
Relational Query
Optimization

Kathleen Durant PhD
Lecture 19
CS 3200
Northeastern University

Slide Content Courtesy of R. Ramakrishnan, J. Gehrke, and J. Hellerstein

1

Overview of Query Evaluation
• Query Evaluation Plan: tree of relational algebra (R.A.) operators,

with choice of algorithm for each operator.
• Three main issues in query optimization:

• Plan space: for a given query, what plans are considered?
• Huge number of alternative, semantically equivalent plans.

• Plan cost: how is the cost of a plan estimated?
• Search algorithm: search the plan space for the cheapest (estimated)

plan.
• Ideally: Want to find best plan. Practically: Avoid worst plans!

2

Representation of a SQL Command

• Query Semantics:
1. Take Cartesian product (a.k.a. cross-product) of relns in FROM, projecting

only those columns that appear in other clauses
2. If a WHERE clause exists, apply all filters in it
3. If a GROUP BY clause exists, form groups on the result
4. If a HAVING clause exists, filter groups with it
5. If an ORDER BY clause exists, make sure output is in the right order
6. If there is a DISTINCT modifier, remove duplicates

SELECT {DISTINCT} <list of columns>
FROM <list of relations>
{WHERE <list of "Boolean Factors">}
{GROUP BY <list of columns>
 {HAVING <list of Boolean Factors>}}
{ORDER BY <list of columns>};

3

Basics of Query Optimization

• Convert selection conditions to conjunctive normal form (CNF):
• (day<8/9/94 OR bid=5 OR sid=3) AND (rname=‘Paul’ OR sid=3)
• Why not disjunctive normal form?

• Interleave FROM and WHERE into a plan tree for optimization.
• Apply GROUP BY, HAVING, DISTINCT and ORDER BY at the end,

pretty much in that order.

SELECT {DISTINCT} <list of columns>
FROM <list of relations>
{WHERE <list of "Boolean Factors">}
{GROUP BY <list of columns>
{HAVING <list of Boolean Factors>}}
{ORDER BY <list of columns>};

4

System Catalog
• System information: buffer pool size and page size.
• For each relation:

• relation name, file name, file structure (e.g., heap file)
• attribute name and type of each attribute
• index name of each index on the relation
• integrity constraints…

• For each index:
• index name and structure (B+ tree)
• search key attribute(s)

• For each view:
• view name and definition

5

System Catalog (Contd.)
• Statistics about each relation (R) and index (I):

• Cardinality: # tuples (NTuples) in R.
• Size: # pages (NPages) in R.
• Index Cardinality: # distinct key values (NKeys) in I.
• Index Size: # pages (INPages) in I.
• Index height: # nonleaf levels (IHeight) of I.
• Index range: low/high key values (Low/High) in I.
• More detailed info. (e.g., histograms). More on this later…

• Statistics updated periodically.
• Updating whenever data changes is costly; lots of approximation

anyway, so slight inconsistency ok.
• Intensive use in query optimization! Always keep the catalog in

memory.
6

Schema for Examples

• Reserves:
• Each tuple is 40 bytes long
• 100 tuples per page
• 1000 pages.

• Sailors:
• Each tuple is 50 bytes long
• 80 tuples per page
• 500 pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

7

Relational Algebra Tree

• The algebraic expression partially specifies how to
evaluate the query:
• Compute the natural join of Reserves and Sailors
• Perform the selections
• Project the sname field

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND
 R.bid=100 AND S.rating>5

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

RA Tree:

πsname (σbid=100∧rating>5 (Reserves sid=sid Sailors))

Expression in Relational Algebra (RA):

8

Query Evaluation Plan
• Query evaluation plan is an

extended RA tree, with
additional annotations:
• access method for each relation;
• implementation method for each

relational operator.

• Cost: 500+500*1000 I/Os

• Misses several opportunities:
• Selections could have been

`pushed’ earlier.
• No use is made of any available

indexes.
• More efficient join algorithm…

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

(File scan) (File scan)

Equivalence Rules
• Conjunctive selection operations can be deconstructed into a

sequence of individual selections

• Selection operations are commutative

• Only the last in a sequence of projection operations is needed,
the others can be omitted

• Selections can be combined with Cartesian Products and joins
 10

() ()()σ σ σc cn c cnR R1 1∧ ∧ ≡... . . .

() ()()RR cccnc 121 ...σσσ ≡∧

() ()()()π π πa a anR R1 1≡ . . .

() ()211211 x RRRR cc ≡σ

Equivalence Rules
• Projection operation distributes over the join operation

• If project involves only attributes L1 U L2

• Set operations are commutative

• Set operations are associative

• Selection operation distributes over set operations
• Projection operation distributes over union

11

() () ()()2)1(21 2121 RRRR LcLcLL πππ ≡∪

() ()321321 RRRRRR ∪∪≡∪∪

() ()1221 RRRR ∪≡∪

More Equivalence Rules
• A projection π commutes with a selection σ that only uses

attributes retained by π, i.e., πa(σc(R)) = σc(πa(R)).
• Selection between attributes of the two relations of a cross-

product converts cross-product to a join, i.e., σc(R×S) = R c S
• A selection on attributes of R commutes with R S,
 i.e., σc(R S) ≡ σc(R) S.
• Similarly, if a projection follows a join R S, we can `push’ it by

retaining only attributes of R (and S) that are (1) needed for the
join or (2) kept by the projection.

12

Relational Algebra Equivalences
• Allow us (1) choose different join orders and to (2) `push’ selections

and projections ahead of joins.
 Selections:

() ()()σ σ σc cn c cnR R1 1∧ ∧ ≡... . . .

()() ()()σ σ σ σc c c cR R1 2 2 1≡ (Commute)
 Projections: () ()()()π π πa a anR R1 1≡ . . . (Cascade)

 Joins: R (S T) (R S) T ≡ (Associative)
(R S) (S R) ≡ (Commute)

(Cascade)

13

Alternative Plan 1 (Selection Pushed Down)
• Push selections below the join.
• Materialization: store a

temporary relation T, if the
subsequent join needs to scan
T multiple times.
• The opposite is pipelining.

Reserves Sailors

sid=sid

bid=100

sname (On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Sort-Merge Join)

(File scan) (File scan)

 With 5 buffers, cost of plan:
 Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats, uniform

distribution).
 Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings).
 Sort-Merge join: Sort T1 (2*2*10), sort T2 (2*3*250), merge (10+250), total = 3560

page I/Os.
 Block Nested Loop Join: join cost = 10+4*250, total cost = 2770.
 250 page relation, 10 page relation, blocksize = 4

(Scan;
write to
temp T2)

Access Methods
 An access method (path) is a method of retrieving tuples:

 File scan, or index scan with the search key matching a
selection in the query.

 A tree index matches (a conjunction of) terms if the attributes in
the terms form a prefix of the search key.
 E.g., Tree index on <a, b, c> matches the selection a=5 AND

b=3, and a=5 AND b>6, but not b=3.
 A hash index matches (a conjunction of) terms if there is a term

attribute = value for every attribute in the search key of the index.
 E.g., Hash index on <a, b, c> matches a=5 AND b=3 AND

c=5; but it does not match b=3, or a=5 AND b=3, or a>5 AND
b=3 AND c=5.

15

Alternative Plan 2 (Using Indexes)
• Selection using index: clustered

index on bid of Reserves.
• Retrieve 100,000/100 = 1000 tuples in

1000/100 = 10 pages.
• Indexed NLJ: pipelining the outer

and indexed lookup on the inner.
• The outer: scanned only once,

pipelining, no need to materialize.
• The inner: ioin column sid is a key for

Sailors; at most one matching tuple,
unclustered index on sid OK.

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Hash index;
Do not
write to
temp)

(Index Nested Loops
With pipelining)

(On-the-fly)

(Hash index scan on bid)

 Push rating>5 before the join? Need to use search arguments More on this
later…

 Cost: Selection of Reserves tuples (10 I/Os); for each, must get matching
Sailors tuple (1000*1.2); total 1210 I/Os.

Pipelined Evaluation
• Materialization: Output of an op is saved in a

temporary relation for uses (multiple scans) by
the next op.

• Pipelining: No need to create a temporary
relation. Avoid the cost of writing it out and
reading it back. Can occur in two cases:
• Unary operator: when the input is pipelined into it, the

operator is applied on-the-fly, e.g. selection on-the-fly,
project on-the-fly.

• Binary operator: e.g., the outer relation in indexed
nested loops join.

17

Iterator Interface for Execution
• A query plan, i.e., a tree of relational ops, is executed by

calling operators in some (possibly interleaved) order.
• Iterator Interface for simple query execution:

• Each operator typically implemented using a uniform interface:
open, get_next, and close.

• Query execution starts top-down (pull-based). When an operator is
`pulled’ for the next output tuples, it
1. `pulls’ on its inputs (opens each child node if not yet, gets next from

each input, and closes an input if it is exhausted),
2. computes its own results.

• Encapsulation
• Encapsulated in the operator-specific code: access methods, join

algorithms, and materialization vs. pipelining…
• Transparent to the query executer.

18

Highlights of System R Optimizer

• Impact: most widely used; works well for < 10 joins.
• Cost of a plan: approximate art at best.

• Statistics, maintained in system catalogs, used to estimate cost of
operations and result sizes.

• Considers combination of CPU and I/O costs.
• Plan Space: too large, must be pruned.

• Only considers the space of left-deep plans.
• Left-deep plan: a tree of joins in which the inner is a base relation.
• Left-deep plans naturally support pipelining.

• Avoids cartesian products!
• Plan Search: dynamic programming (prunes useless subtrees).

19

Query Blocks: Units of Optimization
• An SQL query is parsed into

a collection of query blocks,
and these are optimized
one block at a time.

SELECT S.sname
FROM Sailors S
WHERE S.age IN
 (SELECT MAX (S2.age)
 FROM Sailors S2
 GROUP BY S2.rating)

Nested block Outer block

 Nested blocks are usually treated as calls to a
subroutine, made once per outer tuple. (More
discussion later.)

Plan Space
 For each block, the plans considered are:
 All available access methods, for each reln in FROM
clause.
 All left-deep join trees: all the ways to join the relations
one-at-a-time, with the inner relation in the FROM
clause.
 Consider all permutations of N relations, # of plans
is N factorial!

C D B A

Bushy

B A

C

D

Bushy

B A

C

D

Left-deep

21

Plan Space
 For each block, the plans considered are:
 All available access methods, for each relation in

FROM clause.
 All left-deep join trees: all the ways to join the relations

one-at-a-time, with the inner relation in the FROM
clause.
 Considering all permutations of N relations, N

factorial!
 But avoid cartesian products
 e.g. R.a = S.a and R.b = T.b, how many left-deep

trees?
 All join methods, for each join in the tree.
 Appropriate places for selections and projections.

22

Cost Estimation
• For each plan considered, must estimate its cost.
• Estimate cost of each operation in a plan tree:

• Depends on input cardinalities.
• We’ve discussed how to estimate the cost of operations (sequential

scan, index scan, joins, etc.)

• Estimate size of result for each operation in tree:
• Use information about the input relations.
• For selections and joins, assume independence of predicates and

uniform distribution of values.

23

Statistics in System Catalog
• Statistics about each relation (R) and index (I):

• Cardinality: # tuples (NTuples) in R.
• Size: # pages (NPages) in R.
• Index Cardinality: # distinct key values (NKeys) in I.
• Index Size: # pages (INPages) in I.
• Index height: # nonleaf levels (IHeight) of I.
• Index range: low/high key values (Low/High) in I.
• More detailed info. (e.g., histograms). More on this later…

24

Size Estimation & Reduction Factors

• Consider a query block:
• Reduction factor (RF) or Selectivity of each term:

• Assumption 1: uniform distribution of the values!
• Term col=value: RF = 1/NKeys(I), given index I on col
• Term col>value: RF = (High(I)-value)/(High(I)-Low(I))
• Term col1=col2: RF = 1/MAX(NKeys(I1), NKeys(I2))

• Max. number of tuples in result = the product of the cardinalities of
relations in the FROM clause.

• Result cardinality = Max # tuples * product of all RF’s.
• Assumption 2: terms are independent!

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

25

Queries over a Single Relation
• Queries over a single relation can consist of selection, projection,

and aggregation.
• Enumeration of alternative plans:

1. Each available access path (file/index scan) is considered, the one
with least estimated cost is chosen.

2. The various operations are often carried out together:
• If an index is used for a selection, projection is done for each retrieved

tuple.
• The resulting tuples can be pipelined into the aggregate computation in

the absence of GROUP BY; otherwise, hashing or sorting is needed for
GROUP BY.

26

Cost Estimates for Single-Relation Plans
• Index I on primary key matches selection:

• Cost of lookup = Height(I)+1 for a B+ tree, ≈ 1.2 for hash index.
• Cost of record retrieval = 1

• Clustered index I matching one or more selections:
• Cost of lookup + (INPages’(I)+NPages(R)) * product of RF’s of matching

selections. (Treat INPages’ as the number of leaf pages in the index.)

• Non-clustered index I matching one or more selections:
• Cost of lookup + (INPages’(I)+NTuples(R)) * product of RF’s of matching

selections.

• Sequential scan of file:
• NPages(R).

• May add extra costs for GROUP BY and duplicate elimination
in projection (if a query says DISTINCT).

27

Example
• If we have an index on rating (1 ≤ rating ≤ 10):

• NTuples(R) /NKeys(I) = 40,000/10 tuples retrieved.
• Clustered index: (1/NKeys(I)) * (NPages’(I)+NPages(R)) = (1/10) *

(50+500) pages retrieved, plus lookup cost.
• Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R)) = (1/10)

* (50+40,000) pages retrieved, plus lookup cost.
• If we have an index on sid:

• Would have to retrieve all tuples/pages. With a clustered index,
the cost is 50+500, with unclustered index, 50+40000.

• Doing a file scan:
• We retrieve all file pages (500).

SELECT S.sid
FROM Sailors S
WHERE S.rating=8

28

Queries Over Multiple Relations
• As the number of joins increases, the number of alternative plans

grows rapidly.

B A

C

D

Left-deep

 System R: (1) use only left-deep join
trees, where the inner is a base relation,
(2) avoid cartesian products.
 Allow pipelined plans; intermediate results not written

to temporary files.
 Not all left-deep trees are fully pipelined!

• Sort-Merge join (the sorting phase)
• Two-phase hash join (the partitioning

phase)
29

Place Search Algorithm
• Left-deep join plans differ in:

• the order of relations,
• the access path for each relation, and
• the join method for each join.

• Many of these plans share common prefixes, so don’t enumerate all
of them. This is a job for…

• Dynamic Programming
 “a method of solving problems exhibiting the properties of

overlapping subproblems and optimal substructure that takes much
less time than naive methods.”

30

Enumeration of Left-Deep Plans
• Enumerate using N passes (if N relations joined):

• Pass 1: Find best 1-relation plan for each relation. Include index scans
available on “SARGable” predicates.

• SARGable – search argument able (can use an index).
• SARGable operations would include =,>,<, BETWEEN, and some LIKE

conditions. Non-SARGable operations would include <>,!=,NOT IN, OR, other
LIKE conditions.

• Pass 2: Find best ways to join result of each 1-relation plan (as outer) to
another relation. (All 2-relation plans.)

• …
• Pass N: Find best ways to join result of a (N-1)-relation plan (as outer) to

the N’th relation. (All N-relation plans.)
• For each subset of relations, retain only:

• cheapest unordered plan, and
• cheapest plan for each interesting order of the tuples, and discard all

others. 31

Enumeration of Plans (Contd.)

• ORDER BY, GROUP BY, aggregates etc. handled as a
final step, using either an `interestingly ordered’
plan or an additional sorting operator.

• A k-way (k<N) plan is not combined with an
additional relation unless there is a join condition
between them.
• Do it until all predicates in WHERE have been used up.
• That is, avoid Cartesian products if possible.

• In spite of pruning plan space, still creates an
exponential number of plans. 32

Cost Estimation for Multi-relation Plans

• Consider a query block:
• Reduction factor (RF) is associated with each term.
• Max number tuples in result = the product of the cardinalities of

relations in the FROM clause.
• Result cardinality = max # tuples * product of all RF’s.
• Multi-relation plans are built up by joining one new relation at a

time.
• Cost of join method, plus estimate of join cardinality gives us both cost

estimate and result size estimate.

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

33

Example:
Pass 1

Pass 1
• Sailors:

• B+ tree matches rating>5, and is probably cheapest.
• However, if this selection is expected to retrieve a lot of tuples,

and index is unclustered, file scan may be cheaper.
• Still, B+ tree plan kept (because tuples are in rating order).

• Reserves: B+ tree on bid matches bid=100; cheapest.

Sailors:
 B+ tree on rating
 Hash on sid

Reserves:
 B+ tree on bid

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Example: Pass 2

Pass 2
• Consider each plan retained from Pass 1 as the outer, and

consider how to join it with the (only) other relation.
• Reserves as outer: Hash index can be used to get Sailors tuples

that satisfy sid = outer tuple’s sid value.
• rating > 5 is a search argument pushed to the index scan on Sailors.

Sailors:
 B+ tree on rating
 Hash on sid

Reserves:
 B+ tree on bid

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

System R: Limitation 1
• Uniform distribution of values:

• Term col=value has RF 1/NKeys(I), given index I on col
• Term col>value has RF (High(I)-value)/(High(I)-Low(I))

• Often causes highly inaccurate estimates
• E.g., distribution of gender: male (40), female (4)
• E.g. distribution of age:
 0 (2), 1 (3), 2 (3), 3 (1), 4 (2), 5 (1), 6 (3), 7 (8), 8 (4), 9 (2),
 10 (0), 11 (1), 12 (2), 13 (4), 14 (9). NKeys=15, count = 45.
 Reduction factor of age=14: 1/15? 9/45!

• Histogram: approximates a data distribution
36

Histograms

Buckets

Counts

Frequency

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

8 4 15 3 15

8/3 4/3 15/3 3/3 15/3

Equiwidth: buckets of equal size

Buckets

Counts

Frequency

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

9 10 10 7 9

9/4 10/4 10/2 7/4 9/1

Equidepth: equal counts of buckets
favoring frequent values

Still not accurate for
value 14: 5/45

Now accurate for
value 14: 9/45

Small errors for infrequent
items: tolerable.

37

System R: Limitation 2
• Predicates are independent:

• Result cardinality = max # tuples * product of Reduction Factors of
matching predicates.

• Often causes highly inaccurate estimates
• E.g., Car DB: 10 makes, 100 models. RF of make=‘honda’ and

model=‘civic’ >> than 1/10 * 1/100!

• Multi-dimensional histograms [PI’97, MVW’98, GKT’00]

• Maintain counts and frequency in multi-attribute space.
• Dependency-based histograms [DGR’01]

• Learn dependency between attributes and compute conditional
probability P(model=‘civic’ | make=‘honda’)

• Can use graphical models…
38

Nested Queries With No Correlation
• Nested query (block): a query that

appear as an operand of a
predicate of the form “expression
operator query”.

• Nested query with no correlation:
the nested block does not contain
a reference to tuple from the
outer.
• A nested query needs to be evaluated

only once.

• The optimizer arranges it to be
evaluated before the top level query.

SELECT S.sname
FROM Sailors S
WHERE S.rating >
 (SELECT Avg(rating)
 FROM Sailors)

 (SELECT Avg(rating)
 FROM Sailors)

SELECT S.sname
FROM Sailors S
WHERE S.rating > value

Nested Queries With
Correlation

• Nested query with correlation: the
nested block contains a reference to
a tuple from the outer.
• Nested block is optimized independently,

with the outer tuple considered as
providing a selection condition.

• The nested block is executed using nested
iteration, a tuple-at-a-time approach.

SELECT S.sname
FROM Sailors S
WHERE EXISTS
 (SELECT *
 FROM Reserves R
 WHERE R.bid=103
 AND R.sid=S.sid)

 Nested block to optimize:
 (SELECT *
 FROM Reserves R
 WHERE R.bid =103
 AND S.sid = outer value)

SELECT S.sname
FROM Sailors S
WHERE EXISTS
 (…)

Query Decorrelation
• Implicit ordering of nested blocks

means nested iteration only.
• The equivalent, non-nested

version of the query is typically
optimized better, e.g. hash join or
sort-merge.

• Query decorrelation is an
important task of optimizer.

SELECT S.sname
FROM Sailors S
WHERE EXISTS
 (SELECT *
 FROM Reserves R
 WHERE R.bid=103
 AND R.sid=S.sid)

Equivalent non-nested query:
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid
 AND R.bid=103

Query Decorrelation (Contd.)
• Guideline: Use only one “query block”, if possible.

SELECT DISTINCT *
FROM Sailors S
WHERE S.sname IN
 (SELECT Y.sname
 FROM YoungSailors Y)

SELECT DISTINCT S.*
FROM Sailors S,
 YoungSailors Y
WHERE S.sname = Y.sname

SELECT *
FROM Sailors S
WHERE S.sname IN
 (SELECT DISTINCT Y.sname
 FROM YoungSailors Y)

SELECT S.*
FROM Sailors S,
 YoungSailors Y
WHERE S.sname = Y.sname

 Not always possible ...

=

=
42

Summary
• Query optimization is an important task in relational DBMS.
• Must understand optimization in order to understand the

performance impact of a given database design (relations,
indexes) on a workload (set of queries).

• Two parts to optimizing a query:
• Consider a set of alternative plans.

• Must prune search space; typically, left-deep plans only.
• Must estimate cost of each plan that is considered.

• Must estimate size of result and cost for each plan node.
• Key issues: Statistics, indexes, operator implementations.

43

Summary (Contd.)
• Single-relation queries:

• All access paths considered, cheapest is chosen.
• Issues: Selections that match index, whether index key has all needed

fields and/or provides tuples in a desired order.

• Multiple-relation queries:
• All single-relation plans are first enumerated.

• Selections/projections considered as early as possible.
• Next, for each 1-relation plan, all ways of joining another relation (as

inner) are considered.
• Next, for each 2-relation plan that is `retained’, all ways of joining

another relation (as inner) are considered, etc.
• At each level, for each subset of relations, only best plan for each

interesting order of tuples is `retained’.
44

Rewriting SQL Queries
• Complicated by interaction of:

• NULLs, duplicates, aggregation, sub-queries.
• Guideline: Use only one “query block”, if possible

SELECT DISTINCT *
 FROM Sailors S
 WHERE S.sname IN
 (SELECT Y.sname
 FROM YoungSailors Y)

SELECT DISTINCT S.*
 FROM Sailors S,
 YoungSailors Y
 WHERE S.sname = Y.sname

SELECT *
 FROM Sailors S
 WHERE S.sname IN
 (SELECT DISTINCT Y.sname
 FROM YoungSailors Y)

SELECT S.*
 FROM Sailors S,
 YoungSailors Y
 WHERE S.sname = Y.sname

 Not always possible ...

=

=
45

Summary: Unnesting Queries
• DISTINCT at top level: Can ignore duplicates.

• Can sometimes infer DISTINCT at top level! (e.g. subquery clause
matches at most one tuple)

• DISTINCT in subquery w/o DISTINCT at top: Hard to convert.
• Subqueries inside OR: Hard to convert.
• ALL subqueries: Hard to convert.

• EXISTS and ANY are just like IN.
• Aggregates in subqueries: Tricky.
• Good news: Some systems now rewrite under the covers (e.g.

DB2).

46

Complexity of Plan Search
• Enumeration of all left-deep plans for an n-way join:
 O(n!), where n! ∼ with a large n.

• Plans considered in System R:

 O(), which occurs with a star join graph

• R.a1 = S1.a1

• R.a2 = S2.a2

• …

• R.an-1 = Sn-1.an-1

n
e
nn)(2π

12 −n

R

S1

S2

S3
S4

Sn-1

Complexity with a Star Graph
• Total number of plans considered:

• Pass 2: (n-1 choose 1) 2-relation subsets,
 for each subset, pick one as the outer reln in the join
 (best plan for the inner has been chosen in the previous

pass).
• Pass 3: (n-1 choose 2) 3-relation subsets,
 for each subset, pick one as the outer.
• …
• Pass n: (n-1 choose n-1) n-relation subsets,
 for each subset, pick one as the outer.

• Total number of plans =

• Maximum number of plans stored
 in a pass?

R

S1

S2

S3
S4

Sn-1

)2(1−⋅ nnO

	Relational Query Optimization
	Overview of Query Evaluation
	Representation of a SQL Command
	Basics of Query Optimization
	System Catalog
	System Catalog (Contd.)
	Schema for Examples
	Relational Algebra Tree
	Query Evaluation Plan
	Equivalence Rules
	Equivalence Rules
	More Equivalence Rules
	Relational Algebra Equivalences
	Alternative Plan 1 (Selection Pushed Down)
	Access Methods
	Alternative Plan 2 (Using Indexes)
	Pipelined Evaluation
	Iterator Interface for Execution
	Highlights of System R Optimizer
	Query Blocks: Units of Optimization
	Plan Space
	Plan Space
	Cost Estimation
	Statistics in System Catalog
	Size Estimation & Reduction Factors
	Queries over a Single Relation
	Cost Estimates for Single-Relation Plans
	Example
	Queries Over Multiple Relations
	Place Search Algorithm
	Enumeration of Left-Deep Plans
	Enumeration of Plans (Contd.)
	Cost Estimation for Multi-relation Plans
	Example:�Pass 1
	Example: Pass 2
	System R: Limitation 1
	Histograms
	System R: Limitation 2
	Nested Queries With No Correlation
	Nested Queries With Correlation
	Query Decorrelation
	Query Decorrelation (Contd.)
	Summary
	Summary (Contd.)
	Rewriting SQL Queries
	Summary: Unnesting Queries
	Complexity of Plan Search
	Complexity with a Star Graph

