
MapReduce &
HyperDex
Kathleen Durant PhD

Lecture 21 CS 3200

Northeastern University

1

Distributing Processing Mantra

• Scale “out,” not “up.”

• Assume failures are common.

• Move processing to the data.

• Process data sequentially and avoid random access.

• Hide system-level details from the application developer.

• Incorporate seamless scalability.

2

Drivers to MapReduce

• Our ability to store data is fast overwhelming our ability to
process what we store

• So you can write it you just can’t use it for any calculations

• Increases in capacity are outpacing improvements in
bandwidth

• So you can write it you just can’t read it back in a reasonable time

3

Introduction to Parallelization

• Writing algorithms for a cluster

• On the order of 10,000 or more machines

• Failure or crash is not an exception, but common phenomenon

• Parallelize computation

• Distribute data

• Balance load

• Makes implementation of conceptually straightforward
computations challenging

4

MapReduce

• Wanted: A model to express computation while hiding the
messy details of the execution

• Inspired by map and reduce primitives in functional
programming

• Apply map to each input record to create a set of intermediate
key-value pairs

• Apply reduce to all values that share the same key (like GROUP
BY)

• Automatically parallelized

• Re-execution as primary mechanism for fault tolerance

5

What is MapReduce?

• Programming model for expressing distributed computations
on massive amounts of data

AND

• An execution framework for large-scale data processing on
clusters of commodity servers

6

Typical MapReduce
Application
MAP

• Iterate over a large number of records

• Extract something of interest from each

• Shuffle and sort intermediate results

REDUCE

• Aggregate intermediate results

• Generate final outcome
7

Programming Model

• Transforms set of input key-value pairs to set of output key-
value pairs

• Map function written by user

• Map: (k1, v1) list (k2, v2)

• MapReduce library groups all intermediate pairs with same key
together

• Reduce written by user

• Reduce: (k2, list (v2)) list (v2)

• Usually zero or one output value per group

• Intermediate values supplied via iterator (to handle lists that do
not fit in memory)

8

Execution Framework

• Handles scheduling of the tasks

• Assigns workers to maps and reduce tasks

• Handles data distribution

• Moves the process to the data

• Handles synchronization

• Gathers, sorts and shuffles intermediate data

• Handles faults

• Detects worker failures and restarts

• Understands the distributed file system

9

EXAMPLE: Count occurrences of each
word in a document collection

Map(String key,

String value):

// key: document name

// value: document
contents

for each word w in value:

EmitIntermediate(w, "1“);

Reduce(String key,

Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));
10

Distributing work to nodes

• Focuses on large clusters

• Relies on existence of reliable and highly available distributed file
system

• Map invocations

• Automatically partition input data into M chunks (16-64 MB
typically)

• Chunks processed in parallel

• Reduce invocations

• Partition intermediate key space into R pieces, e.g., using
hash(key) mod R

• Master node controls program execution

11

Dealing with failing nodes

• Master monitors tasks on mappers and reducers: idle, in
progress, completed

• Worker failure (common)

• Master pings workers periodically

• No response => assumes worker failed

• Resets worker’s map tasks, completed or in progress, to idle state
(tasks now available for scheduling on other workers)

• Completed tasks only on local disk, hence inaccessible

• Same for reducer’s in-progress tasks

• Completed tasks stored in global file system, hence accessible

• Reducers notified about change of mapper assignment

• Master failure (unlikely)

• Checkpointing or simply abort computation 12

Other considerations

• Conserve network bandwidth (“Locality optimization”)

• Distributed file system assigns data chunks to local disks

• Schedule map task on machine that already has a copy of the chunk,
or one “nearby”

• Choose M and R much larger than number of worker machines

• Load balancing and faster recovery (many small tasks from failed
machine)

• Limitation: O(M+R) scheduling decisions and O(M*R) in-memory
state at master

• Common choice: M so that chunk size is 16-64 MB, R a small multiple
of number of workers

• Backup tasks to deal with machines that take unusually long for last
few tasks

• For in-progress tasks when MapReduce near completion
13

MapReduce

• Execution flow

14

Master

Input Files
Output

Map workers

Reduce workers

M

M

M

R

R

Input files sent to
map tasks

Intermediate keys
partitioned into
reduce tasks

Map

• Interface

• Input: <in_key, in_value> pair => <url, content>

• Output: list of intermediate <key, value> pairs
=> list of <word, url>

15

key = http://url0.com
value = “every happy family is
alike.”

<every, http://url0.com>
<happy, http://url0.com>
<family, http://url0.com>
…

map()

Map Input: <url, content>

<every, http://url1.com>
<unhappy, http://url1.com>
<family, http://url1.com>
…

key = http://url1.com
value = “every unhappy family
is unhappy in its own way.”

Map Output: list of <word, url>

http://url0.com
http://url0.com
http://url0.com
http://url0.com
http://url1.com
http://url1.com
http://url1.com
http://url1.com

Shuffle

• MapReduce system

• Collects outputs from all map executions

• Groups all intermediate values by the same key

16

every -> http://url0.com
http://url1.com

<every, http://url0.com>
<happy, http://url0.com>
<family, http://url0.com>
…

<every, http://url1.com>
<unhappy, http://url1.com>
<family, http://url1.com>
…

Map Output: list of <word, url> Reduce Input: <word, list of urls>

happy -> http://url0.com

unhappy ->
http://url1.com

family -> http://url0.com
http://url1.com

http://url0.com
http://url1.com
http://url0.com
http://url0.com
http://url0.com
http://url1.com
http://url1.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com

Reduce

• Interface

• Input: <out_key, list of intermediate_value>

• Output: <out_key, out_value>

17

every -> http://url0.com
http://url1.com

Reduce Input: <word, list of urls>

happy -> http://url0.com

unhappy ->
http://url1.com

family -> http://url0.com
http://url1.com

<every, “http://url0.com,
http://url1.com”>

<happy,
“http://url0.com”>

<unhappy,
“http://url1.com”>

<family, “http://url0.com,
http://url1.com”

>

Reduce Output: <word, string of urls>

reduce()

http://url0.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com

Parallel Database

• SQL specifies what to compute, not how to do it

• Perfect for parallel and distributed implementation

• “Just” need an optimizer that can choose best plan in given
parallel/distributed system

• Cost estimate includes disk, CPU, and network cost

• Recent benchmarks show parallel DBMS can significantly
outperform MapReduce

• But many programmers prefer writing Map and Reduce in familiar
PL (C++, Java)

• Recent trend: High-level PL for writing MapReduce programs
with DBMS-inspired operators

18

19

My SQL vs.
MongoDB

SELECT ‘goalType’,
SUM(distancekm) as ‘totalkm’,
COUNT(*) AS ‘workouts’,
count(powerSOngAlbum) as “soungcount ’,
avg(distancekm) as ‘avgkm’, max(distancekm) as
maxkm,
Min(distancekm) as minkm from workouts group
by goaltype;

db.runCommand({ mapreduce: "workouts", map:
function () { emit(this.goalType, { '_cfcount': 1,
'distancekm_cfsum': isNaN(this.distancekm) ? null :
this.distancekm, 'distancekm_cfnum':
isNaN(this.distancekm) ? 0 : 1,
'powerSongAlbum_cfcount': (this.powerSongAlbum ==
null) ? 0 : 1, 'distancekm_cfmax': isNaN(this.distancekm)
? null : this.distancekm, 'distancekm_cfmin':
isNaN(this.distancekm) ? null : this.distancekm }); },
reduce: function (key,vals) { var ret = {
'distancekm_cfmax': null, 'distancekm_cfsum': null,
'distancekm_cfmin': null, 'distancekm_cfnum': 0,
'powerSongAlbum_cfcount': 0, '_cfcount': 0 }; for(var i =
0; i < vals.length; i++) { var v = vals[i];
ret['distancekm_cfnum'] += v['distancekm_cfnum'];
if(!isNaN(v['distancekm_cfmax']))
ret['distancekm_cfmax'] = (ret['distancekm_cfmax'] ==
null) ? v['distancekm_cfmax'] : (ret['distancekm_cfmax']
> v['distancekm_cfmax']) ? ret['distancekm_cfmax'] :
v['distancekm_cfmax']; ret['_cfcount'] += v['_cfcount'];
if(!isNaN(v['distancekm_cfmin'])) ret['distancekm_cfmin']
= (ret['distancekm_cfmin'] == null) ?
v['distancekm_cfmin'] : (v['distancekm_cfmin'] >
ret['distancekm_cfmin']) ? ret['distancekm_cfmin'] :
v['distancekm_cfmin']; ret['powerSongAlbum_cfcount']
+= v['powerSongAlbum_cfcount'];
if(!isNaN(v['distancekm_cfsum']))
ret['distancekm_cfsum'] = v['distancekm_cfsum'] +
(ret['distancekm_cfsum'] == null ? 0 :
ret['distancekm_cfsum']); } return ret; }, finalize: function
(key,val) { return { 'totalkm' : val['distancekm_cfsum'],
'workouts' : val['_cfcount'], 'songcount' :
val['powerSongAlbum_cfcount'], 'avgkm' :
(isNaN(val['distancekm_cfnum']) ||
isNaN(val['distancekm_cfsum'])) ? null :
val['distancekm_cfsum'] / val['distancekm_cfnum'],
'maxkm' : val['distancekm_cfmax'], 'minkm' :
val['distancekm_cfmin'] }; }, out: "s2mr", verbose: true });

http://rickosborne.org/blog/2010/02/yes-virginia-thats-automated-sql-to-mongodb-mapreduce/

Database gurus have spoken out against
MapReduce

Dave DeWitt, Michael Stonebraker

20

MapReduce Summary

• MapReduce = programming model that hides details of
parallelization, fault tolerance, locality optimization, and load
balancing

• Simple model, but fits many common problems

• Implementation on cluster scales to 1000s of machines and more

• Open source implementation, Hadoop, is available

• Parallel DBMS, SQL are more powerful than MapReduce and
similarly allow automatic parallelization of “sequential code”

• Never really achieved mainstream acceptance or broad open-source
support like Hadoop

• Recent trend: simplify coding in MapReduce by using DBMS ideas

• (Variants of) relational operators and BI being implemented on top
of Hadoop 21

