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Distributing Processing Mantra

• Scale “out,” not “up.”

• Assume failures are common.

• Move processing to the data.

• Process data sequentially and avoid random access.

• Hide system-level details from the application developer.

• Incorporate seamless scalability.
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Drivers to MapReduce

• Our ability to store data is fast overwhelming our ability to 
process what we store

• So you can write it you just can’t use it for any calculations 

• Increases in capacity are outpacing improvements in 
bandwidth

• So you can write it you just can’t read it back in a reasonable time  
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Introduction to Parallelization

• Writing algorithms for a cluster

• On the order of 10,000 or more machines

• Failure or crash is not an exception, but common phenomenon

• Parallelize computation

• Distribute data

• Balance load

• Makes implementation of conceptually straightforward 
computations challenging
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MapReduce

• Wanted: A model to express computation while hiding the 
messy details of the execution 

• Inspired by map and reduce primitives in functional 
programming

• Apply map to each input record to create a set of intermediate 
key-value pairs

• Apply reduce to all values that share the same key (like GROUP 
BY)

• Automatically parallelized

• Re-execution as primary mechanism for fault tolerance
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What is MapReduce?

• Programming model for expressing distributed computations 
on massive amounts of data 

AND 

• An execution framework for large-scale data processing on 
clusters of commodity servers
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Typical MapReduce
Application 
MAP

• Iterate over a large number of records

• Extract something of interest from each

• Shuffle and sort intermediate results

REDUCE

• Aggregate intermediate results

• Generate final outcome 
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Programming Model

• Transforms set of input key-value pairs to set of output key-
value pairs

• Map function written by user

• Map: (k1, v1)  list (k2, v2)

• MapReduce library groups all intermediate pairs with same key 
together

• Reduce written by user

• Reduce: (k2, list (v2))  list (v2)

• Usually zero or one output value per group

• Intermediate values supplied via iterator (to handle lists that do 
not fit in memory)
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Execution Framework

• Handles scheduling of the tasks

• Assigns workers to maps and reduce tasks

• Handles data distribution

• Moves the process to the data 

• Handles synchronization

• Gathers, sorts and shuffles intermediate data

• Handles faults

• Detects worker failures and restarts 

• Understands the  distributed file system 

9



EXAMPLE: Count occurrences of each 
word in a document collection

Map( String key, 

String value ):

// key: document name

// value: document 
contents

for each word w in value:

EmitIntermediate( w, "1“ );

Reduce( String key, 

Iterator values ):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt( v );

Emit( AsString(result) );
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Distributing work to nodes 

• Focuses on large clusters

• Relies on existence of reliable and highly available distributed file 
system

• Map invocations

• Automatically partition input data into M chunks (16-64 MB 
typically)

• Chunks processed in parallel

• Reduce invocations

• Partition intermediate key space into R pieces, e.g., using 
hash(key) mod R

• Master node controls program execution
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Dealing with failing nodes 

• Master monitors tasks on mappers and reducers: idle, in 
progress, completed

• Worker failure (common)

• Master pings workers periodically

• No response => assumes worker failed

• Resets worker’s map tasks, completed or in progress, to idle state 
(tasks now available for scheduling on other workers)

• Completed tasks only on local disk, hence inaccessible

• Same for reducer’s in-progress tasks

• Completed tasks stored in global file system, hence accessible

• Reducers notified about change of mapper assignment

• Master failure (unlikely)

• Checkpointing or simply abort computation 12



Other considerations 

• Conserve network bandwidth (“Locality optimization”)

• Distributed file system assigns data chunks to local disks

• Schedule map task on machine that already has a copy of the chunk, 
or one “nearby”

• Choose M and R much larger than number of worker machines

• Load balancing and faster recovery (many small tasks from failed 
machine)

• Limitation: O(M+R) scheduling decisions and O(M*R) in-memory 
state at master

• Common choice: M so that chunk size is 16-64 MB, R a small multiple 
of number of workers

• Backup tasks to deal with machines that take unusually long for last 
few tasks

• For in-progress tasks when MapReduce near completion
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MapReduce

• Execution flow
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Map

• Interface

• Input: <in_key, in_value> pair => <url, content>

• Output: list of intermediate <key, value> pairs 
=> list of <word, url>
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key = http://url0.com
value = “every happy family is 
alike.”

<every, http://url0.com>
<happy, http://url0.com>
<family, http://url0.com>
…

map()

Map Input: <url, content>

<every, http://url1.com>
<unhappy, http://url1.com>
<family, http://url1.com>
…

key = http://url1.com
value = “every unhappy family 
is unhappy in its own way.”

Map Output: list of <word, url>

http://url0.com
http://url0.com
http://url0.com
http://url0.com
http://url1.com
http://url1.com
http://url1.com
http://url1.com


Shuffle

• MapReduce system

• Collects outputs from all map executions

• Groups all intermediate values by the same key
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every -> http://url0.com
http://url1.com

<every, http://url0.com>
<happy, http://url0.com>
<family, http://url0.com>
…

<every, http://url1.com>
<unhappy, http://url1.com>
<family, http://url1.com>
…

Map Output: list of <word, url> Reduce Input: <word, list of urls>

happy -> http://url0.com

unhappy -> 
http://url1.com

family -> http://url0.com
http://url1.com

http://url0.com
http://url1.com
http://url0.com
http://url0.com
http://url0.com
http://url1.com
http://url1.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com


Reduce

• Interface

• Input: <out_key, list of intermediate_value>

• Output: <out_key, out_value>
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every -> http://url0.com
http://url1.com

Reduce Input: <word, list of urls>

happy -> http://url0.com

unhappy -> 
http://url1.com

family -> http://url0.com
http://url1.com

<every, “http://url0.com,
http://url1.com”>

<happy, 
“http://url0.com”>

<unhappy, 
“http://url1.com”>

<family, “http://url0.com,
http://url1.com”

>

Reduce Output: <word, string of urls>

reduce()

http://url0.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com


Parallel Database 

• SQL specifies what to compute, not how to do it

• Perfect for parallel and distributed implementation

• “Just” need an optimizer that can choose best plan in given 
parallel/distributed system

• Cost estimate includes disk, CPU, and network cost

• Recent benchmarks show parallel DBMS can significantly 
outperform MapReduce

• But many programmers prefer writing Map and Reduce in familiar 
PL (C++, Java)

• Recent trend: High-level PL for writing MapReduce programs 
with DBMS-inspired operators
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My SQL vs.
MongoDB

SELECT ‘goalType’,
SUM(distancekm) as ‘totalkm’,
COUNT(*) AS ‘workouts’,
count(powerSOngAlbum) as “soungcount ’, 
avg(distancekm) as ‘avgkm’, max(distancekm) as 
maxkm,
Min(distancekm) as minkm from workouts group 
by goaltype;

db.runCommand({ mapreduce: "workouts", map: 
function () { emit( this.goalType, { '_cfcount': 1, 
'distancekm_cfsum': isNaN(this.distancekm) ? null : 
this.distancekm, 'distancekm_cfnum': 
isNaN(this.distancekm) ? 0 : 1, 
'powerSongAlbum_cfcount': (this.powerSongAlbum == 
null) ? 0 : 1, 'distancekm_cfmax': isNaN(this.distancekm) 
? null : this.distancekm, 'distancekm_cfmin': 
isNaN(this.distancekm) ? null : this.distancekm } ); }, 
reduce: function (key,vals) { var ret = { 
'distancekm_cfmax': null, 'distancekm_cfsum': null, 
'distancekm_cfmin': null, 'distancekm_cfnum': 0, 
'powerSongAlbum_cfcount': 0, '_cfcount': 0 }; for(var i = 
0; i < vals.length; i++) { var v = vals[i]; 
ret['distancekm_cfnum'] += v['distancekm_cfnum']; 
if(!isNaN(v['distancekm_cfmax'])) 
ret['distancekm_cfmax'] = (ret['distancekm_cfmax'] == 
null) ? v['distancekm_cfmax'] : (ret['distancekm_cfmax'] 
> v['distancekm_cfmax']) ? ret['distancekm_cfmax'] : 
v['distancekm_cfmax']; ret['_cfcount'] += v['_cfcount']; 
if(!isNaN(v['distancekm_cfmin'])) ret['distancekm_cfmin'] 
= (ret['distancekm_cfmin'] == null) ? 
v['distancekm_cfmin'] : (v['distancekm_cfmin'] > 
ret['distancekm_cfmin']) ? ret['distancekm_cfmin'] : 
v['distancekm_cfmin']; ret['powerSongAlbum_cfcount'] 
+= v['powerSongAlbum_cfcount']; 
if(!isNaN(v['distancekm_cfsum'])) 
ret['distancekm_cfsum'] = v['distancekm_cfsum'] + 
(ret['distancekm_cfsum'] == null ? 0 : 
ret['distancekm_cfsum']); } return ret; }, finalize: function 
(key,val) { return { 'totalkm' : val['distancekm_cfsum'], 
'workouts' : val['_cfcount'], 'songcount' : 
val['powerSongAlbum_cfcount'], 'avgkm' : 
(isNaN(val['distancekm_cfnum']) || 
isNaN(val['distancekm_cfsum'])) ? null : 
val['distancekm_cfsum'] / val['distancekm_cfnum'], 
'maxkm' : val['distancekm_cfmax'], 'minkm' : 
val['distancekm_cfmin'] }; }, out: "s2mr", verbose: true });

http://rickosborne.org/blog/2010/02/yes-virginia-thats-automated-sql-to-mongodb-mapreduce/

Database gurus have spoken out against
MapReduce

Dave DeWitt, Michael Stonebraker
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MapReduce Summary 

• MapReduce = programming model that hides details of 
parallelization, fault tolerance, locality optimization, and load 
balancing

• Simple model, but fits many common problems

• Implementation on cluster scales to 1000s of machines and more

• Open source implementation, Hadoop, is available

• Parallel DBMS, SQL are more powerful than MapReduce and 
similarly allow automatic parallelization of “sequential code”

• Never really achieved mainstream acceptance or broad open-source 
support like Hadoop

• Recent trend: simplify coding in MapReduce by using DBMS ideas

• (Variants of) relational operators and BI being  implemented on top 
of Hadoop 21


