
External Sort
Kathleen Durant PhD
Lecture 18 CS 3200
Northeastern University

1

Outline for today
• External Sort
• Review of Sort-Merge Join Algorithm
• Refinement: 2 Pass Sort Merge Join Algorithm
• Algorithms for other RA operators

2

Why Sort?
• A classic problem in computer science
• A precursor to other algorithms like search and merge
• Important utility in DBMS:

• Data requested in sorted order (e.g., ORDER BY)
• e.g., find students in increasing gpa order

• Sorting useful for eliminating duplicate copies in a collection of
records (e.g., SELECT DISTINCT)

• Sort-merge join algorithm involves sorting.
• Sorting is first step in bulk loading B+ tree index.

Problem: sort 1TB of data with 1GB of RAM. Key is to minimize #
I/Os

3

External Sorts
• Two-Way Merge Sort

• Simplified case (pedagogical)

• General External Merge Sort
• Takes better advantage of available memory
• Performance Optimizations
• Blocked I/O
• Double Buffering

• Replacement Sort
• Using B+ trees for Sort

4

2-Way Sort: Requires 3 Buffers

• Pass 1: Read a page, sort it, write it.
• only one buffer page is used

• Pass 2, 3, …, etc.:
• three buffer pages used.

5 Main memory buffers

INPUT 1

INPUT 2

OUTPUT

Disk Disk

Partition data
Pass determines
Size of partition

Two-Way External Merge Sort

A file of N pages:
Pass 0: N sorted runs of 1 page

each
Pass 1: N/2 sorted runs of 2

pages each
Pass 2: N/4 sorted runs of 4

pages each
…
Pass P: 1 sorted run of 2P pages

2P ≥N P ≥ log2N

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,6 2,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8

 Divide and conquer, sort
subfiles (runs) and merge

Cost: Two-Way External Merge Sort

• Each pass, we read +
write N pages in file
2N.

• Number of passes is:

• So total cost is:

 1log2 +N

 ()1log2 2 +NN

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,6 2,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8

 Divide and conquer, sort
subfiles (runs) and merge

General External Merge Sort

• To sort a file with N pages using B buffer pages:
• Pass 0: use B buffer pages. Produce N/B sorted runs of B pages each.
• Pass 2, 3…, etc.: merge B-1 runs.

8

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

Disk Disk

INPUT 2
.

 More than 3 buffer pages. How can we utilize
them?

Cost of External Merge Sort

• Number of passes = 1 + log B-1 N/B
 Cost = 2N * (# of passes)

Pass 0 108/5 = 22 sorted runs of 5 pages
each (last run is only 3 pages)

N/B sorted runs of B pages
each

Pass 1 22/4 = 6 sorted runs of 20 pages
each (last run is only 8 pages)

N/B /(B-1) sorted runs of
B(B-1) pages each

Pass 2 2 sorted runs, 80 pages and 28
pages

N/B /(B-1)2 sorted runs of
B(B-1)2 pages

Pass 3 Sorted file of 108 pages N/B /(B-1)3 sorted runs of
B(B-1)3 (≥N) pages

E.g., with 5 (B) buffer pages, sort 108 (N) page file:

Number of Passes of External Sort

 N B=3 B=5 B=9 B=17 B=129 B=257
100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

Output
(1 buffer)

12
4

3

5

2
8
10

Input
(1 buffer)

Current Set
(B-2 buffers)

Replacement Sort

11

 Produces initial sorted runs as long as possible.
 Replacement Sort: when used in Pass 0 for sorting,

can write out sorted runs of size 2B on average.
 Affects calculation of the number of passes accordingly.

Output
(1 buffer)

12
4

3

5

2
8
10

Input
(1 buffer)

Current Set
(B-2 buffers)

Replacement Sort
• Organize B available buffers:

• 1 buffer for input
• B-2 buffers for current set
• 1 buffer for output

12

 Pick tuple r in the current set with the smallest value that is ≥ largest value in
output, e.g. 8, to extend the current run.

 Fill the space in current set by adding tuples from input.
 Write output buffer out if full, extending the current run.
 Current run terminates if every tuple in the current set is smaller than the

largest tuple in output.

I/O Cost versus Number of I/Os

• Cost metric has so far been the number of I/Os.

• Issue 1: effect of sequential (blocked) I/O?
• Refine external sorting using blocked I/O

• Issue 2: parallelism between CPU and I/O?
• Refine external sorting using double buffering

13

Blocked I/O for External Merge Sort

• Disk behavior of external sorting: sequential or random I/O
for input, output?

• To reduce I/O cost, make each input buffer a block of pages.
• But this will reduce fan-out during merge passes! E.g. from B-1

inputs to (B-1)/2 inputs.
• In practice, most files still sorted in 2-3 passes.

14

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

Disk Disk

INPUT 2
.

. . .

Double Buffering

• To reduce wait time for I/O request to complete, can prefetch
into `shadow block’.
• Potentially, more passes.
• In practice, most files still sorted in 2-3 passes. 15

OUTPUT'

INPUT 1'

INPUT 2'

INPUT k'
Disk Disk

OUTPUT

INPUT 1

INPUT k

INPUT 2

block size b

B main memory buffers, k-way merge

What
happens
when an
input block
has been
consumed?

Sorting Records
• Sorting has become a big game

• Parallel sorting is the name of the game ...
• Datamation sort benchmark: Sort 1M records of size 100 bytes

• Typical DBMS: 15 minutes
• World record: 1.18 seconds (1998 record)

• 16 off-the-shelf PC, each with 2 Pentium processor, two hard disks,
running NT4.0.

• http://www.berkeley.edu/news/berkeleyan/1999/0120/sort.html

• New benchmarks proposed:
• Minute Sort: How many can you sort in 1 minute?
• Dollar Sort: How many can you sort for $1.00?

16

Using B+ Trees for Sorting

• Scenario: Table to be sorted has B+ tree index on sorting column(s).
• Idea: Can retrieve records in order by traversing leaf pages.
• Is this a good idea? Cases to consider:

• B+ tree is clustered
• B+ tree is not clustered

17

Good idea!

Could be a very bad idea!

Clustered B+ Tree Used for Sorting

• Cost: root to the left-

most leaf, then
retrieve all leaf pages
(Alternative 1)

 Almost always better than external sorting!

(Directs search)

Data Records

Index

Data Entries
("Sequential") …

• If Alternative 2 is used?

Additional cost of retrieving
data records: each page
fetched just once.

Unclustered B+ Tree Used for Sorting
• Alternative (2) for data entries; each data entry contains rid of a

data record. In general, one I/O per data record!

19

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

Worse case I/O: RN
R: # records per page
N: # pages in file …

External Sorting vs. Unclustered Index
N Sorting R=1 R=10 R=100
100 200 100 1,000 10,000
1,000 2,000 1,000 10,000 100,000
10,000 40,000 10,000 100,000 1,000,000
100,000 600,000 100,000 1,000,000 10,000,000
1,000,000 8,000,000 1,000,000 10,000,000 100,000,000
10,000,000 80,000,000 10,000,000 100,000,000 1,000,000,000

 R: # of records per page
 R=100 is the more realistic value.
 Worse case numbers (RN) here

For sorting
 B=1,000
Block size=32

Summary: External Sorting
• External sorting is important; DBMS may dedicate part of buffer

pool for sorting
• External merge sort minimizes disk I/O cost:

• Pass 0: Produces sorted runs of size B (# buffer pages). Later passes:
merge runs.

• # of runs merged at a time depends on B, and block size.
• Larger block size means less I/O cost per page.
• Larger block size means smaller # runs merged.
• In practice, # of passes rarely more than 2 or 3.

• Clustered B+ tree is good for sorting; unclustered tree is usually
very bad.

21

Sort-Merge Join Algorithm

22

Sort-Merge Join (R S)
• Sort R and S on join column using external sorting.
• Merge R and S on join column, output result tuples.
 Repeat until either R or S is finished:

• Scanning:
• Advance scan of R until current R-tuple >=current S tuple,
• Advance scan of S until current S-tuple>=current R tuple;
• Do this until current R tuple = current S tuple.

• Matching:
• Match all R tuples and S tuples with same value; output <r, s> for all pairs of

such tuples.

• Data access patterns for R and S?

23

i=j

R is scanned once, each S partition scanned once per matching R tuple

Sort-Merge Join

Output
28 28
28 28
31 31
31 31
31 31
31 31
58 58

24

R Sid

28

28

31

31

31

31

58

Q Sid

22

28

31

44

58
Find a match

Walk right
relation
 for more
 matches

Walk left
Relation
 for more
Matches

R has multiple matches
Has foreign key to Q

Example of Sort-Merge Join

• Cost: M log M + N log N + merging_cost (∈[M+N, M*N])
• The cost of merging could be M*N (but quite unlikely). When?
• M+N is guaranteed in foreign key join; treat the referenced relation as inner
• As with sorting, log M and log N are small numbers, e.g. 3, 4.

• With 300 buffer pages, both Reserves and Sailors can be sorted in 2
passes; total join cost is 7500 (assuming M+N). 25

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

Refinement of Sort-Merge Join
• Idea:

• Sorting of R and S has respective merging phases
• Join of R and S also has a merging phase
• Combine all these merging phases

• Two-pass algorithm for sort-merge join:
• Pass 0: sort subfiles of R, S individually
• Pass 1: merge sorted runs of R, merge sorted runs of S, and merge

the resulting R and S files as they are generated by checking the join
condition.

26

2-Pass Sort-Merge Algorithm

27

B Main memory buffers

Run1 of R

RunK of R

OUTPUT

Join Results
Run2 of R

. . .

Relation R

. . .

Run1 of S

RunK of S

Run2 of S

Relation S

. . .

Memory Requirement and Cost
• Memory requirement for 2-pass sort-merge:

• Assume U is the size of the larger relation. U= max(M, N).
• Sorting pass produces sorted runs of length up to 2B

(“replacement sort”) .
 # of runs per relation ≤ U/2B.
• Merging pass holds sorted runs of both relations and an output

buffer, merges while checking join condition.
 2*(U/2B) < B → B >

• Cost: read & write each relation in Pass 0
 + read each relation in merging pass
 (+ writing result tuples, ignore here) = 3 (M+N)

• In example, cost goes down from 7500 to 4500 I/Os.

U

Parallelizing Approaches

Fragment and Replica Technique
Symmetric Partititioning

. . .
. . .

R & Q Hash table for block of R
(block size k < B-1 pages)

Input buffer for S Output buffer

.

.

.

Join
 Result

Evaluation of other RAs
• Evaluation of joins

• Evaluation of selections

• Evaluation of projections

• Evaluation of other operations

30

Using an Index for Selections
• Cost depends on # qualifying tuples, and clustering.

• Cost of finding data entries (often small) + cost of retrieving records
(could be large w/o clustering).

• For gpa > 3.0, if 10% of tuples qualify (100 pages, 10,000 tuples), cost ≈
100 I/Os with a clustered index; otherwise, up to 10,000 I/Os!

• Important refinement for unclustered indexes:
1. Find qualifying data entries.
2. Sort the rid’s of the data records to be retrieved.
3. Fetch rids in order.

 Each data page is looked at just once, although # of such
pages likely to be higher than with clustering.

31

Approach 1 to General Selections
• (1) Find the most selective access path, retrieve tuples using it, and

(2) apply any remaining terms that don’t match the index on the
fly.
• Most selective access path: An index or file scan that is expected to

require the smallest # I/Os.
• Terms that match this index reduce the number of tuples retrieved;
• Other terms are used to discard some retrieved tuples, but do not affect

I/O cost.
• Consider day<8/9/94 AND bid=5 AND sid=3.

• A B+ tree index on day can be used; then, bid=5 and sid=3 must be
checked for each retrieved tuple.

• A hash index on <bid, sid> could be used; day<8/9/94 must then be
checked on the fly.

32

Approach 2: Intersection of
Rids

• If we have 2 or more matching indexes that use Alternatives (2) or
(3) for data entries:
• Get sets of rids of data records using each matching index.
• Intersect these sets of rids.
• Retrieve the records and apply any remaining terms.
• Consider day<8/9/94 AND bid=5 AND sid=3. If we have a B+ tree

index on day and an index on sid, both using Alternative (2), we can:
• retrieve rids of records satisfying day<8/9/94 using the first, rids of

records satisfying sid=3 using the second,
• intersect these rids,
• retrieve records and check bid=5.

33

The Projection Operation

• Projection consists of two steps:
• Remove unwanted attributes (i.e., those not specified in the

projection).
• Eliminate any duplicate tuples that are produced, if DISTINCT is

specified.

• Algorithms: single relation sorting and hashing based on all
remaining attributes.

34

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

Projection Based on Sorting
• Modify Pass 0 of external sort to eliminate unwanted fields.

• Runs of about 2B pages are produced,
• But tuples in runs are smaller than input tuples. (Size ratio

depends on # and size of fields that are dropped.)
• Modify merging passes to eliminate duplicates.

• # result tuples smaller than input. Difference depends on # of
duplicates.

• Cost: In Pass 0, read input relation (size M), write out same
number of smaller tuples. In merging passes, fewer tuples
written out in each pass.
• Using Reserves example, 1000 input pages reduced to 250 in

Pass 0 if size ratio is 0.25. 35

Projection Based on Hashing
• Partitioning phase: Read R using one input buffer. For each

tuple, discard unwanted fields, apply hash function h1 to
choose one of B-1 output buffers.
• Result is B-1 partitions (of tuples with no unwanted fields). 2

tuples from different partitions guaranteed to be distinct.
• Duplicate elimination phase: For each partition, read it and

build an in-memory hash table, using hash fn h2 (<> h1) on
all fields, while discarding duplicates.
• If partition does not fit in memory, can apply hash-based

projection algorithm recursively to this partition.
• Cost: For partitioning, read R, write out each tuple, but with

fewer fields. This is read in next phase. 36

Discussion of Projection
• Sort-based approach is the standard; better handling of

skew and result is sorted.
• If an index on the relation contains all wanted attributes in

its search key, can do index-only scan.
• Apply projection techniques to data entries (much smaller!)

• If a tree index contains all wanted attributes as prefix of
search key can do even better:
• Retrieve data entries in order (index-only scan), discard

unwanted fields, compare adjacent tuples to check for
duplicates.

• E.g. projection on <sid, age>, search key on <sid, age, rating>.
37

Set Operations
• Intersection and cross-product special cases of join.

• Intersection: equality on all fields.
• Union (Distinct) and Except similar; we’ll do union.
• Sorting based approach to union:

• Sort both relations (on combination of all attributes).
• Scan sorted relations and merge them, removing duplicates.

• Hashing based approach to union:
• Partition R and S using hash function h.
• For each R-partition, build in-memory hash table (using h2).

Scan S-partition. For each tuple, probe the hash table. If the
tuple is in the hash table, discard it; o.w. add it to the hash table.

38

Aggregate Operations (AVG, MIN, etc.)
• Without grouping :

• In general, requires scanning the relation.
• Given index whose search key includes all attributes in the

SELECT or WHERE clauses, can do index-only scan.
• With grouping (GROUP BY):

• Sort on group-by attributes, then scan relation and compute
aggregate for each group. (Can improve upon this by combining
sorting and aggregate computation.)

• Hashing on group-by attributes also works.
• Given tree index whose search key includes all attributes in

SELECT, WHERE and GROUP BY clauses: can do index-only scan;
if group-by attributes form prefix of search key, can retrieve data
entries/tuples in group-by order.

39

Summary
• A virtue of relational DBMSs: queries are composed of a few

basic operators; the implementation of these operators can
be carefully tuned.

• Algorithms for evaluating relational operators use some
simple ideas extensively:
• Indexing: Can use WHERE conditions to retrieve small set of tuples

(selections, joins)
• Iteration: Sometimes, faster to scan all tuples even if there is an

index. (And sometimes, we can scan the data entries in an index
instead of the table itself.)

• Partitioning: By using sorting or hashing, we can partition the input
tuples and replace an expensive operation by similar operations on
smaller inputs.

40

Summary: Query plan
• Many implementation techniques for each

operator; no universally superior technique for
most operators.

• Must consider available alternatives for each
operation in a query and choose best one based
on:
• system state (e.g., memory) and
• statistics (table size, # tuples matching value k).

• This is part of the broader task of optimizing a
query composed of several ops. 41

	External Sort
	Outline for today
	Why Sort?
	External Sorts
	2-Way Sort: Requires 3 Buffers
	Two-Way External Merge Sort
	Cost: Two-Way External Merge Sort
	General External Merge Sort
	Cost of External Merge Sort
	Number of Passes of External Sort
	Replacement Sort
	Replacement Sort
	I/O Cost versus Number of I/Os
	Blocked I/O for External Merge Sort
	Double Buffering
	Sorting Records
	Using B+ Trees for Sorting
	Clustered B+ Tree Used for Sorting
	Unclustered B+ Tree Used for Sorting
	External Sorting vs. Unclustered Index
	Summary: External Sorting
	Sort-Merge Join Algorithm
	Sort-Merge Join (R S)
	Sort-Merge Join
	Example of Sort-Merge Join
	Refinement of Sort-Merge Join
	2-Pass Sort-Merge Algorithm
	Memory Requirement and Cost
	Parallelizing Approaches
	Evaluation of other RAs
	Using an Index for Selections
	Approach 1 to General Selections
	Approach 2: Intersection of Rids
	The Projection Operation
	Projection Based on Sorting
	Projection Based on Hashing
	Discussion of Projection
	Set Operations
	Aggregate Operations (AVG, MIN, etc.)
	Summary
	Summary: Query plan

