
Introduction to
NoSQL and
MongoDB
Kathleen Durant

Lesson 20 CS 3200

Northeastern University

1

Outline for today

• Introduction to NoSQL

• Architecture

• Sharding

• Replica sets

• NoSQL Assumptions and the CAP Theorem

• Strengths and weaknesses of NoSQL

• MongoDB

• Functionality

• Examples

2

Taxonomy of NoSQL

• Key-value

• Graph database

• Document-oriented

• Column family
3

Typical NoSQL architecture

4

Hashing

function maps

each key to a

server (node)

K

CAP theorem for NoSQL

What the CAP theorem really says:
• If you cannot limit the number of faults and requests can be

directed to any server and you insist on serving every request you
receive then you cannot possibly be consistent

How it is interpreted:
• You must always give something up: consistency, availability or

tolerance to failure and reconfiguration

5

Eric Brewer 2001

Theory of NOSQL: CAP
GIVEN:
• Many nodes
• Nodes contain replicas of partitions

of the data

• Consistency
• All replicas contain the same version

of data
• Client always has the same view of

the data (no matter what node)

• Availability
• System remains operational on failing

nodes
• All clients can always read and write

• Partition tolerance
• multiple entry points
• System remains operational on

system split (communication
malfunction)

• System works well across physical
network partitions

6

CAP Theorem:

satisfying all three at the

same time is impossible

A P

C

7

http://blog.nahurst.com/visual-guide-to-nosql-systems

Consistent,

Available (CA)

Systems have

trouble with

partitions

and typically deal

with it with

replication

Available, Partition-

Tolerant (AP) Systems

achieve "eventual

consistency" through

replication and

verification

Consistent, Partition-Tolerant (CP)

Systems have trouble with availability

while keeping data consistent across

partitioned nodes

Sharding of data

• Distributes a single logical database system across a cluster of
machines

• Uses range-based partitioning to distribute documents based
on a specific shard key

• Automatically balances the data associated with each shard

• Can be turned on and off per collection (table)

8

Replica Sets
• Redundancy and Failover

• Zero downtime for
upgrades and
maintenance

• Master-slave replication

• Strong Consistency

• Delayed Consistency

• Geospatial features 9

Host1:10000

Host2:10001

Host3:10002

replica1

Client

How does NoSQL vary from
RDBMS?
• Looser schema definition

• Applications written to deal with specific documents/ data

• Applications aware of the schema definition as opposed to the data

• Designed to handle distributed, large databases

• Trade offs:

• No strong support for ad hoc queries but designed for speed and
growth of database

• Query language through the API

• Relaxation of the ACID properties

10

Benefits of NoSQL

Elastic Scaling
• RDBMS scale up – bigger

load , bigger server
• NO SQL scale out –

distribute data across
multiple hosts
seamlessly

DBA Specialists
• RDMS require highly

trained expert to
monitor DB

• NoSQL require less
management, automatic
repair and simpler data
models

Big Data
• Huge increase in data

RDMS: capacity and
constraints of data
volumes at its limits

• NoSQL designed for big
data

11

Benefits of NoSQL

Flexible data models
• Change management to

schema for RDMS have
to be carefully managed

• NoSQL databases more
relaxed in structure of
data

• Database schema
changes do not have to
be managed as one
complicated change unit

• Application already
written to address an
amorphous schema

Economics
• RDMS rely on expensive

proprietary servers to
manage data

• No SQL: clusters of
cheap commodity
servers to manage the
data and transaction
volumes

• Cost per gigabyte or
transaction/second for
NoSQL can be lower
than the cost for a
RDBMS 12

Drawbacks of NoSQL

• Support

• RDBMS vendors
provide a high level of
support to clients
• Stellar reputation

• NoSQL – are open
source projects with
startups supporting
them

• Reputation not yet
established

• Maturity

• RDMS mature
product: means stable
and dependable
• Also means old no

longer cutting edge nor
interesting

• NoSQL are still
implementing their
basic feature set

13

Drawbacks of NoSQL

• Administration
• RDMS administrator well

defined role
• No SQL’s goal: no

administrator necessary
however NO SQL still
requires effort to
maintain

• Lack of Expertise
• Whole workforce of

trained and seasoned
RDMS developers

• Still recruiting
developers to the NoSQL
camp

• Analytics and Business
Intelligence
• RDMS designed to

address this niche
• NoSQL designed to meet

the needs of an Web 2.0
application - not
designed for ad hoc
query of the data

• Tools are being
developed to address
this need

14

RDB ACID to NoSQL BASE

15

Pritchett, D.: BASE: An Acid Alternative (queue.acm.org/detail.cfm?id=1394128)

Atomicity

Consistency

Isolation

Durability

Basically

Available (CP)

Soft-state
(State of system may change

over time)

Eventually
consistent
(Asynchronous propagation)

First example:

16

What is MongoDB?
• Developed by 10gen

• Founded in 2007

• A document-oriented, NoSQL database
• Hash-based, schema-less database

• No Data Definition Language

• In practice, this means you can store hashes with any keys and values
that you choose
• Keys are a basic data type but in reality stored as strings

• Document Identifiers (_id) will be created for each document, field name
reserved by system

• Application tracks the schema and mapping

• Uses BSON format
• Based on JSON – B stands for Binary

• Written in C++

• Supports APIs (drivers) in many computer languages
• JavaScript, Python, Ruby, Perl, Java, Java Scala, C#, C++, Haskell,

Erlang

17

Functionality of MongoDB

• Dynamic schema

• No DDL

• Document-based database

• Secondary indexes

• Query language via an API

• Atomic writes and fully-consistent reads

• If system configured that way

• Master-slave replication with automated failover (replica sets)

• Built-in horizontal scaling via automated range-based
partitioning of data (sharding)

• No joins nor transactions
18

Why use MongoDB?

• Simple queries

• Functionality provided applicable to most web applications

• Easy and fast integration of data

• No ERD diagram

• Not well suited for heavy and complex transactions systems

19

MongoDB: CAP approach

Focus on Consistency
and Partition tolerance

• Consistency

• all replicas contain the same
version of the data

• Availability

• system remains operational on
failing nodes

• Partition tolarence

• multiple entry points

• system remains operational on
system split 20

CAP Theorem:

satisfying all three at the same time is

impossible

A P

C

MongoDB: Hierarchical Objects

• A MongoDB instance
may have zero or more
‘databases’

• A database may have
zero or more
‘collections’.

• A collection may have
zero or more
‘documents’.

• A document may have
one or more ‘fields’.

• MongoDB ‘Indexes’
function much like their
RDBMS counterparts. 21

0 or
more
Fields

0 or more

Documents

0 or more

Collections

0 or more Databases

RDB Concepts to NO SQL

22

RDBMS MongoDB

Database Database

Table, View Collection

Row Document (BSON)

Column Field

Index Index

Join Embedded Document

Foreign Key Reference

Partition Shard

Collection is not

strict about what it

Stores

Schema-less

Hierarchy is evident

in the design

Embedded

Document ?

MongoDB Processes and
configuration
• Mongod – Database instance

• Mongos - Sharding processes

• Analogous to a database router.

• Processes all requests

• Decides how many and which mongods should receive the query

• Mongos collates the results, and sends it back to the client.

• Mongo – an interactive shell (a client)

• Fully functional JavaScript environment for use with a MongoDB

• You can have one mongos for the whole system no matter
how many mongods you have

• OR you can have one local mongos for every client if you
wanted to minimize network latency. 23

Choices made for Design of
MongoDB
• Scale horizontally over commodity hardware

• Lots of relatively inexpensive servers

• Keep the functionality that works well in RDBMSs

– Ad hoc queries

– Fully featured indexes

– Secondary indexes

• What doesn’t distribute well in RDB?

– Long running multi-row transactions

– Joins

– Both artifacts of the relational data model (row x column)

24

BSON format

• Binary-encoded serialization of JSON-like documents

• Zero or more key/value pairs are stored as a single entity

• Each entry consists of a field name, a data type, and a value

• Large elements in a BSON document are prefixed with a
length field to facilitate scanning

25

• MongoDB does not need any pre-defined data schema

• Every document in a collection could have different data

• Addresses NULL data fields

Schema Free

name: “jeff”,
eyes: “blue”,
loc: [40.7, 73.4],
boss: “ben”}

{name: “brendan”,
aliases: [“el diablo”]}

name: “ben”,
hat: ”yes”}

{name: “matt”,
pizza: “DiGiorno”,
height: 72,
loc: [44.6, 71.3]}

{name: “will”,

eyes: “blue”,

birthplace: “NY”,

aliases: [“bill”, “la ciacco”],

loc: [32.7, 63.4],

boss: ”ben”}

• Data is in name / value pairs
• A name/value pair consists of a field name followed

by a colon, followed by a value:
• Example: “name”: “R2-D2”

• Data is separated by commas
• Example: “name”: “R2-D2”, race : “Droid”

• Curly braces hold objects
• Example: {“name”: “R2-D2”, race : “Droid”, affiliation:

“rebels”}

• An array is stored in brackets []
• Example [{“name”: “R2-D2”, race : “Droid”, affiliation:

“rebels”},
• {“name”: “Yoda”, affiliation: “rebels”}]

JSON format

MongoDB Features

• Document-Oriented storage

• Full Index Support

• Replication & High
Availability

• Auto-Sharding

• Querying

• Fast In-Place Updates

• Map/Reduce functionality

28

Agile

Scalable

Index Functionality
• B+ tree indexes

• An index is automatically created on the _id field (the primary
key)

• Users can create other indexes to improve query performance
or to enforce Unique values for a particular field

• Supports single field index as well as Compound index
• Like SQL order of the fields in a compound index matters

• If you index a field that holds an array value, MongoDB creates
separate index entries for every element of the array

• Sparse property of an index ensures that the index only
contain entries for documents that have the indexed field. (so
ignore records that do not have the field defined)

• If an index is both unique and sparse – then the system will
reject records that have a duplicate key value but allow
records that do not have the indexed field defined

29

CRUD operations

• Create
• db.collection.insert(<document>)
• db.collection.save(<document>)
• db.collection.update(<query>, <update>, { upsert: true })

• Read
• db.collection.find(<query>, <projection>)
• db.collection.findOne(<query>, <projection>)

• Update
• db.collection.update(<query>, <update>, <options>)

• Delete
• db.collection.remove(<query>, <justOne>)

Collection specifies the collection or the
‘table’ to store the document 30

Create Operations
Db.collection specifies the collection or the ‘table’ to store the
document

• db.collection_name.insert(<document>)

• Omit the _id field to have MongoDB generate a unique key

• Example db.parts.insert({{type: “screwdriver”, quantity: 15 })

• db.parts.insert({_id: 10, type: “hammer”, quantity: 1 })

• db.collection_name.update(<query>, <update>, { upsert: true })

• Will update 1 or more records in a collection satisfying query

• db.collection_name.save(<document>)

• Updates an existing record or creates a new record

31

Read Operations

• db.collection.find(<query>, <projection>).cursor modified

• Provides functionality similar to the SELECT command

• <query> where condition , <projection> fields in result set

• Example: var PartsCursor = db.parts.find({parts:
“hammer”}).limit(5)

• Has cursors to handle a result set

• Can modify the query to impose limits, skips, and sort orders.

• Can specify to return the ‘top’ number of records from the result
set

• db.collection.findOne(<query>, <projection>)

32

Query Operators

Name Description

$eq Matches value that are equal to a specified value

$gt, $gte Matches values that are greater than (or equal to a specified value

$lt, $lte Matches values less than or (equal to) a specified value

$ne Matches values that are not equal to a specified value

$in Matches any of the values specified in an array

$nin Matches none of the values specified in an array

$or Joins query clauses with a logical OR returns all

$and Join query clauses with a loginal AND

$not Inverts the effect of a query expression

$nor Join query clauses with a logical NOR

$exists Matches documents that have a specified field 33

https://docs.mongodb.org/manual/reference/operator/query/

Update Operations
• db.collection_name.insert(<document>)

• Omit the _id field to have MongoDB generate a unique key

• Example db.parts.insert({{type: “screwdriver”, quantity: 15 })

• db.parts.insert({_id: 10, type: “hammer”, quantity: 1 })

• db.collection_name.save(<document>)
• Updates an existing record or creates a new record

• db.collection_name.update(<query>, <update>, { upsert: true })
• Will update 1 or more records in a collection satisfying query

• db.collection_name.findAndModify(<query>, <sort>,
<update>,<new>, <fields>,<upsert>)

• Modify existing record(s) – retrieve old or new version of the record

34

Delete Operations
• db.collection_name.remove(<query>, <justone>)

• Delete all records from a collection or matching a criterion

• <justone> - specifies to delete only 1 record matching the criterion

• Example: db.parts.remove(type: /^h/ }) - remove all parts starting
with h

• Db.parts.remove() – delete all documents in the parts collections

35

CRUD examples

36

> db.user.insert({
first: "John",
last : "Doe",
age: 39

})

> db.user.find ()
{ "_id" : ObjectId("51"),

"first" : "John",
"last" : "Doe",
"age" : 39

}

> db.user.update(
{"_id" : ObjectId(“51")},
{

$set: {
age: 40,
salary: 7000}

}
)

> db.user.remove({
"first": /^J/

})

SQL vs. Mongo DB entities

My SQL

START TRANSACTION;

INSERT INTO contacts VALUES

(NULL, ‘joeblow’);

INSERT INTO contact_emails

VALUES

(NULL, ”joe@blow.com”,

LAST_INSERT_ID()),

(NULL,

“joseph@blow.com”,

LAST_INSERT_ID());

COMMIT;

Mongo DB

db.contacts.save({

userName: “joeblow”,

emailAddresses: [

“joe@blow.com”,

“joseph@blow.com”] }

);

37

Similar to IDS from the 70’s

Bachman’s brainchild

DIFFERENCE:

MongoDB separates physical structure

from logical structure

Designed to deal with large &distributed

Aggregated functionality

Aggregation framework provides SQL-like aggregation
functionality

• Pipeline documents from a collection pass through an
aggregation pipeline, which transforms these objects as they pass
through

• Expressions produce output documents based on calculations
performed on input documents

• Example db.parts.aggregate ({$group : {_id: type, totalquantity
: { $sum: quanity} } })

38

Map reduce functionality

• Performs complex aggregator functions given a collection of
keys, value pairs

• Must provide at least a map function, reduction function and a
name of the result set

• db.collection.mapReduce(<mapfunction>, <reducefunction>,
{ out: <collection>, query: <document>, sort: <document>,
limit: <number>, finalize: <function>, scope: <document>,
jsMode: <boolean>, verbose: <boolean> })

• More description of map reduce next lecture

39

Indexes: High performance
read
• Typically used for frequently used queries

• Necessary when the total size of the documents exceeds the
amount of available RAM.

• Defined on the collection level

• Can be defined on 1 or more fields

• Composite index (SQL)  Compound index (MongoDB)

• B-tree index

• Only 1 index can be used by the query optimizer when
retrieving data

• Index covers a query - match the query conditions and return
the results using only the index;

• Use index to provide the results. 40

Replication of data

• Ensures redundancy, backup, and automatic failover

• Recovery manager in the RDMS

• Replication occurs through groups of servers known as replica
sets

• Primary set – set of servers that client tasks direct updates to

• Secondary set – set of servers used for duplication of data

• At the most can have 12 replica sets

• Many different properties can be associated with a secondary set i.e.
secondary-only, hidden delayed, arbiters, non-voting

• If the primary set fails the secondary sets ‘vote’ to elect the new
primary set

41

Consistency of data

• All read operations issued to the primary of a replica set are
consistent with the last write operation

• Reads to a primary have strict consistency

• Reads reflect the latest changes to the data

• Reads to a secondary have eventual consistency

• Updates propagate gradually

• If clients permit reads from secondary sets – then client may read a
previous state of the database

• Failure occurs before the secondary nodes are updated

• System identifies when a rollback needs to occur

• Users are responsible for manually applying rollback changes

42

Provides Memory Mapped
Files
• „A memory-mapped file is a segment of virtual memory which has

been assigned a direct byte-for-byte correlation with some portion
of a file or file-like resource.”1

• mmap()

43

1
: http://en.wikipedia.org/wiki/Memory-mapped_file

Other additional features

• Supports geospatial data of type

• Spherical

• Provides longitude and latitude

• Flat

• 2 dimensional points on a plane

• Geospatial indexes

44

Interactive session: query through API

Summary

• NoSQL built to address a distributed database system

• Sharding

• Replica sets of data

• CAP Theorem: consistency, availability and partition tolerant

• MongoDB

• Document oriented data, schema-less database, supports
secondary indexes, provides a query language, consistent reads
on primary sets

• Lacks transactions, joins

46

Limited BNF of a BSON document
document ::= int32 e_list "\x00" BSON Document

e_list ::= element e_list Sequence of elements

element ::=
"\x01" e_name data
type

Specific data type

e_name ::= cstring Key name

string ::= int32 (byte*) "\x00" String

cstring ::= (byte*) "\x00" CString

binary ::= int32 subtype (byte*) Binary

subtype ::= "\x00" Binary / Generic

| "\x01" Function

| "\x02" Binary (Old)

| "\x03" UUID (Old)

| "\x04" UUID

| "\x05" MD5

| "\x80" User defined

code_w_s ::= int32 string document Code w/ scope

47

