
Evaluation of
relational operators
Kathleen Durant PhD
CS 3200 Lecture 17

1

Why is it important?
• Now that we know about the benefits of

indexes, how does the DBMS know when to use
them?

• An SQL query can be implemented in many
ways, but which one is best?
• Perform selection before or after join etc.
• Many ways of physically implementing a join (or other

relational operator), how to choose the right one?
• The DBMS does this automatically, but we need

to understand it to know what performance to
expect

2

Query Evaluation
• SQL query is implemented by a query plan

• Tree of relational operators
• Each internal node operates on its children
• Can choose different operator implementations

• Two main issues in query optimization:
• For a given query, what plans are considered?

• Algorithm to search plan space for cheapest (estimated) plan.

• How is the cost of a plan estimated?

• Ideally: Want to find best plan.
• Practically: Avoid worst plans! 3

Tree of relational operators

SELECT sid
FROM Sailors NATURAL JOIN Reserves
 WHERE bid = 100 AND rating > 5;

πsid (σbid=100 AND rating>5 (Sailors Reserves))

4

πsid

σbd=100 AND rating>5

Sailors Reserves

RA expressions are
represented by an

expression tree.

An algorithm is chosen
for each node in the

expression tree.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: date, rname: string)

Approaches to Evaluation
• Algorithms for evaluating relational operators use some

simple ideas extensively:
• Indexing: Can use WHERE conditions to retrieve small set of

tuples (selections, joins)
• Iteration: Sometimes, faster to scan all tuples even if there is an

index. (And sometimes, we can scan the data entries in an index
instead of the table itself.)

• Partitioning: By using sorting or hashing, we can partition the
input tuples and replace an expensive operation by similar
operations on smaller inputs.

* Watch for these techniques as we discuss query
evaluation during this lecture 5

Statistics and Information Schema
• Need information about the relations and indexes

involved. Catalog typically contains:
• #tuples (NTuples) and #pages (NPages) for each relation.
• #distinct key values (NKeys), INPages index pages, and low/high

key values (ILow/IHigh) for each index.
• Index height (IHeight) for each tree index.
• Catalog data stored in tables; can be queried

• Catalogs updated periodically.
• Updating whenever data changes is too expensive; costs are

approximate anyway, so slight inconsistency expected.

• More detailed information (e.g., histograms of the
values in some field) sometimes stored.

6

Access Paths :Method for retrieval
• Access path = way of retrieving tuples:

• File scan, or index that matches a selection (in the query)
• Cost depends heavily on access path selected

• A tree index matches (a conjunction of) conditions that involve only
attributes in a prefix of the search key.

• A hash index matches (a conjunction of) conditions that has a term
attribute = value for every attribute in the search key of the index.

• Selection conditions are first converted to conjunctive normal form
(CNF):
• E.g., (day<8/9/94 OR bid=5 OR sid=3) AND (rname=‘Paul’ OR bid=5 OR

sid=3)
 7

Matching an index
Search key <a, b, c>

1. a=5 and b= 3?
2. a > 5 and b < 3
3. b=3
4. a=7 and b=5 and c=4 and

d>4
5. a=7 and c=5

8

Tree Index
1. Yes
2. Yes
3. No
4. Yes
5. Yes

Hash Index
1. No
2. No
3. No
4. Yes
5. No

Index matches (part of) a predicate if:
Conjunction of terms involving only attributes (no disjunctions)
 Hash: only equality operation, predicate has all index attributes.
Tree: Attributes are a prefix of the search key, any ops.

Selectivity of access path
• Selectivity = #pages retrieved (index + data pages)
• Find the most selective access path, retrieve tuples using it, and

apply any remaining terms that don’t match the index:
• Most selective path – fewer I/O
• Terms that match the index reduce the number of tuples retrieved
• Other terms are used to discard some retrieved tuples, but do not

affect number of tuples fetched.
• Consider “day < 8/9/94 AND bid=5 AND sid=3”.

• Can use B+ tree index on day; then check bid=5 and sid=3 for each
retrieved tuple

• Could similarly use a hash index on <bid,sid>; then check day < 8/9/94

9

Relational Operations
• We will consider how to implement:

• Selection () Selects a subset of rows from relation.
• Projection () Deletes unwanted columns from relation.
• Join () Allows us to combine two relations.
• Set-difference () Tuples in reln. 1, but not in reln. 2.
• Union () Tuples in reln. 1 and in reln. 2.
• Aggregation (SUM, MIN, etc.) and GROUP BY
• Order By Returns tuples in specified order.

• Since each op returns a relation, ops can be composed. After we
cover the operations, we will discuss how to optimize queries formed
by composing them.

10

σ
π
−





Relational Operators to
Evaluate
• Evaluation of joins

• Evaluation of selections

• Evaluation of projections

• Evaluation of other operations

11

Schema for Examples

• Sailors:
• Each tuple is 50 bytes long,
• 80 tuples per page
• 500 pages. ~40,000 tuples

• Reserves:
• Each tuple is 40 bytes long,
• 100 tuples per page,
• 1000 pages. ~100,000 tuples 12

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: date, rname: string)

Equality Joins With One Join Column

• In algebra: R⋈ S, natural join, common operation
• R X S is large; R X S followed by a selection is inefficient.
• Must be carefully optimized.

• Assume: M pages in R, pR tuples per page, N pages in S, pS tuples
per page.

• Cost metric: # of I/Os. Ignore output cost in analysis.

13

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

Simple Nested Loops Join (NLJ)

• For each tuple in the outer relation R, scan the entire inner relation
S.
• Cost: M + (pR * M) * N = 1000 + 100*1000*500 = 1,000+ (5 * 107)

I/Os.
• M=#pages of R, pR=# R tuples per page, N pages in S

• Assuming each I/O takes 10 ms, the join will take about 140 hours!

14

foreach tuple r in R do
 foreach tuple s in S do
 if ri == sj then add <r, s> to result

Page-Oriented Nested Loops
Join

• How can we improve Simple Nested Loop Join?
• For each page of R, get each page of S, and write out matching pairs

of tuples <r, s>, where r is in R-page and S is in S-page.
• Cost: M + M * N = 1000 + 1000*500 = 501,000 I/Os.
• If each I/O takes 10 ms, the join will take 1.4 hours.

• Which relation should be the outer?
• The smaller relation (S) should be the outer:
 cost = 500 + 500*1000 = 500,500 I/Os.

• How many buffers do we need?

15

Block Nested Loops Join
• How can we utilize additional buffer pages?

• If the smaller relation fits in memory, use it as outer, read the inner only
once.

• Otherwise, read a big chunk of it each time, resulting in reduced # times of
reading the inner.

• Block Nested Loops Join:
• Take the smaller relation, say R, as outer, the other as inner.
• Buffer allocation: one buffer for scanning the inner S, one buffer for

output, all remaining buffers for holding a ``block’’ of outer R.

16

Block Nested Loops Join
Diagram

17
. . .

. . .

R & S
Hash table for block of R
(block size k < B-1 pages)

Input buffer for S Output buffer

. . .

Join Result

foreach block in R do
 build a hash table on R-block
 foreach S page
 for each matching tuple r in R-block, s in S-page do
 add <r, s> to result

Examples of Block Nested
Loops
• Cost: Scan of outer table + #outer blocks * scan of inner table

• #outer blocks =  # pages of outer / block size
• Given available buffer size B, block size is at most B-2.

• With Sailors (S) as outer, a block has 100 pages of S:
• Cost of scanning S is 500 I/Os; a total of 5 blocks.
• Per block of S, we scan Reserves; 5*1000 I/Os.
• Total = 500 + 5 * 1000 = 5,500 I/Os.

18

• Sailors:
– Each tuple is 50

bytes long,
– 80 tuples per page,
– 500 pages.

• Reserves:
– Each tuple is 40

bytes long,
– 100 tuples per page,
– 1000 pages.

Disk Behavior in Block NLJ

• What is the disk behavior in Block Nested Loop Join (NLJ)?
• Reading outer: sequential for each block
• Reading inner: sequential if output does not interfere;

o.w., random.
• Optimization for sequential reads of the inner table

• Read S also in a block-based fashion.
• May result in more passes, but reduced seeking time.

19

. . .
. . .

R & S Hash table for block of R
(block size k < B-1 pages)

Input buffer for S Output buffer

. .

.

Join Result

Index Nested Loops Join

• If there is an index on the join column of one relation (say S), can
make it the inner and exploit the index.
• Cost: M + ((M*pR) * cost of finding matching S tuples)

• For each R tuple, cost of probing S index is about 1.2 for hash index,
2-4 for B+ tree. Cost of then finding S tuples (assuming Alt. (2) or
(3) for data entries) depends on clustering.
• Clustered index: 1 I/O (typical).
• Unclustered: up to 1 I/O per matching S tuple.

20

foreach tuple r in R do
 foreach tuple s in S where ri == sj do
 add <r, s> to result

Example 1 of Index Nested Loop
• Hash-index (Alt. 2) on sid of Sailors (as inner):

• Scan Reserves: 1000 page I/Os, 100*1000 tuples.
• For each Reserves tuple: 1.2 I/Os to get data entry in index, plus 1 I/O to

get the (exactly one) matching Sailors tuple.
• Total: 1000+ 100*1000*2.2 = 221,000 I/Os.

21

• Sailors:
– Each tuple is 50

bytes long,
– 80 tuples per page,
– 500 pages.

• Reserves:
– Each tuple is 40

bytes long,
– 100 tuples per page,
– 1000 pages.

Foreign key
 to Sailor

Example 2 of Index Nested Loop
• Hash-index (Alt. 2) on sid of Reserves (as inner):

• Scan Sailors: 500 page I/Os, 80*500 tuples.
• For each Sailors tuple: 1.2 I/Os to find index page with data entries, plus

cost of retrieving matching Reserves tuples.
• If uniform distribution, 2.5 reservations per sailor (100,000 / 40,000). Cost

of retrieving them is 1 (clustered) or 2.5 I/Os (uncluster).
• Total: 500+80*500*(2.2~3.7) = 88,500~148,500 I/Os.

22

• Sailors:
– Each tuple is 50

bytes long,
– 80 tuples per page,
– 500 pages.

• Reserves:
– Each tuple is 40

bytes long,
– 100 tuples per page,
– 1000 pages.

Sort-Merge Join (R S)
• Sort R and S on join column using external sorting.
• Merge R and S on join column, output result tuples.
 Repeat until either R or S is finished:

• Scanning:
• Advance scan of R until current R-tuple >=current S tuple,
• Advance scan of S until current S-tuple>=current R tuple;
• Do this until current R tuple = current S tuple.

• Matching:
• Match all R tuples and S tuples with same value; output <r, s> for all pairs of

such tuples.

• Data access patterns for R and S?

23


i=j

R is scanned once, each S partition scanned once per matching R tuple

Example of Sort-Merge Join

• Cost: M log M + N log N + merging_cost (∈[M+N, M*N])
• The cost of merging could be M*N (but quite unlikely). When?
• M+N is guaranteed in foreign key join; treat the referenced relation as

inner
• As with sorting, log M and log N are small numbers, e.g. 3, 4.

• With 300 buffer pages, both Reserves and Sailors can be sorted
in 2 passes; total join cost is 7500 (assuming M+N). 24

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

More on external sort next week

Refinement of Sort-Merge Join
• Idea:

• Sorting of R and S has respective merging phases
• Join of R and S also has a merging phase
• Combine all these merging phases!

• Two-pass algorithm for sort-merge join:
• Pass 0: sort subfiles of R, S individually
• Pass 1: merge sorted runs of R, merge sorted runs of S,

and merge the resulting R and S files as they are
generated by checking the join condition.

25

 Idea: Partition both R and S using a hash function s.t. R tuples will only
match S tuples in partition i.

Hash-Join

• Partitioning:
Partition both
relations using
hash fn h: Ri
tuples will only
match with Si
tuples.

 Probing: Read in
partition i of R, build
hash table on Ri
using h2 (<> h!). Scan
partition i of S, search
for matches.

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffers Disk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers Disk Disk

Original
Relation OUTPUT

2 INPUT

1

hash
function
h B-1

Partitions

1

2

B-1
. . .

Hash Join Memory Requirement
• Partitioning: # partitions in memory ≤ B-1,
 Probing: size of largest partition (to fit in memory) ≤ B-2.

• A little more memory is needed to build hash table, but ignored here.

• Assuming uniformly sized partitions, L = min(M, N):
• L / (B-1) < (B-2)  B >
• Hash-join works if the smaller relation satisfies above size restriction

• What if hash fn h does not partition uniformly and one or
more R partitions does not fit in memory?
• Can apply hash-join technique recursively to do the join of this R-

partition with the corresponding S-partition.

L

Cost of Hash-Join

• Partitioning reads+writes both relations; 2(M+N).
 Probing reads both relations; M+N I/Os.
 Total cost = 3(M+N).

• In our running example, a total of 4,500 I/Os using hash join, less than 1 min
(compared to 140 hours w. Nested Loop Join).

• Sort-Merge Join vs. Hash Join:
• Given a minimum amount of memory both have a cost of 3(M+N) I/Os.
• Hash Join superior if relation sizes differ greatly
• Hash Join is shown to be highly parallelizable.
• Sort-Merge less sensitive to data skew; result is sorted.

28

General Join Conditions
• Equalities over several attributes (e.g., R.sid=S.sid AND

R.rname=S.sname):
• For Index Nested Loop, build index on <sid, sname> (if S is inner); or use

existing indexes on sid or sname and check the other join condition on
the fly.

• For Sort-Merge and Hash Join, sort/partition on combination of the two
join columns.

• Inequality conditions (e.g., R.rname < S.sname):
• For Index Nested Loop, need B+ tree index.

• Range probes on inner; # matches likely to be much higher than for equality
joins (clustered index is much preferred).

• Hash Join, Sort Merge Join not applicable.
• Block Nested Loop quite likely to be a winner here.

29

Outline
• Evaluation of joins

• Evaluation of selections

• Evaluation of projections

• Evaluation of other operations

30

Using an Index for Selections
• Cost depends on # qualifying tuples, and clustering.

• Cost of finding data entries (often small) + cost of retrieving records
(could be large w/o clustering).

• For gpa > 3.0, if 10% of tuples qualify (100 pages, 10,000 tuples), cost ≈
100 I/Os with a clustered index; otherwise, up to 10,000 I/Os!

• Important refinement for unclustered indexes:
1. Find qualifying data entries.
2. Sort the rid’s of the data records to be retrieved.
3. Fetch rids in order.

 Each data page is looked at just once, although # of such pages
likely to be higher than with clustering.

31

Approach 1 to General Selections
• (1) Find the most selective access path, retrieve tuples using it, and

(2) apply any remaining terms that don’t match the index on the fly.
• Most selective access path: An index or file scan that is expected to

require the smallest # I/Os.
• Terms that match this index reduce the number of tuples retrieved;
• Other terms are used to discard some retrieved tuples, but do not affect

I/O cost.
• Consider day<8/9/94 AND bid=5 AND sid=3.

• A B+ tree index on day can be used; then, bid=5 and sid=3 must be
checked for each retrieved tuple.

• A hash index on <bid, sid> could be used; day<8/9/94 must then be
checked on the fly.

32

Approach 2: Intersection of Rids
• If we have 2 or more matching indexes that use Alternatives (2) or (3) for

data entries:
• Get sets of rids of data records using each matching index.
• Intersect these sets of rids.
• Retrieve the records and apply any remaining terms.
• Consider day<8/9/94 AND bid=5 AND sid=3. If we have a B+ tree index on day

and an index on sid, both using Alternative (2), we can:
• retrieve rids of records satisfying day<8/9/94 using the first, rids of records

satisfying sid=3 using the second,
• intersect these rids,
• retrieve records and check bid=5.

33

The Projection Operation

• Projection consists of two steps:
• Remove unwanted attributes (i.e., those not specified in the

projection).
• Eliminate any duplicate tuples that are produced, if DISTINCT is

specified.

• Algorithms: single relation sorting and hashing based on all
remaining attributes.

34

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

Projection Based on Sorting
• Modify Pass 0 of external sort to eliminate unwanted fields.

• Runs of about 2B pages are produced,
• But tuples in runs are smaller than input tuples. (Size ratio

depends on # and size of fields that are dropped.)
• Modify merging passes to eliminate duplicates.

• # result tuples smaller than input. Difference depends on # of
duplicates.

• Cost: In Pass 0, read input relation (size M), write out same
number of smaller tuples. In merging passes, fewer tuples
written out in each pass.
• Using Reserves example, 1000 input pages reduced to 250 in

Pass 0 if size ratio is 0.25. 35

Projection Based on Hashing
• Partitioning phase: Read R using one input buffer. For each

tuple, discard unwanted fields, apply hash function h1 to
choose one of B-1 output buffers.
• Result is B-1 partitions (of tuples with no unwanted fields). 2

tuples from different partitions guaranteed to be distinct.
• Duplicate elimination phase: For each partition, read it and

build an in-memory hash table, using hash fn h2 (<> h1) on
all fields, while discarding duplicates.
• If partition does not fit in memory, can apply hash-based

projection algorithm recursively to this partition.
• Cost: For partitioning, read R, write out each tuple, but with

fewer fields. This is read in next phase. 36

Discussion of Projection
• Sort-based approach is the standard; better handling of

skew and result is sorted.
• If an index on the relation contains all wanted attributes in

its search key, can do index-only scan.
• Apply projection techniques to data entries (much smaller!)

• If a tree index contains all wanted attributes as prefix of
search key can do even better:
• Retrieve data entries in order (index-only scan), discard

unwanted fields, compare adjacent tuples to check for
duplicates.

• E.g. projection on <sid, age>, search key on <sid, age, rating>.
37

Set Operations
• Intersection and cross-product special cases of join.

• Intersection: equality on all fields.
• Union (Distinct) and Except similar; we’ll do union.
• Sorting based approach to union:

• Sort both relations (on combination of all attributes).
• Scan sorted relations and merge them, removing duplicates.

• Hashing based approach to union:
• Partition R and S using hash function h.
• For each R-partition, build in-memory hash table (using h2).

Scan S-partition. For each tuple, probe the hash table. If the
tuple is in the hash table, discard it; o.w. add it to the hash
table. 38

Aggregate Operations (AVG, MIN, etc.)
• Without grouping :

• In general, requires scanning the relation.
• Given index whose search key includes all attributes in the

SELECT or WHERE clauses, can do index-only scan.
• With grouping (GROUP BY):

• Sort on group-by attributes, then scan relation and compute
aggregate for each group. (Can improve upon this by combining
sorting and aggregate computation.)

• Hashing on group-by attributes also works.
• Given tree index whose search key includes all attributes in

SELECT, WHERE and GROUP BY clauses: can do index-only scan;
if group-by attributes form prefix of search key, can retrieve data
entries/tuples in group-by order.

39

Summary
• A virtue of relational DBMSs: queries are composed of a few

basic operators; the implementation of these operators can be
carefully tuned.

• Algorithms for evaluating relational operators use some simple
ideas extensively:
• Indexing: Can use WHERE conditions to retrieve small set of tuples

(selections, joins)
• Iteration: Sometimes, faster to scan all tuples even if there is an

index. (And sometimes, we can scan the data entries in an index
instead of the table itself.)

• Partitioning: By using sorting or hashing, we can partition the input
tuples and replace an expensive operation by similar operations on
smaller inputs.

40

Summary: Query plan
• Many implementation techniques for each

operator; no universally superior technique for
most operators.

• Must consider available alternatives for each
operation in a query and choose best one based
on:
• system state (e.g., memory) and
• statistics (table size, # tuples matching value k).

• This is part of the broader task of optimizing a
query composed of several ops. 41

	Evaluation of relational operators
	Why is it important?
	Query Evaluation
	Tree of relational operators
	Approaches to Evaluation
	Statistics and Information Schema
	Access Paths :Method for retrieval
	Matching an index
	Selectivity of access path
	Relational Operations
	Relational Operators to Evaluate
	Schema for Examples
	Equality Joins With One Join Column
	Simple Nested Loops Join (NLJ)
	Page-Oriented Nested Loops Join
	Block Nested Loops Join
	Block Nested Loops Join Diagram
	Examples of Block Nested Loops
	Disk Behavior in Block NLJ
	Index Nested Loops Join
	Example 1 of Index Nested Loop
	Example 2 of Index Nested Loop
	Sort-Merge Join (R S)
	Example of Sort-Merge Join
	Refinement of Sort-Merge Join
	Hash-Join
	Hash Join Memory Requirement
	Cost of Hash-Join
	General Join Conditions
	Outline
	Using an Index for Selections
	Approach 1 to General Selections
	Approach 2: Intersection of Rids
	The Projection Operation
	Projection Based on Sorting
	Projection Based on Hashing
	Discussion of Projection
	Set Operations
	Aggregate Operations (AVG, MIN, etc.)
	Summary
	Summary: Query plan

