MapReduce &
HyperDex

Kathleen Durant PhD
Lecture 21 CS 3200
Northeastern University

Distributing Processing Mantra

Scale “out,” not “up.”

* Assume failures are common.

* Move processing to the data.

* Process data sequentially and avoid random access.

* Hide system-level details from the application developer.
* Incorporate seamless scalability.

Drivers to MapReduce

* Our ability to store data is fast overwhelming our ability to
process what we store

So you can write it you just can’t use it for any calculations

* Increases in capacity are outpacing improvements in
bandwidth

So you can write it you just can’t read it back in a reasonable time

Introduction to Parallelization

* Writing algorithms for a cluster
On the order of 10,000 or more machines
Failure or crash is not an exception, but common phenomenon
Parallelize computation
Distribute data
Balance load

* Makes implementation of conceptually straightforward
computations challenging

MapReduce

Wanted: A model to express computation while hiding the
messy details of the execution

Inspired by map and reduce primitives in functional
programming

Apply map to each input record to create a set of intermediate
key-value pairs

Apply reduce to all values that share the same key (like GROUP
BY)

Automatically parallelized

Re-execution as primary mechanism for fault tolerance

What is MapReduce?

* Programming model for expressing distributed computations
on massive amounts of data
AND

* An execution framework for large-scale data processing on
clusters of commodity servers

Typical MapReduce
Application

MAP
* lterate over a large number of records
* Extract something of interest from each
» Shuffle and sort intermediate results

REDUCE
* Aggregate intermediate results
* Generate final outcome

Programming Model

* Transforms set of input key-value pairs to set of output key-
value pairs
Map function written by user
Map: (k1,v1l) =2 list (k2, v2)

MapReduce library groups all intermediate pairs with same key
together

* Reduce written by user
Reduce: (k2, list (v2)) =2 list (v2)
Usually zero or one output value per group

Intermediate values supplied via iterator (to handle lists that do
not fit in memory)

)

Execution Framework

* Handles scheduling of the tasks

Assigns workers to maps and reduce tasks
Handles data distribution

Moves the process to the data
Handles synchronization

Gathers, sorts and shuffles intermediate data
Handles faults

Detects worker failures and restarts

Understands the distributed file system

EXAMPLE: Count occurrences of each
word in a document collection

Map(String key,
String value):
// key: document name

// values: a list of counts

// value: document

contents Int resu
for each word w in value: for eac
resu

Emitintermediate(w, "1“);

Emit(AsString(result));

Reduce(String key,

// key: a word

lterator values):

t =0;

n Vv in values:

t += Parselnt(v);

(1]

Distributing work to nodes

Focuses on large clusters

Relies on existence of reliable and highly available distributed file
system

Map invocations
Automatically partition input data into M chunks (16-64 MB
typically)
Chunks processed in parallel

Reduce invocations

Partition intermediate key space into R pieces, e.g., using
hash(key) mod R

Master node controls program execution

Dealing with failing nodes

* Master monitors tasks on mappers and reducers: idle, in
progress, completed

* Worker failure (common)
Master pings workers periodically

No response => assumes worker failed

Resets worker’s map tasks, completed or in progress, to idle state
(tasks now available for scheduling on other workers)

* Completed tasks only on local disk, hence inaccessible

Same for reducer’s in-progress tasks
* Completed tasks stored in global file system, hence accessible

Reducers notified about change of mapper assignment

* Master failure (unlikely)
Checkpointing or simply abort computation

Other considerations

* Conserve network bandwidth (“Locality optimization”)
Distributed file system assigns data chunks to local disks
Schedule map task on machine that already has a copy of the chunk,
or one “nearby”

* Choose M and R much larger than number of worker machines
Load balancing and faster recovery (many small tasks from failed
machine)

Limitation: O(M+R) scheduling decisions and O(M*R) in-memory
state at master

Common choice: M so that chunk size is 16-64 MB, R a small multiple
of number of workers

* Backup tasks to deal with machines that take unusually long for last

few tasks
For in-progress tasks when MapReduce near completion

MapReduce

* Execution flow
Master

N

s |
o
e I
S

N o /
/
- ‘Ev
Input Files Output
Reduce workers

Map workers

Map

A
s ;l.xY,w'z-

P o A 201N
7;?,\@;&57;5,‘%.;\\;\,,\\ TN
WL\ PNEZ

% /b G

* Interface

Input: <in_key, in_value> pair => <url, content>

Output: list of intermediate <key, value> pairs
=> list of <word, url>

<every, http://url0.com>
<happy, http://url0.com>
<family, http://url0.com>

key = http://url0.com
value = “every happy family is
alike.”

<every, http://urll.com>
<unhappy, http://urll.com>
<family, http://urll.com>

key = http://urll.com
value = “every unhappy family
isunhappyin its own way.”

Map Input: <url, content> Map Output: list of <word, url>

http://url0.com
http://url0.com
http://url0.com
http://url0.com
http://url1.com
http://url1.com
http://url1.com
http://url1.com

Shuffle 4@fl |

* MapReduce system
Collects outputs from all map executions
Groups all intermediate values by the same key

<every, http://url0.com> every -> http://url0.com
<happy, http://url0.com> http://urll.com
<family, http://url0.com>

happy -> http://url0.com

<every, http://urll.com> unhappy ->
<unhappy, http://urll.com> http://urll.com
<family, http://urll.com>

family -> http://url0.com
http://urll.com

Map Output: list of <word, url> Reduce Input: <word, list of urls>

http://url0.com
http://url1.com
http://url0.com
http://url0.com
http://url0.com
http://url1.com
http://url1.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com

Reduce " A .ﬂ

* Interface

Input: <out_key, list of intermediate_value>
Output: <out_key, out_value>

every -> http://url0.com <every, “http://url0.com,
http://urll.com | http://urll.com”>
| o <happy,
happy -> http://url0.com “http://url0.com”s
unhappy -> <unhappy,
http://urll.com “http://urll.com”>
<family, “http://url0.com,

family -> http://url0.com
http://urll.com

http: 11. ”
p://urll.com [> J

>

Reduce Input: <word, list of urls> Reduce Output: <word, string of urls>

http://url0.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com
http://url0.com
http://url1.com

Parallel Database

* SQL specifies what to compute, not how to do it

Perfect for parallel and distributed implementation

“Just” need an optimizer that can choose best plan in given
parallel/distributed system

Cost estimate includes disk, CPU, and network cost

* Recent benchmarks show parallel DBMS can significantly
outperform MapReduce
But many programmers prefer writing Map and Reduce in familiar
PL (C++, Java)
* Recent trend: High-level PL for writing MapReduce programs
with DBMS-inspired operators

mySQL

SELECT db . runCommand({
Diml, Dim2, ——(D mapreduce: "DenormAggCollection”,
SUM(Measurel) AS MSum, : query: {
COUNT(%) AS RecordCount, (filter1: { '$in': ['A', 'B'] },

MongoDB

(Y

#

WHEN Measure2 < 100 map: function() { emit(
THEN Measure? { d1: this.Diml, d2: this.Dim2 },

ENDY AS MMax { msum: this.measurel, recs: 1, mmin: this.measurel,
FROM DenormAggTable mmax: this.measure2 < 108 7 this.measure2 : 0 }
WHERE (Filter1 IN (’A’,’B’))

AND (Filter2 = ‘C")

AND (Filter3 > 123)

%

AVG(Measure2) AS MAvg, filter2: 'C’,
MIN(Measurel) AS MMin filter3: { '$gt': 123 }
MAX(CASE 1,

[¥

D), ¥ :
— reduce: function(key, vals) {
var ret = { msum: @, recs: @, mmin: @, mmax: @ };

E

GROUP BY Diml, Dim2 [auil for{var i = @; i < vals.length; i++) {

HAVING (MMin > @) ret.msum += vals[i].msum;
ORDER BY RecordCount DESC :::;\\\ ret.recs += vals[i].recs;

LIMIT 4, 8 if(vals[i].mmin < ret.mmin) ret.mmin = vals[i].mmin;
\\ if((vals[i].mmax < 108) && (vals[i].mmax > ret.mmax))
ret.mmax = vals[i].mmax;
}
@ Grouped dimension columns are pulled return mlet ;

out as keys in the map function, 1, .
reducing the size of the werking set. (6) \ finalize: function(key, val) {
Ga val.mavg = val.msum / val.recs;

@ Measures must be manually aggregated.
return val;

}s

out: ‘'resultl’,
verhose: true
ilters have an ORM/ActiveRecord

looking style. i

@ . filteri b lied \ db.resultl.-----
regate filtering must be applied to o e 7 P
the result set, not in the map/reduce. \ find({ mmin: { "$gt': @ } }).)

@ Aggregates depending on record counts
must wait until finalization.

@ Measures can use procedural logic.

sort({ recs: -1 }).
skip(4).
limit(8);

@ Ascending |; Descending: - |

——

My SQL vs.
MongoDB

SELECT ‘goalType’,
SUM(distancekm) as ‘totalkm’,
COUNT(*) AS ‘workouts’,

count(powerSOngAlbum) as “soungcount’,
avg(distancekm) as ‘avgkm’, max(distancekm) as
maxkm,

Min(distancekm) as minkm from workouts group
by goaltype;

Database gurus have spoken out against
MapReduce
Dave DeWitt, Michael Stonebraker

http://rickosborne.org/blog/2010/02/yes-virginia-thats-automated-sql-to-mongodb-map

db.runCommand({ mapreduce: "workouts", map:
function () { emit(this.goalType, {' cfcount": 1,
'distancekm_cfsum': isNaN(this.distancekm) ? null :
this.distancekm, 'distancekm_cfnum':
isNaN(this.distancekm) ?0:1,
‘powerSongAlbum_cfcount': (this.powerSongAlbum ==
null) ?0: 1, 'distancekm_cfmax': isNaN(this.distancekm
? null : this.distancekm, 'distancekm_cfmin':
isNaN(this.distancekm) ? null : this.distancekm }); },
reduce: function (key,vals) { var ret = {
'distancekm_cfmax': null, 'distancekm_cfsum': null,
'distancekm_cfmin': null, 'distancekm_cfnum': 0,
'powerSongAlbum_cfcount': 0, ' cfcount': 0 }; for(var i
0; i < vals.length; i++) { var v = vals[i];
ret['distancekm_cfnum'] += v['distancekm_cfnum'];
if(!isNaN(v['distancekm_cfmax']))
ret['distancekm_cfmax'] = (ret['distancekm_cfmax'] ==
null) ? v['distancekm_cfmax'] : (ret['distancekm_cfmax']
> v['distancekm_cfmax']) ? ret['distancekm_cfmax'] :
v['distancekm_cfmax']; ret['_cfcount'] += v['_cfcount'];
if('isNaN(v['distancekm_cfmin'])) ret['distancekm_cfmi
= (ret['distancekm_cfmin'] == null) ?
v['distancekm_cfmin'] : (v['distancekm_cfmin'] >
ret['distancekm_cfmin']) ? ret['distancekm_cfmin'] :
v['distancekm_cfmin']; ret['powerSongAlbum_cfcount']
+= v['powerSongAlbum_cfcount'];
if('isNaN(v['distancekm_cfsum']))
ret['distancekm_cfsum'] = v['distancekm_cfsum'] +
(ret['distancekm_cfsum'] == null ? 0 :
ret['distancekm_cfsum']); } return ret; }, finalize: functid
(key,val) { return { 'totalkm' : val['distancekm_cfsum'],
'workouts' : val['_cfcount'], 'songcount' :
val['powerSongAlbum_cfcount'], 'avgkm':
(isNaN(val['distancekm_cfnum']) ||
isNaN(val['distancekm_cfsum'])) ? null :
val['distancekm_cfsum'] / val['distancekm_cfnum'],
'maxkm’ : val['distancekm_cfmax'], 'minkm":
val['distancekm_cfmin'] }; }, out: "s2mr", verbose: true

(]

MapReduce Summary

* MapReduce = programming model that hides details of
parallelization, fault tolerance, locality optimization, and load
balancing

* Simple model, but fits many common problems
* Implementation on cluster scales to 1000s of machines and more
Open source implementation, Hadoop, is available

* Parallel DBMS, SQL are more powerful than MapReduce and
similarly allow automatic parallelization of “sequential code”

Never really achieved mainstream acceptance or broad open-source
support like Hadoop

* Recent trend: simplify coding in MapReduce by using DBMS ideas

(Variants of) relational operators and Bl being implemented on top
of Hadoop

