External Sort

Kathleen Durant PhD
Lecture 18 CS 3200
Northeastern University
Outline for today

• External Sort
• Review of Sort-Merge Join Algorithm
• Refinement: 2 Pass Sort Merge Join Algorithm
• Algorithms for other RA operators
Why Sort?

- A classic problem in computer science
- A precursor to other algorithms like search and merge
- Important utility in DBMS:
 - Data requested in sorted order (e.g., ORDER BY)
 - e.g., find students in increasing gpa order
 - Sorting useful for eliminating duplicate copies in a collection of records (e.g., SELECT DISTINCT)
 - Sort-merge join algorithm involves sorting.
 - Sorting is first step in bulk loading B+ tree index.

Problem: sort 1TB of data with 1GB of RAM. Key is to minimize # I/Os
External Sorts

- Two-Way Merge Sort
 - Simplified case (pedagogical)
- General External Merge Sort
 - Takes better advantage of available memory
 - Performance Optimizations
 - Blocked I/O
 - Double Buffering
- Replacement Sort
- Using B+ trees for Sort
2-Way Sort: Requires 3 Buffers

• Pass 1: Read a page, sort it, write it.
 • only one buffer page is used
• Pass 2, 3, ..., etc.:
 • three buffer pages used.

Diagram:
- Disk
- Main memory buffers: INPUT 1, INPUT 2, OUTPUT
- Disk

Partition data
Pass determines
Size of partition
Two-Way External Merge Sort

- **Divide and conquer**, sort subfiles (runs) and merge

A file of N pages:
- **Pass 0**: N sorted runs of 1 page each
- **Pass 1**: N/2 sorted runs of 2 pages each
- **Pass 2**: N/4 sorted runs of 4 pages each
- ...
- **Pass P**: 1 sorted run of 2^P pages

$2^P \geq N \Rightarrow P \geq \log_2 N$
Cost: Two-Way External Merge Sort

- **Divide and conquer**, sort subfiles (runs) and merge

- Each pass, we read + write N pages in file → 2N.

- Number of passes is: \[\lceil \log_2 N \rceil + 1 \]

- So total cost is:
 \[2N \left(\lceil \log_2 N \rceil + 1 \right) \]
General External Merge Sort

More than 3 buffer pages. How can we utilize them?

• To sort a file with N pages using B buffer pages:
 • Pass 0: use B buffer pages. Produce $\left\lceil \frac{N}{B} \right\rceil$ sorted runs of B pages each.
 • Pass 2, 3..., etc.: merge $B-1$ runs.
Cost of External Merge Sort

E.g., with 5 (B) buffer pages, sort 108 (N) page file:

<table>
<thead>
<tr>
<th>Pass</th>
<th>Description</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass 0</td>
<td>(\left\lceil \frac{108}{5} \right\rceil = 22) sorted runs of 5 pages</td>
<td>(\left\lceil \frac{N}{B} \right\rceil) sorted runs of B pages each each (last run is only 3 pages)</td>
</tr>
<tr>
<td></td>
<td>(\frac{22}{4}) = 6 sorted runs of 20 pages each (last run is only 8 pages)</td>
<td>(\frac{N}{B}) (/(B-1)) sorted runs of B(B-1) pages each</td>
</tr>
<tr>
<td>Pass 1</td>
<td>2 sorted runs, 80 pages and 28 pages</td>
<td>(\frac{N}{B})/(B-1)^2 sorted runs of B(B-1)^2 pages</td>
</tr>
<tr>
<td>Pass 2</td>
<td>Sorted file of 108 pages</td>
<td>(\frac{N}{B})/(B-1)^3 sorted runs of B(B-1)^3 (\geq N) pages</td>
</tr>
</tbody>
</table>

- Number of passes = \(1 + \left\lceil \log_{B-1} \left\lceil \frac{N}{B} \right\rceil \right\rceil \)
- Cost = \(2N \times \) (# of passes)
Number of Passes of External Sort

<table>
<thead>
<tr>
<th>N</th>
<th>B=3</th>
<th>B=5</th>
<th>B=9</th>
<th>B=17</th>
<th>B=129</th>
<th>B=257</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,000</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10,000</td>
<td>13</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>100,000</td>
<td>17</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1,000,000</td>
<td>20</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10,000,000</td>
<td>23</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>100,000,000</td>
<td>26</td>
<td>14</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>30</td>
<td>15</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>
Replacement Sort

- Produces initial sorted runs as long as possible.
- **Replacement Sort**: when used in Pass 0 for sorting, can write out sorted runs of size $2B$ on average.
 - Affects calculation of the number of passes accordingly.
Replacement Sort

- Organize B available buffers:
 - 1 buffer for input
 - B-2 buffers for current set
 - 1 buffer for output

- Pick tuple r in the current set with the smallest value that is \geq largest value in output, e.g. 8, to extend the current run.
- Fill the space in current set by adding tuples from input.
- Write output buffer out if full, extending the current run.
- Current run terminates if every tuple in the current set is smaller than the largest tuple in output.
I/O Cost versus Number of I/Os

• Cost metric has so far been the number of I/Os.
• Issue 1: effect of sequential (blocked) I/O?
 • Refine external sorting using blocked I/O
• Issue 2: parallelism between CPU and I/O?
 • Refine external sorting using double buffering
Blocked I/O for External Merge Sort

- **Disk behavior** of external sorting: **sequential** or **random** I/O for input, output?
- To reduce I/O cost, make each input buffer a **block** of pages.
 - But this will reduce fan-out during merge passes! E.g. from B-1 inputs to (B-1)/2 inputs.
 - In practice, most files still sorted in 2-3 passes.
Double Buffering

What happens when an input block has been consumed?

- To reduce wait time for I/O request to complete, can \textit{prefetch} into \texttt{`shadow block'}.
 - Potentially, more passes.
 - In practice, most files \textit{still} sorted in 2-3 passes.
Sorting Records

• Sorting has become a big game
 • Parallel sorting is the name of the game ...
• Datamation sort benchmark: Sort 1M records of size 100 bytes
 • Typical DBMS: 15 minutes
 • World record: 1.18 seconds (1998 record)
 • 16 off-the-shelf PC, each with 2 Pentium processor, two hard disks, running NT4.0.
• New benchmarks proposed:
 • Minute Sort: How many can you sort in 1 minute?
 • Dollar Sort: How many can you sort for $1.00?
Using B+ Trees for Sorting

- Scenario: Table to be sorted has B+ tree index on sorting column(s).
- **Idea:** Can retrieve records in order by traversing leaf pages.
- Is this a good idea? Cases to consider:
 - B+ tree is clustered
 - B+ tree is not clustered

Good idea!

Could be a very bad idea!
Clustered B+ Tree Used for Sorting

- Cost: root to the left-most leaf, then retrieve all leaf pages (Alternative 1)

- If Alternative 2 is used? Additional cost of retrieving data records: each page fetched just once.

Almost always better than external sorting!
Unclustered B+ Tree Used for Sorting

- Alternative (2) for data entries; each data entry contains rid of a data record. In general, one I/O per data record!

Worse case I/O: RN
R: # records per page
N: # pages in file

Index (Directs search)

Data Entries ("Sequence set")

Data Records
External Sorting vs. Unclustered Index

<table>
<thead>
<tr>
<th>N</th>
<th>Sorting</th>
<th>R=1</th>
<th>R=10</th>
<th>R=100</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>200</td>
<td>100</td>
<td>1,000</td>
<td>10,000</td>
</tr>
<tr>
<td>1,000</td>
<td>2,000</td>
<td>1,000</td>
<td>10,000</td>
<td>100,000</td>
</tr>
<tr>
<td>10,000</td>
<td>40,000</td>
<td>10,000</td>
<td>100,000</td>
<td>1,000,000</td>
</tr>
<tr>
<td>100,000</td>
<td>600,000</td>
<td>100,000</td>
<td>1,000,000</td>
<td>10,000,000</td>
</tr>
<tr>
<td>1,000,000</td>
<td>8,000,000</td>
<td>1,000,000</td>
<td>10,000,000</td>
<td>100,000,000</td>
</tr>
<tr>
<td>10,000,000</td>
<td>80,000,000</td>
<td>10,000,000</td>
<td>100,000,000</td>
<td>1,000,000,000</td>
</tr>
</tbody>
</table>

*For sorting B=1,000
Block size=32

*R: # of records per page
R=100 is the more realistic value.*

Worse case numbers (RN) here
Summary: External Sorting

- External sorting is important; DBMS may dedicate part of buffer pool for sorting
- External merge sort minimizes disk I/O cost:
 - Pass 0: Produces sorted runs of size B (# buffer pages). Later passes: merge runs.
 - # of runs merged at a time depends on B, and block size.
 - Larger block size means less I/O cost per page.
 - Larger block size means smaller # runs merged.
 - In practice, # of passes rarely more than 2 or 3.
- Clustered B+ tree is good for sorting; unclustered tree is usually very bad.
Sort-Merge Join Algorithm
Sort-Merge Join \((R \bowtie S)_{i=j}\)

- **Sort** R and S on join column using external sorting.
- **Merge** R and S on join column, output result tuples.

Repeat until either R or S is finished:

- **Scanning**:
 - Advance scan of R until current R-tuple \(\geq\) current S tuple,
 - Advance scan of S until current S-tuple \(\geq\) current R tuple;
 - Do this until current R tuple = current S tuple.

- **Matching**:
 - Match all R tuples and S tuples with same value; output \(<r, s>\) for all pairs of such tuples.

- Data access patterns for R and S?

 R is scanned once, each S partition scanned once per matching R tuple
Sort-Merge Join

<table>
<thead>
<tr>
<th>R Sid</th>
<th>Q Sid</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>22</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>31</td>
<td>44</td>
</tr>
<tr>
<td>31</td>
<td>58</td>
</tr>
<tr>
<td>58</td>
<td>58</td>
</tr>
</tbody>
</table>

Output
28 28
28 28
31 31
31 31
31 31
58 58

Find a match
Walk right relation for more matches
Walk left Relation for more Matches

/* Stage 1: Sorting */
sort R on $R.A$
sort Q on $Q.B$

/* Stage 2: Merging */
$r =$ first tuple in R
$q =$ first tuple in Q

while $r \neq EOR$ and $q \neq EOR$
do

if $r.A > q.B$ then
$q =$ next tuple in Q after q
else
if $r.A < q.B$ then
$r =$ next tuple in R after r
else
put $r \circ q$ in the output relation

/* output further tuples that match with r */
$q' =$ next tuple in Q after q
while $q' \neq EOR$ and $r.A = q'.B$
do
put $r \circ q'$ in the output relation
$q' =$ next tuple in Q after q'
end

/* output further tuples that match with q */
$r' =$ next tuple in R after r
while $r' \neq EOR$ and $r'.A = q.B$
do
put $r' \circ q$ in the output relation
$r' =$ next tuple in R after r'
end

end

R has multiple matches
Has foreign key to Q
Example of Sort-Merge Join

- Cost: $M \log M + N \log N + \text{merging_cost \ (} \in [M+N, M*N])$
 - The cost of merging could be $M*N$ (but quite unlikely). When?
 - $M+N$ is guaranteed in foreign key join; treat the referenced relation as inner
 - As with sorting, $\log M$ and $\log N$ are small numbers, e.g. 3, 4.
- With 300 buffer pages, both Reserves and Sailors can be sorted in 2 passes; total join cost is 7500 (assuming M+N).

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
<th>sid</th>
<th>bid</th>
<th>day</th>
<th>rname</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>28</td>
<td>103</td>
<td>12/4/96</td>
<td>guppy</td>
</tr>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
<td>28</td>
<td>103</td>
<td>11/3/96</td>
<td>yuppy</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
<td>31</td>
<td>101</td>
<td>10/10/96</td>
<td>dustin</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
<td>31</td>
<td>102</td>
<td>10/12/96</td>
<td>lubber</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td>31</td>
<td>101</td>
<td>10/11/96</td>
<td>dustin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
<td>dustin</td>
</tr>
</tbody>
</table>
Refinement of Sort-Merge Join

- **Idea:**
 - *Sorting* of R and S has respective merging phases
 - *Join* of R and S also has a merging phase
 - Combine all these merging phases

- **Two-pass algorithm** for sort-merge join:
 - Pass 0: sort subfiles of R, S individually
 - Pass 1: merge sorted runs of R, merge sorted runs of S, and merge the resulting R and S files as they are generated by checking the join condition.
2-Pass Sort-Merge Algorithm

Relation R
- Run1 of R
- Run2 of R
- RunK of R

Relation S
- Run1 of S
- Run2 of S
- RunK of S

B Main memory buffers

OUTPUT

Join Results
Memory Requirement and Cost

• Memory requirement for 2-pass sort-merge:
 • Assume U is the size of the larger relation. $U = \max(M, N)$.
 • **Sorting** pass produces sorted runs of length up to $2B$ ("replacement sort").
 # of runs per relation $\leq U/2B$.
 • **Merging** pass holds sorted runs of both relations and an output buffer, merges while checking join condition.

\[
2*(U/2B) < B \implies B > \sqrt{U}
\]

• **Cost:** read & write each relation in Pass 0
 + read each relation in merging pass
 (+ writing result tuples, ignore here) = $3(M + N)$
 • In example, cost goes down from 7500 to 4500 I/Os.
Parallelizing Approaches

Fragment and Replica Technique

Hash table for block of R
(block size \(k < B-1\) pages)

Join

Result

Symmetric Partitioning

Input buffer for S
Output buffer

Input Data
Partitioning Stage
Data Fragments
Joining Stage
Local Results
Merging Stage
Global Result
Evaluation of other RAs

• Evaluation of joins
• Evaluation of selections
• Evaluation of projections
• Evaluation of other operations
Using an Index for Selections

- Cost depends on \# qualifying tuples, and clustering.
 - Cost of finding data entries (often small) + cost of retrieving records (could be large w/o clustering).
 - For $gpa > 3.0$, if 10% of tuples qualify (100 pages, 10,000 tuples), cost ≈ 100 I/Os with a clustered index; otherwise, up to 10,000 I/Os!

- Important refinement for unclustered indexes:
 1. Find qualifying data entries.
 2. **Sort the rid’s** of the data records to be retrieved.
 3. Fetch rids in order.

Each data page is looked at just once, although \# of such pages likely to be higher than with clustering.
Approach 1 to General Selections

• (1) Find the most selective access path, retrieve tuples using it, and (2) apply any remaining terms that don’t match the index on the fly.

• Most selective access path: An index or file scan that is expected to require the smallest # I/Os.
 • Terms that match this index reduce the number of tuples retrieved;
 • Other terms are used to discard some retrieved tuples, but do not affect I/O cost.

• Consider day<8/9/94 AND bid=5 AND sid=3.
 • A B+ tree index on day can be used; then, bid=5 and sid=3 must be checked for each retrieved tuple.
 • A hash index on <bid, sid> could be used; day<8/9/94 must then be checked on the fly.
Approach 2: Intersection of Rids

- If we have 2 or more matching indexes that use Alternatives (2) or (3) for data entries:
 - Get sets of rids of data records using each matching index.
 - **Intersect** these sets of rids.
 - Retrieve the records and apply any remaining terms.
 - Consider \(\text{day}<8/9/94 \ AND \ bid=5 \ AND \ sid=3 \). If we have a B+ tree index on \(\text{day} \) and an index on \(\text{sid} \), both using Alternative (2), we can:
 - retrieve rids of records satisfying \(\text{day}<8/9/94 \) using the first, rids of records satisfying \(\text{sid}=3 \) using the second,
 - intersect these rids,
 - retrieve records and check \(\text{bid}=5 \).
The Projection Operation

- Projection consists of two steps:
 - Remove unwanted attributes (i.e., those not specified in the projection).
 - Eliminate any duplicate tuples that are produced, if DISTINCT is specified.

- Algorithms: single relation sorting and hashing based on all remaining attributes.

```sql
SELECT DISTINCT R.sid, R.bid
FROM Reserves R
```
Projection Based on Sorting

• Modify Pass 0 of external sort to eliminate unwanted fields.
 • Runs of about 2B pages are produced,
 • But tuples in runs are smaller than input tuples. (Size ratio depends on # and size of fields that are dropped.)
• Modify merging passes to eliminate duplicates.
 • # result tuples smaller than input. Difference depends on # of duplicates.
• Cost: In Pass 0, read input relation (size M), write out same number of smaller tuples. In merging passes, fewer tuples written out in each pass.
 • Using Reserves example, 1000 input pages reduced to 250 in Pass 0 if size ratio is 0.25.
Projection Based on Hashing

- **Partitioning phase**: Read R using one input buffer. For each tuple, discard unwanted fields, apply hash function h_1 to choose one of B-1 output buffers.
 - Result is B-1 partitions (of tuples with no unwanted fields). 2 tuples from different partitions guaranteed to be distinct.

- **Duplicate elimination phase**: For each partition, read it and build an in-memory hash table, using hash fn $h_2 (<> h_1)$ on all fields, while discarding duplicates.
 - If partition does not fit in memory, can apply hash-based projection algorithm recursively to this partition.

- **Cost**: For partitioning, read R, write out each tuple, but with fewer fields. This is read in next phase.
Discussion of Projection

• Sort-based approach is the standard; better handling of skew and result is sorted.
• If an index on the relation contains all wanted attributes in its search key, can do index-only scan.
 • Apply projection techniques to data entries (much smaller!)
• If a tree index contains all wanted attributes as prefix of search key can do even better:
 • Retrieve data entries in order (index-only scan), discard unwanted fields, compare adjacent tuples to check for duplicates.
 • E.g. projection on <sid, age>, search key on <sid, age, rating>.
Set Operations

• Intersection and cross-product special cases of join.
 • Intersection: equality on all fields.

• Union (Distinct) and Except similar; we’ll do union.

• Sorting based approach to union:
 • Sort both relations (on combination of all attributes).
 • Scan sorted relations and merge them, removing duplicates.

• Hashing based approach to union:
 • Partition R and S using hash function h.
 • For each R-partition, build in-memory hash table (using $h2$).
 Scan S-partition. For each tuple, probe the hash table. If the tuple is in the hash table, discard it; o.w. add it to the hash table.
Aggregate Operations (AVG, MIN, etc.)

- Without grouping:
 - In general, requires scanning the relation.
 - Given index whose search key includes all attributes in the SELECT or WHERE clauses, can do index-only scan.

- With grouping (GROUP BY):
 - Sort on group-by attributes, then scan relation and compute aggregate for each group. (Can improve upon this by combining sorting and aggregate computation.)
 - Hashing on group-by attributes also works.
 - Given tree index whose search key includes all attributes in SELECT, WHERE and GROUP BY clauses: can do index-only scan; if group-by attributes form prefix of search key, can retrieve data entries/tuples in group-by order.
Summary

• A virtue of relational DBMSs: *queries are composed of a few basic operators*; the implementation of these operators can be carefully tuned.

• Algorithms for evaluating relational operators use some simple ideas extensively:
 • **Indexing:** Can use WHERE conditions to retrieve small set of tuples (selections, joins)
 • **Iteration:** Sometimes, faster to scan all tuples even if there is an index. (And sometimes, we can scan the data entries in an index instead of the table itself.)
 • **Partitioning:** By using sorting or hashing, we can partition the input tuples and replace an expensive operation by similar operations on smaller inputs.
Summary: Query plan

• Many implementation techniques for each operator; no universally superior technique for most operators.
• Must consider available alternatives for each operation in a query and choose best one based on:
 • system state (e.g., memory) and
 • statistics (table size, # tuples matching value k).
• This is part of the broader task of optimizing a query composed of several ops.