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Overview of Query Evaluation 
• Query Evaluation Plan:  tree of relational algebra (R.A.) operators, 

with choice of algorithm for each operator. 
• Three main issues in query optimization: 

• Plan space: for a given query, what plans are considered? 
• Huge number of alternative, semantically equivalent plans. 

• Plan cost: how is the cost of a plan estimated? 
• Search algorithm:  search the plan space for the cheapest (estimated) 

plan. 
• Ideally: Want to find best plan.  Practically: Avoid worst plans! 
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Representation of a SQL Command  

• Query Semantics: 
1. Take Cartesian product (a.k.a. cross-product) of relns in FROM, projecting 

only  those columns that appear in other clauses 
2. If a WHERE clause exists, apply all filters in it 
3. If a GROUP BY clause exists, form groups on the result 
4. If a HAVING clause exists, filter groups with it 
5. If an ORDER BY clause exists, make sure output is in the right order 
6. If there is a DISTINCT modifier, remove duplicates 

SELECT        {DISTINCT} <list of columns>  
FROM            <list of relations>  
{WHERE       <list of "Boolean Factors">}  
{GROUP BY <list of columns>  
     {HAVING      <list of Boolean Factors>}}  
{ORDER BY <list of columns>};  
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Basics of Query Optimization 

• Convert selection conditions to conjunctive normal form (CNF): 
• (day<8/9/94 OR bid=5 OR sid=3 ) AND (rname=‘Paul’ OR sid=3) 
• Why not disjunctive normal form? 

• Interleave FROM and WHERE into a plan tree for optimization.  
• Apply GROUP BY, HAVING, DISTINCT and ORDER BY at the end, 

pretty much in that order. 

SELECT        {DISTINCT} <list of columns>  
FROM            <list of relations>  
{WHERE       <list of "Boolean Factors">}  
{GROUP BY <list of columns>  
{HAVING      <list of Boolean Factors>}}  
{ORDER BY <list of columns>};  
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System Catalog 
• System information: buffer pool size and page size. 
• For each relation: 

• relation name, file name, file structure (e.g., heap file) 
• attribute name and type of each attribute 
• index name of each index on the relation 
• integrity constraints… 

• For each index: 
• index name and structure (B+ tree) 
• search key attribute(s) 

• For each view: 
• view name and definition 
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System Catalog (Contd.) 
• Statistics about each relation (R) and index (I): 

• Cardinality: # tuples (NTuples) in R. 
• Size: # pages (NPages) in R. 
• Index Cardinality: # distinct key values (NKeys) in I. 
• Index Size: # pages (INPages) in I. 
• Index height: # nonleaf levels (IHeight) of I.  
• Index range: low/high key values (Low/High) in I. 
• More detailed info. (e.g., histograms). More on this later… 

• Statistics updated periodically.  
• Updating whenever data changes is costly; lots of approximation 

anyway, so slight inconsistency ok. 
• Intensive use in query optimization! Always keep the catalog in 

memory. 
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Schema for Examples 

• Reserves: 
• Each tuple is 40 bytes long 
• 100 tuples per page 
• 1000 pages. 

• Sailors: 
• Each tuple is 50 bytes long 
•   80 tuples per page 
•  500 pages.  

Sailors (sid: integer, sname: string, rating: integer, age: real) 
Reserves (sid: integer, bid: integer, day: dates, rname: string) 

7 



Relational Algebra Tree 

• The algebraic  expression partially specifies how to 
evaluate the query: 
• Compute the natural join of Reserves and Sailors 
• Perform the selections 
• Project the sname field 

SELECT  S.sname 
FROM    Reserves R, Sailors S 
WHERE  R.sid=S.sid AND  
              R.bid=100 AND S.rating>5 

Reserves Sailors 

sid=sid 

bid=100  rating > 5 

sname 

RA Tree: 

πsname (σbid=100∧rating>5 (Reserves sid=sid  Sailors)) 

Expression in Relational Algebra (RA): 
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Query Evaluation Plan 
• Query evaluation plan is an 

extended RA tree, with 
additional annotations: 
• access method for each relation;  
• implementation method for each 

relational operator. 

• Cost:  500+500*1000 I/Os 

• Misses several opportunities:  
• Selections could have been 

`pushed’ earlier.  
• No use is made of any available 

indexes. 
• More efficient join algorithm… 

Reserves Sailors 

sid=sid 

bid=100  rating > 5 

sname 

(Simple Nested Loops) 

(On-the-fly) 

(On-the-fly) 

(File scan) (File scan) 



Equivalence Rules 
• Conjunctive selection operations can be deconstructed into a 

sequence of individual selections 
 
 

• Selection operations are commutative 
 
 

• Only the last in a sequence of projection operations is needed, 
the others can be omitted  
 
 

• Selections can be combined with Cartesian Products and joins 
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Equivalence Rules 
• Projection operation distributes over the join operation  

• If project involves only attributes L1 U L2  
 
 

• Set operations are commutative 
 

• Set operations are associative  
 

• Selection operation distributes over set operations 
• Projection operation distributes over union  
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More Equivalence Rules 
• A projection π commutes with a selection σ that only uses 

attributes retained by π, i.e., πa(σc(R)) = σc(πa(R)). 
• Selection between attributes of the two relations of a cross-

product converts cross-product to a join, i.e., σc(R×S) = R c S 
• A selection on attributes of R commutes with R  S, 
           i.e., σc(R  S) ≡ σc(R)  S.  
• Similarly, if a projection follows a join R  S, we can `push’ it by 

retaining only attributes of R (and S) that are (1) needed for the 
join or (2) kept by the projection. 
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Relational Algebra Equivalences 
• Allow us (1) choose different join orders and to (2) `push’ selections 

and projections ahead of joins. 
  Selections:                                                             
 
 
 

( ) ( )( )σ σ σc cn c cnR R1 1∧ ∧ ≡... . . .

( )( ) ( )( )σ σ σ σc c c cR R1 2 2 1≡ (Commute) 
 Projections: ( ) ( )( )( )π π πa a anR R1 1≡ . . . (Cascade) 

    Joins: R      (S     T)      (R     S)      T    ≡ (Associative) 
(R     S)      (S     R)   ≡ (Commute) 

(Cascade) 
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Alternative Plan 1 (Selection Pushed Down) 
• Push selections below the join. 
• Materialization: store a 

temporary relation T, if the 
subsequent join needs to scan 
T multiple times. 
• The opposite is pipelining. 

Reserves Sailors 

sid=sid 

bid=100  

sname (On-the-fly) 

rating > 5 
(Scan;  
write to  
temp T1) 

(Sort-Merge Join) 

(File scan) (File scan) 

 With 5 buffers, cost of plan: 
 Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats, uniform 

distribution). 
 Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings). 
 Sort-Merge join: Sort T1 (2*2*10), sort T2 (2*3*250), merge (10+250), total =  3560 

page I/Os. 
 Block Nested Loop Join: join cost = 10+4*250, total cost = 2770. 
                  250 page relation, 10 page relation,  blocksize = 4  

(Scan;  
write to  
temp T2) 



Access Methods 
 An access method (path) is a method of retrieving tuples: 

 File scan, or index scan with the search key matching a 
selection in the query.  

 A tree index matches (a conjunction of) terms if the attributes in 
the terms form a prefix of the search key. 
 E.g., Tree index on <a, b, c>  matches the selection a=5 AND 

b=3, and a=5 AND b>6, but not b=3. 
 A hash index matches (a conjunction of) terms if there is a term 

attribute = value for every attribute in the search key of the index. 
 E.g., Hash index on <a, b, c>  matches a=5 AND b=3 AND 

c=5; but it does not match b=3, or a=5 AND b=3, or a>5 AND 
b=3 AND c=5. 
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Alternative Plan 2 (Using Indexes) 
• Selection using index: clustered 

index on bid of Reserves.  
• Retrieve 100,000/100 =  1000 tuples in 

1000/100 = 10 pages. 
• Indexed NLJ: pipelining the outer 

and indexed lookup on the inner. 
• The outer: scanned only once, 

pipelining, no need to materialize. 
• The inner: ioin column sid is a key for 

Sailors; at most one matching tuple, 
unclustered index on sid OK. 

Reserves 

Sailors 

sid=sid 

bid=100  

sname 
(On-the-fly) 

rating > 5 

(Hash index;  
Do not  
write to 
temp) 

(Index Nested Loops 
With pipelining) 

(On-the-fly) 

(Hash index scan on bid) 

 Push rating>5 before the join? Need to use search arguments More on this 
later… 

 Cost:  Selection of Reserves tuples (10 I/Os); for each, must get matching 
Sailors tuple (1000*1.2); total 1210 I/Os. 



Pipelined Evaluation 
• Materialization: Output of an op is saved in a 

temporary relation for uses (multiple scans) by 
the next op. 

• Pipelining: No need to create a temporary 
relation. Avoid the cost of writing it out and 
reading it back. Can occur in two cases: 
• Unary operator: when the input is pipelined into it, the 

operator is applied on-the-fly, e.g. selection on-the-fly, 
project on-the-fly. 

• Binary operator: e.g., the outer relation in indexed 
nested loops join. 
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Iterator Interface for Execution 
• A query plan, i.e., a tree of relational ops, is executed by 

calling operators in some (possibly interleaved) order. 
• Iterator Interface for simple query execution:  

• Each operator typically implemented using a uniform interface: 
open, get_next, and close. 

• Query execution starts top-down (pull-based). When an operator is 
`pulled’ for the next output tuples, it  
1. `pulls’ on its inputs (opens each child node if not yet, gets next from 

each input, and closes an input if it is exhausted),   
2. computes its own results. 

• Encapsulation  
• Encapsulated in the operator-specific code: access methods, join 

algorithms, and materialization vs. pipelining…  
• Transparent to the query executer. 
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Highlights of System R Optimizer 

• Impact: most widely used; works well for < 10 joins. 
• Cost of a plan:  approximate art at best. 

• Statistics, maintained in system catalogs, used to estimate cost of 
operations and result sizes. 

• Considers combination of CPU and I/O costs. 
• Plan Space:  too large, must be pruned. 

• Only considers the space of left-deep plans. 
• Left-deep plan: a tree of joins in which the inner is a base  relation. 
• Left-deep plans naturally support pipelining. 

• Avoids cartesian products! 
• Plan Search: dynamic programming (prunes useless subtrees). 
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Query Blocks: Units of Optimization 
• An SQL query is parsed into 

a collection of query blocks, 
and these are optimized 
one block at a time. 

SELECT  S.sname 
FROM    Sailors S 
WHERE  S.age IN  
     (SELECT  MAX (S2.age) 
       FROM  Sailors S2 
       GROUP BY  S2.rating) 

Nested block Outer block 

 Nested blocks are usually treated as calls to a 
subroutine, made once per outer tuple.  (More 
discussion later.) 



Plan Space 
 For each block, the plans considered are: 
  All available access methods, for each reln in FROM 
clause. 
  All left-deep join trees: all the ways to join the relations 
one-at-a-time, with the inner relation in the FROM 
clause.  
 Consider all permutations of N relations, # of plans 
is N factorial!  

C D B A 

Bushy 

B A 

C 

D 

Bushy 

B A 

C 

D 

Left-deep 
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Plan Space 
  For each block, the plans considered are: 
   All available access methods, for each relation in 

FROM clause. 
   All left-deep join trees: all the ways to join the relations 

one-at-a-time, with the inner relation in the FROM 
clause.  
  Considering all permutations of N relations, N 

factorial!  
  But avoid cartesian products 
    e.g. R.a = S.a and R.b = T.b, how many left-deep 

trees? 
  All join methods, for each join in the tree. 
  Appropriate places for selections and projections. 

22 



Cost Estimation 
• For each plan considered, must estimate its cost. 
• Estimate cost of each operation in a plan tree: 

• Depends on input cardinalities. 
• We’ve discussed how to estimate the cost of operations (sequential 

scan, index scan, joins, etc.) 

• Estimate size of result for each operation in tree: 
• Use information about the input relations. 
• For selections and joins, assume independence of predicates and 

uniform distribution of values. 
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Statistics in System Catalog 
• Statistics about each relation (R) and index (I): 

• Cardinality: # tuples (NTuples) in R. 
• Size: # pages (NPages) in R. 
• Index Cardinality: # distinct key values (NKeys) in I. 
• Index Size: # pages (INPages) in I. 
• Index height: # nonleaf levels (IHeight) of I.  
• Index range: low/high key values (Low/High) in I. 
• More detailed info. (e.g., histograms). More on this later… 
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Size Estimation & Reduction Factors 

• Consider a query block: 
• Reduction factor (RF) or Selectivity of each term:   

• Assumption 1: uniform distribution of the values! 
• Term col=value: RF = 1/NKeys(I), given index I on col 
• Term col>value: RF = (High(I)-value)/(High(I)-Low(I)) 
• Term col1=col2: RF = 1/MAX(NKeys(I1), NKeys(I2)) 

• Max. number of tuples in result = the product of the cardinalities of 
relations in the FROM clause. 

• Result cardinality = Max # tuples  *  product of all RF’s.  
• Assumption 2: terms are independent! 

SELECT  attribute list 
FROM  relation list 
WHERE  term1 AND ... AND termk 
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Queries over a Single Relation 
• Queries over a single relation can consist of selection, projection, 

and aggregation. 
• Enumeration of alternative plans: 

1. Each available access path (file/index scan) is considered, the one 
with least estimated cost is chosen. 

2. The various operations are often carried out together:  
• If an index is used for a selection, projection is done for each retrieved 

tuple.  
• The resulting tuples can be pipelined into the aggregate computation in 

the absence of GROUP BY; otherwise, hashing or sorting is needed for 
GROUP BY.  
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Cost Estimates for Single-Relation Plans 
• Index I on primary key matches selection: 

• Cost of lookup = Height(I)+1 for a B+ tree, ≈ 1.2 for hash index. 
• Cost of record retrieval = 1 

• Clustered index I matching one or more selections: 
• Cost of lookup + (INPages’(I)+NPages(R)) * product of RF’s of matching 

selections. (Treat INPages’ as the number of leaf pages in the index.) 

• Non-clustered index I matching one or more selections: 
• Cost of lookup + (INPages’(I)+NTuples(R)) * product of RF’s of matching 

selections. 

• Sequential scan of file: 
• NPages(R). 

• May add extra costs for GROUP BY and duplicate elimination 
in projection (if a query says DISTINCT). 
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Example 
• If we have an index on rating (1 ≤ rating ≤ 10): 

• NTuples(R) /NKeys(I) = 40,000/10 tuples retrieved. 
• Clustered index: (1/NKeys(I)) * (NPages’(I)+NPages(R)) = (1/10) * 

(50+500) pages retrieved, plus lookup cost.  
• Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R)) = (1/10) 

* (50+40,000) pages retrieved, plus lookup cost.  
• If we have an index on sid: 

• Would have to retrieve all tuples/pages.  With a clustered index, 
the cost is 50+500, with unclustered index, 50+40000. 

• Doing a file scan: 
• We retrieve all file pages (500). 

SELECT  S.sid 
FROM    Sailors S 
WHERE  S.rating=8 
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Queries Over Multiple Relations 
• As the number of joins increases, the number of alternative plans 

grows rapidly. 

B A 

C 

D 

Left-deep 

 System R:  (1) use only left-deep join 
trees, where the inner is a base relation, 
(2) avoid cartesian products.  
 Allow pipelined plans; intermediate results not written 

to temporary files. 
 Not all left-deep trees are fully pipelined!  

• Sort-Merge join (the sorting phase) 
• Two-phase hash join (the partitioning 

phase) 
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Place Search Algorithm  
• Left-deep join plans differ in:  

• the order of relations,  
• the access path for each relation, and  
• the join method for each join. 

• Many of these plans share common prefixes, so don’t enumerate all 
of them. This is a job for… 

• Dynamic Programming  
    “a method of solving problems exhibiting the properties of 

overlapping subproblems and optimal substructure that takes much 
less time than naive methods.”  
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Enumeration of Left-Deep Plans 
• Enumerate using N passes (if N relations joined): 

• Pass 1:  Find best 1-relation plan for each relation. Include index scans 
available on “SARGable” predicates. 

• SARGable – search argument able (can use an index).  
• SARGable operations would include =,>,<, BETWEEN, and some LIKE 

conditions. Non-SARGable operations would include <>,!=,NOT IN, OR, other 
LIKE conditions. 

• Pass 2:  Find best ways to join result of each 1-relation plan (as outer) to 
another relation.  (All 2-relation plans.) 

• …   
• Pass N:  Find best ways to join result of a (N-1)-relation plan (as outer) to 

the N’th relation.  (All N-relation plans.) 
• For each subset of relations, retain only: 

• cheapest unordered plan, and 
• cheapest plan for each interesting order of the tuples, and discard all 

others. 31 



Enumeration of Plans (Contd.) 

• ORDER BY, GROUP BY, aggregates etc. handled as a 
final step, using either an `interestingly ordered’ 
plan or an additional sorting operator. 

• A k-way (k<N) plan is not combined with an 
additional relation unless there is a join condition 
between them.  
• Do it until all predicates in WHERE have been used up. 
• That is, avoid Cartesian products if possible. 

• In spite of pruning plan space, still creates an 
exponential number of plans. 32 



Cost Estimation for Multi-relation Plans 

• Consider a query block: 
• Reduction factor (RF) is associated with each term.  
• Max number tuples in result = the product of the cardinalities of 

relations in the FROM clause. 
• Result cardinality = max # tuples * product of all RF’s. 
• Multi-relation plans are built up by joining one new relation at a 

time. 
• Cost of join method, plus estimate of join cardinality gives us both cost 

estimate and result size estimate. 

 

SELECT  attribute list 
FROM  relation list 
WHERE  term1 AND ... AND termk 
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Example: 
Pass 1 

Pass 1 
• Sailors:   

• B+ tree matches rating>5, and is probably cheapest.   
• However, if this selection is expected to retrieve a lot of tuples, 

and index is unclustered, file scan may be cheaper. 
• Still, B+ tree plan kept (because tuples are in rating order). 

• Reserves:  B+ tree on bid matches bid=100; cheapest.  

Sailors: 
  B+ tree on rating 
  Hash on sid 
 
Reserves: 
  B+ tree on bid 

Reserves Sailors 

sid=sid 

bid=100  rating > 5 

sname 



Example: Pass 2 

Pass 2 
• Consider each plan retained from Pass 1 as the outer, and 

consider how to join it with the (only) other relation. 
•  Reserves as outer:  Hash index can be used to get Sailors tuples 

that satisfy sid = outer tuple’s sid value. 
• rating > 5 is a search argument pushed to the index scan on Sailors. 

Sailors: 
  B+ tree on rating 
  Hash on sid 
 
Reserves: 
  B+ tree on bid 

Reserves Sailors 

sid=sid 

bid=100  rating > 5 

sname 



System R: Limitation 1 
• Uniform distribution of values: 

• Term col=value has RF 1/NKeys(I), given index I on col 
• Term col>value has RF (High(I)-value)/(High(I)-Low(I)) 

• Often causes highly inaccurate estimates 
• E.g., distribution of gender: male (40), female (4) 
• E.g. distribution of age:  
   0 (2), 1 (3), 2 (3), 3 (1), 4 (2), 5 (1), 6 (3), 7 (8), 8 (4), 9 (2),  
   10 (0), 11 (1), 12 (2), 13 (4), 14 (9). NKeys=15, count = 45.  
   Reduction factor of age=14: 1/15? 9/45!  

• Histogram: approximates a data distribution 
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Histograms 

Buckets 

Counts 

Frequency 

0  1  2  3  4  5  6  7  8  9  10  11  12  13  14 

8 4 15 3 15 

8/3 4/3 15/3 3/3 15/3 

Equiwidth: buckets of equal size 

Buckets 

Counts 

Frequency 

0  1  2  3  4  5  6  7  8  9  10  11  12  13  14 

9 10 10 7 9 

9/4 10/4 10/2 7/4 9/1 

Equidepth: equal counts of buckets  
favoring frequent values 

Still not accurate for 
value 14: 5/45 

Now accurate for 
value 14: 9/45 

Small errors for infrequent 
items: tolerable. 
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System R: Limitation 2 
• Predicates are independent: 

• Result cardinality = max # tuples * product of Reduction Factors of 
matching predicates. 

• Often causes highly inaccurate estimates 
• E.g., Car DB: 10 makes, 100 models. RF of make=‘honda’ and 

model=‘civic’ >> than 1/10 * 1/100!  

• Multi-dimensional histograms [PI’97, MVW’98, GKT’00] 

• Maintain counts and frequency in multi-attribute space. 
• Dependency-based histograms [DGR’01] 

• Learn dependency between attributes and compute conditional 
probability P(model=‘civic’ | make=‘honda’) 

• Can use graphical models… 
38 



Nested Queries With No Correlation 
• Nested query (block): a query that 

appear as an operand of a 
predicate of the form “expression 
operator query”. 

• Nested query with no correlation: 
the nested block does not contain 
a reference to tuple from the 
outer. 
• A nested query needs to be evaluated 

only once.  

• The optimizer arranges it to be 
evaluated before the top level query. 

SELECT  S.sname 
FROM    Sailors S 
WHERE  S.rating >   
   (SELECT  Avg(rating) 
    FROM  Sailors) 

   (SELECT  Avg(rating) 
    FROM  Sailors) 

SELECT  S.sname 
FROM    Sailors S 
WHERE  S.rating > value 



Nested Queries With 
Correlation 

• Nested query with correlation: the 
nested block contains a reference to 
a tuple from the outer. 
• Nested block is optimized independently, 

with the outer tuple considered as 
providing a selection condition. 

• The nested block is executed using nested 
iteration, a tuple-at-a-time approach. 

SELECT  S.sname 
FROM     Sailors S 
WHERE  EXISTS  
   (SELECT  * 
    FROM     Reserves R 
    WHERE  R.bid=103  
     AND      R.sid=S.sid) 

 Nested block to optimize: 
   (SELECT  * 
    FROM    Reserves R 
    WHERE R.bid =103  
       AND   S.sid = outer value) 

SELECT  S.sname 
FROM     Sailors S 
WHERE  EXISTS  
   ( …) 



Query Decorrelation 
• Implicit ordering of nested blocks 

means nested iteration only. 
• The equivalent, non-nested 

version of the query is typically 
optimized better, e.g. hash join or 
sort-merge. 

• Query decorrelation is an 
important task of optimizer.  

SELECT  S.sname 
FROM    Sailors S 
WHERE  EXISTS  
   (SELECT  * 
    FROM     Reserves R 
    WHERE  R.bid=103  
     AND      R.sid=S.sid) 

Equivalent non-nested query: 
SELECT  S.sname 
FROM    Sailors S, Reserves R 
WHERE  S.sid=R.sid  
     AND  R.bid=103 



Query Decorrelation (Contd.) 
• Guideline: Use only one “query block”, if possible. 

SELECT DISTINCT  * 
FROM    Sailors S 
WHERE S.sname IN 
 (SELECT Y.sname 
    FROM YoungSailors Y) 

SELECT DISTINCT S.* 
FROM    Sailors S,  
                YoungSailors Y 
WHERE S.sname = Y.sname 

SELECT * 
FROM    Sailors S 
WHERE S.sname IN 
               (SELECT DISTINCT Y.sname 
                FROM YoungSailors Y)   

SELECT S.* 
FROM    Sailors S,  
                YoungSailors Y 
WHERE S.sname = Y.sname 

  Not always possible ... 

= 

= 
42 



Summary 
• Query optimization is an important task in relational DBMS. 
• Must understand optimization in order to understand the 

performance impact of a given database design (relations, 
indexes) on a workload (set of queries). 

• Two parts to optimizing a query: 
• Consider a set of alternative plans. 

• Must prune search space; typically, left-deep plans only. 
• Must estimate cost of each plan that is considered. 

• Must estimate size of result and cost for each plan node. 
• Key issues: Statistics, indexes, operator implementations. 
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Summary (Contd.) 
• Single-relation queries: 

• All access paths considered, cheapest is chosen. 
• Issues:  Selections that match index, whether index key has all needed 

fields and/or provides tuples in a desired order. 

• Multiple-relation queries: 
• All single-relation plans are first enumerated. 

• Selections/projections considered as early as possible. 
• Next, for each 1-relation plan, all ways of joining another relation (as 

inner) are considered. 
• Next, for each 2-relation plan that is `retained’, all ways of joining 

another relation (as inner) are considered, etc. 
• At each level, for each subset of relations, only best plan for each 

interesting order of tuples is `retained’.  
44 



Rewriting SQL Queries 
• Complicated by interaction of: 

• NULLs, duplicates, aggregation, sub-queries. 
• Guideline: Use only one “query block”, if possible 

SELECT DISTINCT * 
  FROM Sailors S 
 WHERE S.sname IN 
 (SELECT Y.sname 
    FROM YoungSailors Y) 

SELECT DISTINCT S.* 
  FROM Sailors S,  
       YoungSailors Y 
 WHERE S.sname = Y.sname 

SELECT * 
  FROM Sailors S 
 WHERE S.sname IN 
 (SELECT DISTINCT Y.sname 
    FROM YoungSailors Y) 

SELECT S.* 
  FROM Sailors S,  
       YoungSailors Y 
 WHERE S.sname = Y.sname 

  Not always possible ... 

= 

= 
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Summary: Unnesting Queries 
• DISTINCT at top level: Can ignore duplicates. 

• Can sometimes infer DISTINCT at top level!  (e.g. subquery clause 
matches at most one tuple) 

• DISTINCT in subquery w/o DISTINCT at top: Hard to convert. 
• Subqueries inside OR: Hard to convert. 
• ALL subqueries: Hard to convert. 

• EXISTS and ANY are just like IN. 
• Aggregates in subqueries: Tricky. 
• Good news: Some systems now rewrite under the covers (e.g. 

DB2). 
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Complexity of Plan Search 
• Enumeration of all left-deep plans for an n-way join:  
    O(n!), where n! ∼                    with a large n. 

• Plans considered in System R: 

    O(           ), which occurs with a star join graph 

• R.a1 = S1.a1 

• R.a2 = S2.a2 

• … 

• R.an-1 = Sn-1.an-1 

n
e
nn )(2π

12 −n

R 

S1 

S2 

S3 
S4 

Sn-1 



Complexity with a Star Graph 
• Total number of plans considered: 

• Pass 2: (n-1 choose 1) 2-relation subsets, 
                 for each subset, pick one as the outer reln in the join 
                 (best plan for the inner has been chosen in the previous 

pass). 
• Pass 3: (n-1 choose 2) 3-relation subsets,  
                 for each subset, pick one as the outer. 
• … 
• Pass n: (n-1 choose n-1) n-relation subsets, 
                  for each subset, pick one as the outer. 

• Total number of plans =  

• Maximum number of plans stored 
    in a pass? 

R 

S1 

S2 

S3 
S4 

Sn-1 

)2( 1−⋅ nnO
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