Output: <word, string of urls> 

reduce() 

http://url0.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com


Parallel Database  
• SQL specifies what to compute, not how to do it 

• Perfect for parallel and distributed implementation 
•  “Just” need an optimizer that can choose best plan in given 

parallel/distributed system 
• Cost estimate includes disk, CPU, and network cost 

• Recent benchmarks show parallel DBMS can significantly 
outperform MapReduce 
• But many programmers prefer writing Map and Reduce in familiar 

PL (C++, Java) 
• Recent trend: High-level PL for writing MapReduce programs 

with DBMS-inspired operators 
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My SQL vs. 
    MongoDB 
SELECT ‘goalType’, 
SUM(distancekm) as ‘totalkm’, 
COUNT(*) AS ‘workouts’, 
count(powerSOngAlbum) as “soungcount’, 
avg(distancekm) as ‘avgkm’, max(distancekm) as 
maxkm, 
Min(distancekm) as minkm from workouts group 
by goaltype; 

db.runCommand({ mapreduce: "workouts", map: 
function () { emit( this.goalType, { '_cfcount': 1, 
'distancekm_cfsum': isNaN(this.distancekm) ? null : 
this.distancekm, 'distancekm_cfnum': 
isNaN(this.distancekm) ? 0 : 1, 
'powerSongAlbum_cfcount': (this.powerSongAlbum == 
null) ? 0 : 1, 'distancekm_cfmax': isNaN(this.distancekm) 
? null : this.distancekm, 'distancekm_cfmin': 
isNaN(this.distancekm) ? null : this.distancekm } ); }, 
reduce: function (key,vals) { var ret = { 
'distancekm_cfmax': null, 'distancekm_cfsum': null, 
'distancekm_cfmin': null, 'distancekm_cfnum': 0, 
'powerSongAlbum_cfcount': 0, '_cfcount': 0 }; for(var i = 
0; i < vals.length; i++) { var v = vals[i]; 
ret['distancekm_cfnum'] += v['distancekm_cfnum']; 
if(!isNaN(v['distancekm_cfmax'])) 
ret['distancekm_cfmax'] = (ret['distancekm_cfmax'] == 
null) ? v['distancekm_cfmax'] : (ret['distancekm_cfmax'] 
> v['distancekm_cfmax']) ? ret['distancekm_cfmax'] : 
v['distancekm_cfmax']; ret['_cfcount'] += v['_cfcount']; 
if(!isNaN(v['distancekm_cfmin'])) ret['distancekm_cfmin'] 
= (ret['distancekm_cfmin'] == null) ? 
v['distancekm_cfmin'] : (v['distancekm_cfmin'] > 
ret['distancekm_cfmin']) ? ret['distancekm_cfmin'] : 
v['distancekm_cfmin']; ret['powerSongAlbum_cfcount'] 
+= v['powerSongAlbum_cfcount']; 
if(!isNaN(v['distancekm_cfsum'])) 
ret['distancekm_cfsum'] = v['distancekm_cfsum'] + 
(ret['distancekm_cfsum'] == null ? 0 : 
ret['distancekm_cfsum']); } return ret; }, finalize: function 
(key,val) { return { 'totalkm' : val['distancekm_cfsum'], 
'workouts' : val['_cfcount'], 'songcount' : 
val['powerSongAlbum_cfcount'], 'avgkm' : 
(isNaN(val['distancekm_cfnum']) || 
isNaN(val['distancekm_cfsum'])) ? null : 
val['distancekm_cfsum'] / val['distancekm_cfnum'], 
'maxkm' : val['distancekm_cfmax'], 'minkm' : 
val['distancekm_cfmin'] }; }, out: "s2mr", verbose: true }); 

http://rickosborne.org/blog/2010/02/yes-virginia-thats-automated-sql-to-mongodb-mapreduce/ 

Database gurus have spoken out against 
MapReduce  
   Dave DeWitt, Michael Stonebraker 
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MapReduce Summary  
• MapReduce = programming model that hides details of 

parallelization, fault tolerance, locality optimization, and load 
balancing 

• Simple model, but fits many common problems 
• Implementation on cluster scales to 1000s of machines and more 

• Open source implementation, Hadoop, is available 
• Parallel DBMS, SQL are more powerful than MapReduce and 

similarly allow automatic parallelization of “sequential code” 
• Never really achieved mainstream acceptance or broad open-source 

support like Hadoop 
• Recent trend: simplify coding in MapReduce by using DBMS ideas 

• (Variants of) relational operators and BI being  implemented on top 
of Hadoop 21 



HyperDex 
Adapted from  
Hyperdex a Distributed, Searchable Key-value Store  
Robert Escriva, Bernard Wong, Emin Gun Sirer 
ACM SIGCOMM Conference, August 14, 2012   
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CAP Review 
• Strong Consistency : all clients see the same view,  even in the 

presence of updates 
• High Availability : all clients can find some replica of  the data, 

even in the presence of failures 
• Partition-tolerance: the system properties hold even when the 

system is partitioned or not fully operational 
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Typical NoSQL architecture 
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Hashing function  
maps each key to a 
server (node) 

 

K  



The search problem: No Hash 
key 
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Locating a record 
without the hash key 
requires searching 
multiple servers 

 



The Fault tolerance problem 
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Many NOSQL system’s 
default settings 
consider a write 
complete after writing 
to just  1 node 

 



The consistency problem 
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Clients may read 
inconsistent data 
and writes may be 
lost 

 



HyperDex Key Points  
• Maps records to a Hypercube Space  

• object’s key  are stored in a dedicated one-dimensional subspace 
for efficient lookup 

• only need to contact the servers which match the regions of the 
hyperspace assigned for the search attributes 

• Value-dependent chaining 
• Keeps replicas consistent without heavy overhead from 

coordination of servers 
• Uses the hypercube space  

• Appoints a point leader that contains the most recent update of a 
record  

• Other replicas are updated from the point leader  
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Attributes map to dimensions in a 
multidimensional hyperspace   
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Attributes values are hashed 
independently 
Any hash function may be used  
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Objects reside at the coordinate 
specified by the hashes 
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Different objects reside at different 
coordinates 
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The hyperspace is divided into regions 
Each object resides in exactly one region  
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Each server is responsible for a 
region of the hyperspace  
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Each search intersects a subset of 
regions in the hyperspace 
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Example: All people name Neil 
mapped to the yellow plane 
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All people named Armstrong map 
to the grey plane  
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A more restrictive search for Neil 
Armstrong contacts fewer servers 
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Range searches are natively 
supported 
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Space Partitioning: Subspaces  
• The hyperspace would grow exponentially in the number of 

dimensions 
• Space partitioning prevents exponential growth in the number 

of searchable attributes 
 
 
 

• A search is performed in the most restrictive subspace  
 

k a1 a2 a3 a4 … aD-3 aD-2 aD-1 aD 
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Hyperspace Hashing Index  
• Searches are efficient  
• Hyperspace hashing is a mapping not an index 

• No per-object updates to a shared data structure  
• No overhead for building and maintaining B-trees 
• Functionality gained solely through careful placement 
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Update a record: Value dependent 
chaining • A put involves one node 

from each subspace 
• Servers are replicated in 

each region to hold 
replicas of the data 
providing fault 
tolerance  

• Updates propagate 
from a ‘point leader’ 
that contains the most 
recent update of a 
record – proceed to the 
tail (last dimension) 

Since the values of the fields 
determine where in the 
hypercube the record is stored  

Must update the record  in 
an ordered method – since 
it may involve a move of the 
data 
 
Commits start at the tail 
and move to the head  
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Hyperdex features 
• Consistent: linearizable; GET requests will always return the 

latest PUT. 
• High Availability: the system will stay up in the presence of ≤ f 

failures. 
• Partition-Tolerant: for partitions with ≤ f nodes, you can be 

certain your system is still operational. 
• Horizontally Scalable: you can grow your system by adding 

additional servers. 
• Performance: high throughput and low variance. 
• Searchable: it provides an expressive API for searching your 

data. 
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Summary: HyperDex 
• Hyperspace hashing 
• Value-dependent chaining 
•  High-Performance: High throughput with low variance 
•  Strong Consistency: Strong safety guarantees 
• Fault Tolerance: Tolerates a threshold of failures 
• Scalable: Adding resources increases performance 
• Rich API: Support for complex data structures and search 
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