
Evaluation of 
relational operators 
Kathleen Durant  PhD 
CS 3200 Lecture 17 

1 



Why is it important? 
• Now that we know about the benefits of 

indexes, how does the DBMS know when to use 
them? 

• An SQL query can be implemented in many 
ways, but which one is best? 
• Perform selection before or after join etc. 
• Many ways of physically implementing a join (or other 

relational operator), how to choose the right one? 
• The DBMS does this automatically, but we need 

to understand it to know what performance to 
expect 
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Query Evaluation 
• SQL query is implemented by a query plan 

•  Tree of relational operators 
•  Each internal node operates on its children 
•  Can choose different operator implementations 

•  Two main issues in query optimization: 
•  For a given query, what plans are considered? 

• Algorithm to search plan space for cheapest (estimated) plan. 

• How is the cost of a plan estimated? 

• Ideally: Want to find best plan. 
• Practically: Avoid worst plans! 3 



Tree of relational operators 
 
SELECT sid 
FROM Sailors NATURAL JOIN Reserves 
          WHERE bid = 100 AND rating > 5;  
 

πsid (σbid=100 AND rating>5 (Sailors       Reserves)) 
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πsid 

σbd=100 AND rating>5 

Sailors Reserves 

RA expressions are 
represented by an 

expression tree. 

An algorithm is chosen 
for each node in the 

expression tree. 

Sailors (sid: integer, sname: string, rating: integer, age: real) 
Reserves (sid: integer, bid: integer, day: date, rname: string) 



Approaches to Evaluation  
• Algorithms for evaluating relational operators use some 

simple ideas extensively: 
•  Indexing: Can use WHERE conditions to retrieve small set of 

tuples (selections, joins) 
•  Iteration: Sometimes, faster to scan all tuples even if there is an 

index. (And sometimes, we can scan the data entries in an index 
instead of the table itself.) 

• Partitioning: By using sorting or hashing, we can partition the 
input tuples and replace an expensive operation by similar 
operations on smaller inputs. 
 

* Watch for these techniques as we discuss query 
evaluation during this lecture 5 



Statistics and Information Schema 
• Need information about the relations and indexes 

involved. Catalog typically contains: 
•  #tuples (NTuples) and #pages (NPages) for each relation. 
•  #distinct key values (NKeys), INPages index pages, and low/high 

key values (ILow/IHigh) for each index. 
• Index height (IHeight) for each tree index. 
• Catalog data stored in tables; can be queried 

• Catalogs updated periodically. 
• Updating whenever data changes is too expensive; costs are 

approximate anyway, so slight inconsistency expected. 

•  More detailed information (e.g., histograms of the 
values in some field) sometimes stored. 
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Access Paths :Method for retrieval 
• Access path = way of retrieving tuples: 

•  File scan, or index that matches a selection (in the query) 
• Cost depends heavily on access path selected 

•  A tree index matches (a conjunction of) conditions that involve only 
attributes in a prefix of the search key. 

• A hash index matches (a conjunction of) conditions that has a term 
attribute = value for every attribute in the search key of the index. 

• Selection conditions are first converted to conjunctive normal form 
(CNF): 
• E.g., (day<8/9/94 OR bid=5 OR sid=3 ) AND (rname=‘Paul’ OR bid=5 OR 

sid=3) 
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Matching an index  
Search key <a, b, c> 

1.  a=5 and b= 3? 
2.  a > 5 and b < 3 
3.  b=3 
4. a=7 and b=5 and c=4 and 

d>4 
5.  a=7 and c=5 
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Tree Index  
1. Yes 
2.  Yes 
3.  No  
4. Yes 
5. Yes 

Hash Index 
1. No 
2.  No 
3.  No  
4. Yes 
5. No 

Index matches (part of) a predicate if: 
Conjunction of terms involving only attributes (no disjunctions) 
 Hash: only equality operation, predicate has all index attributes. 
Tree: Attributes are a prefix of the search key, any ops. 



Selectivity of access path 
• Selectivity = #pages retrieved (index + data pages) 
•  Find the most selective access path, retrieve tuples using it, and 

apply any remaining terms that don’t match the index: 
• Most selective path – fewer I/O 
•  Terms that match the index reduce the number of tuples retrieved 
• Other terms are used to discard some retrieved tuples, but do not 

affect number of tuples fetched. 
• Consider “day < 8/9/94 AND bid=5 AND sid=3”. 

•  Can use B+ tree index on day; then check bid=5 and sid=3 for each 
retrieved tuple 

• Could similarly use a hash index on <bid,sid>; then check day < 8/9/94 
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Relational Operations 
• We will consider how to implement: 

• Selection  (     )    Selects a subset of rows from relation. 
• Projection  (     )   Deletes unwanted columns from relation. 
• Join  (        )  Allows us to combine two relations. 
• Set-difference  (     )  Tuples in reln. 1, but not in reln. 2. 
• Union  (     )  Tuples in reln. 1 and in reln. 2. 
• Aggregation  (SUM, MIN, etc.) and GROUP BY 
• Order By   Returns tuples in specified order. 

• Since each op returns a relation, ops can be composed.  After we 
cover the operations, we will discuss how to optimize queries formed 
by composing them. 
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Relational Operators to 
Evaluate 
• Evaluation of joins 

• Evaluation of selections 

• Evaluation of projections 

• Evaluation of other operations 
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Schema for Examples 

• Sailors: 
• Each tuple is 50 bytes long,   
• 80 tuples per page  
• 500 pages.  ~40,000 tuples 

• Reserves: 
• Each tuple is 40 bytes long,  
• 100 tuples per page,  
• 1000 pages. ~100,000 tuples 12 

Sailors (sid: integer, sname: string, rating: integer, age: real) 
Reserves (sid: integer, bid: integer, day: date, rname: string) 



Equality Joins With One Join Column 

• In algebra: R⋈ S,  natural join, common operation  
• R X S is large; R X S followed by a selection is inefficient. 
• Must be carefully optimized.  

• Assume: M pages in R, pR tuples per page, N pages in S, pS tuples 
per page. 

• Cost metric:  # of I/Os.  Ignore output cost in analysis. 
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SELECT  * 
FROM    Reserves R, Sailors S 
WHERE  R.sid = S.sid 



Simple Nested Loops Join (NLJ) 

• For each tuple in the outer relation R, scan the entire inner relation 
S.  
• Cost:  M +  (pR * M) * N  =  1000 + 100*1000*500  = 1,000+ (5 * 107) 

I/Os. 
• M=#pages of R, pR=# R tuples per page, N pages in S 

 
• Assuming each I/O takes 10 ms, the join will take about 140 hours! 
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foreach tuple r in R do 
 foreach tuple s in S do 
  if ri == sj  then add <r, s> to result 



Page-Oriented Nested Loops 
Join 

• How can we improve Simple Nested Loop Join? 
• For each page of R, get each page of S, and write out matching pairs 

of tuples <r, s>, where r is in R-page and S is in S-page. 
• Cost:  M + M  * N = 1000 + 1000*500 = 501,000 I/Os. 
• If each I/O takes 10 ms, the join will take 1.4 hours. 

• Which relation should be the outer?  
• The smaller relation (S) should be the outer:  
    cost = 500 + 500*1000 = 500,500 I/Os.   

• How many buffers do we need? 
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Block Nested Loops Join 
• How can we utilize additional buffer pages? 

• If the smaller relation fits in memory, use it as outer, read the inner only 
once. 

• Otherwise, read a big chunk of it each time, resulting in reduced # times of 
reading the inner.  

• Block Nested Loops Join:  
• Take the smaller relation, say R, as outer, the other as inner. 
• Buffer allocation: one buffer for scanning the inner S, one buffer for 

output, all remaining buffers for holding a ``block’’ of outer R. 
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Block Nested Loops Join 
Diagram 
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R & S 
Hash table for block of R 
(block size k < B-1 pages) 

Input buffer for S Output buffer 

. . . 

Join Result 

foreach block  in R do 
    build a hash table on R-block 
    foreach S page 
 for each matching tuple r in R-block, s in S-page do 
     add <r, s> to result 



Examples of Block Nested 
Loops 
• Cost:  Scan of outer table +  #outer blocks * scan of inner table  

• #outer blocks =  # pages of outer / block size 
• Given available buffer size B, block size is at most B-2. 

• With Sailors (S) as outer, a block has 100 pages of S: 
• Cost of scanning S is 500 I/Os; a total of 5 blocks. 
• Per block of S, we scan Reserves;  5*1000 I/Os. 
• Total = 500 + 5 * 1000 = 5,500 I/Os. 
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• Sailors: 
– Each tuple is 50 

bytes long,   
– 80 tuples per page,  
– 500 pages.  

• Reserves: 
– Each tuple is 40 

bytes long,  
– 100 tuples per page,  
– 1000 pages. 



Disk Behavior in Block NLJ 

• What is the disk behavior in Block Nested Loop Join (NLJ)? 
• Reading outer: sequential for each block 
• Reading inner: sequential if output does not interfere; 

o.w., random.  
• Optimization for sequential reads of the inner table 

• Read S also in a block-based fashion.  
• May result in more passes, but reduced seeking time. 
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. . . 
. . . 

R & S Hash table for block of R 
(block size k < B-1 pages) 

Input buffer for S Output buffer 

. . 

. 

Join Result 



Index Nested Loops Join 

• If there is an index on the join column of one relation (say S), can 
make it the inner and exploit the index. 
• Cost:  M + ( (M*pR) * cost of finding matching S tuples)  

• For each R tuple, cost of probing S index is about 1.2 for hash index, 
2-4 for B+ tree.  Cost of then finding S tuples (assuming Alt. (2) or 
(3) for data entries) depends on clustering. 
• Clustered index:  1 I/O (typical).  
• Unclustered: up to 1 I/O per matching S tuple. 
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foreach tuple r in R do 
 foreach tuple s in S where ri == sj  do 
  add <r, s> to result 



Example 1 of Index Nested Loop 
• Hash-index (Alt. 2) on sid of Sailors (as inner): 

• Scan Reserves:  1000 page I/Os, 100*1000 tuples. 
• For each Reserves tuple:  1.2 I/Os to get data entry in index, plus 1 I/O to 

get the (exactly one) matching Sailors tuple.   
• Total:  1000+ 100*1000*2.2 = 221,000 I/Os. 
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• Sailors: 
– Each tuple is 50 

bytes long,   
– 80 tuples per page,  
– 500 pages.  

• Reserves: 
– Each tuple is 40 

bytes long,  
– 100 tuples per page,  
– 1000 pages. 

Foreign key 
 to Sailor 



Example 2 of Index Nested Loop 
• Hash-index (Alt. 2) on sid of Reserves (as inner): 

• Scan Sailors:  500 page I/Os, 80*500 tuples. 
• For each Sailors tuple:  1.2 I/Os to find index page with data entries, plus 

cost of retrieving matching Reserves tuples.   
• If uniform distribution, 2.5 reservations per sailor (100,000 / 40,000).  Cost 

of retrieving them is 1 (clustered) or 2.5 I/Os (uncluster). 
• Total: 500+80*500*(2.2~3.7) = 88,500~148,500 I/Os. 
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• Sailors: 
– Each tuple is 50 

bytes long,   
– 80 tuples per page,  
– 500 pages.  

• Reserves: 
– Each tuple is 40 

bytes long,  
– 100 tuples per page,  
– 1000 pages. 



Sort-Merge Join  (R     S) 
• Sort R and S on join column using external sorting.  
• Merge R and S on join column, output result tuples. 
    Repeat until either R or S is finished: 

• Scanning:  
• Advance scan of R until current R-tuple >=current S tuple,  
• Advance scan of S until current S-tuple>=current R tuple;  
• Do this until current R tuple = current S tuple. 

• Matching:  
• Match all R tuples and S tuples with same value;  output <r, s> for all pairs of 

such tuples. 

• Data access patterns for R and S? 
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R is scanned once, each S partition scanned once per matching R tuple  



Example of Sort-Merge Join 

• Cost:  M log M + N log N + merging_cost (∈[M+N, M*N]) 
• The cost of merging could be M*N (but quite unlikely). When? 
• M+N is guaranteed in foreign key join; treat the referenced relation as 

inner 
• As with sorting, log M and log N are small numbers, e.g. 3, 4. 

• With 300 buffer pages, both Reserves and Sailors can be sorted 
in 2 passes; total join cost is 7500 (assuming M+N).  24 

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

More on external sort next week  



Refinement of Sort-Merge Join 
• Idea:  

• Sorting of R and S has respective merging phases 
• Join of R and S also has a merging phase 
• Combine all these merging phases! 

• Two-pass algorithm for sort-merge join: 
• Pass 0: sort subfiles of R, S individually 
• Pass 1: merge sorted runs of R, merge sorted runs of S, 

and merge the resulting R and S files as they are 
generated by checking the join condition. 
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 Idea: Partition both R and S using a hash function s.t. R tuples will only 
match S tuples in partition i. 

Hash-Join 

• Partitioning: 
Partition both 
relations using 
hash fn h:  Ri 
tuples will only 
match with Si 
tuples. 

 Probing: Read in 
partition i of R, build 
hash table on Ri 
using h2 (<> h!). Scan 
partition i of S, search 
for matches. 

Partitions 
of R & S 

Input buffer 
for Si 

Hash table for partition 
Ri (k < B-1 pages) 

B main memory buffers Disk 

Output  
 buffer 

Disk 

Join Result 

hash 
fn 
h2 

h2 

B main memory buffers Disk Disk 

Original  
Relation OUTPUT 

2 INPUT 

1 

hash 
function 
h B-1 

Partitions 

1 

2 

B-1 
. . . 



Hash Join Memory Requirement 
• Partitioning: # partitions in memory ≤ B-1,  
    Probing: size of largest partition (to fit in memory) ≤ B-2.  

• A little more memory is needed to build hash table, but ignored here.  

• Assuming uniformly sized partitions, L = min(M, N):  
• L / (B-1) < (B-2)    B >  
• Hash-join works if the smaller relation satisfies above size restriction 

• What if hash fn h does not partition uniformly and one or 
more R partitions does not fit in memory?  
• Can apply hash-join technique recursively to do the join of this R-

partition with the corresponding S-partition. 
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Cost of Hash-Join 

• Partitioning reads+writes both relations; 2(M+N).  
    Probing reads both relations; M+N I/Os.  
    Total cost = 3(M+N). 

• In our running example, a total of 4,500 I/Os using hash join, less than 1 min 
(compared to 140 hours w. Nested Loop Join). 

• Sort-Merge Join vs. Hash Join: 
• Given a minimum amount of memory both have a cost of 3(M+N) I/Os.   
• Hash Join superior  if relation sizes differ greatly 
• Hash Join is  shown to be highly parallelizable. 
• Sort-Merge less sensitive to data skew; result is sorted. 
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General Join Conditions 
• Equalities over several attributes (e.g.,  R.sid=S.sid AND 

R.rname=S.sname): 
• For Index Nested Loop, build index on <sid, sname> (if S is inner); or use 

existing indexes on sid or sname and check the other join condition on 
the fly. 

• For Sort-Merge and Hash Join, sort/partition on combination of the two 
join columns. 

• Inequality conditions (e.g.,  R.rname < S.sname): 
• For Index Nested Loop, need B+ tree index. 

• Range probes on inner; # matches likely to be much higher than for equality 
joins (clustered index is much preferred). 

• Hash Join, Sort Merge Join not applicable. 
• Block Nested Loop quite likely to be a winner here. 

29 



Outline 
• Evaluation of joins 

• Evaluation of selections 

• Evaluation of projections 

• Evaluation of other operations 
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Using an Index for Selections 
• Cost depends on # qualifying tuples, and clustering. 

• Cost of finding data entries (often small) + cost of retrieving records 
(could be large w/o clustering). 

• For gpa > 3.0, if 10% of tuples qualify (100 pages, 10,000 tuples), cost ≈ 
100 I/Os with a clustered index; otherwise, up to 10,000 I/Os! 

• Important refinement for unclustered indexes:   
1. Find qualifying data entries. 
2. Sort the rid’s of the data records to be retrieved. 
3. Fetch rids in order.   

    Each data page is looked at just once, although # of such pages 
likely to be higher than with clustering.  
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Approach 1 to General Selections 
• (1) Find the most selective access path, retrieve tuples using it, and 

(2) apply any remaining terms that don’t match the index on the fly. 
• Most selective access path: An index or file scan that is expected to 

require the smallest # I/Os. 
• Terms that match this index reduce the number of tuples retrieved;  
• Other terms are used to discard some retrieved tuples, but do not affect 

I/O cost. 
• Consider day<8/9/94 AND bid=5 AND sid=3.  

• A B+ tree index on  day can be used; then, bid=5 and sid=3 must be 
checked for each retrieved tuple.   

• A hash index on <bid, sid> could be used; day<8/9/94 must then be 
checked on the fly.  
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Approach 2: Intersection of Rids 
• If we have 2 or more matching indexes that use Alternatives (2) or (3) for 

data entries: 
• Get sets of rids of data records using each matching index. 
• Intersect these sets of rids. 
• Retrieve the records and apply any remaining terms. 
• Consider day<8/9/94 AND bid=5 AND sid=3. If we have a B+ tree index on day 

and an index on sid, both using Alternative (2), we can: 
• retrieve rids of records satisfying day<8/9/94 using the first, rids of records 

satisfying sid=3 using the second,  
• intersect these rids,  
• retrieve records and check bid=5.  
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The Projection Operation 

• Projection consists of two steps: 
• Remove unwanted attributes (i.e., those not specified in the 

projection). 
• Eliminate any duplicate tuples that are produced, if DISTINCT is 

specified. 

• Algorithms: single relation sorting and hashing based on all 
remaining attributes. 
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SELECT   DISTINCT R.sid, R.bid 
FROM     Reserves R 



Projection Based on Sorting 
• Modify Pass 0 of external sort to eliminate unwanted fields.   

• Runs of about 2B pages are produced,  
• But tuples in runs are smaller than input tuples.  (Size ratio 

depends on # and size of fields that are dropped.) 
• Modify merging passes to eliminate duplicates.   

• # result tuples smaller than input.  Difference depends on # of 
duplicates. 

• Cost:  In Pass 0, read input relation (size M), write out same 
number of smaller tuples.  In merging passes, fewer tuples 
written out in each pass.   
• Using Reserves example, 1000 input pages reduced to 250 in 

Pass 0 if size ratio is 0.25.    35 



Projection Based on Hashing 
• Partitioning phase:  Read R using one input buffer.  For each 

tuple, discard unwanted fields, apply hash function h1 to 
choose one of B-1 output buffers. 
• Result is B-1 partitions (of tuples with no unwanted fields).  2 

tuples from different partitions guaranteed to be distinct. 
• Duplicate elimination phase:  For each partition, read it and 

build an in-memory hash table, using hash fn h2 (<> h1) on 
all fields, while discarding duplicates. 
• If partition does not fit in memory, can apply hash-based 

projection algorithm recursively to this partition. 
• Cost:  For partitioning, read R, write out each tuple, but with 

fewer fields.  This is read in next phase. 36 



Discussion of Projection 
• Sort-based approach is the standard; better handling of 

skew and result is sorted.   
• If an index on the relation contains all wanted attributes in 

its search key, can do index-only scan. 
• Apply projection techniques to data entries (much smaller!) 

• If a tree index contains all wanted attributes as prefix of 
search key can do even better: 
• Retrieve data entries in order (index-only scan), discard 

unwanted fields, compare adjacent tuples to check for 
duplicates. 

• E.g. projection on <sid, age>, search key on <sid, age, rating>. 
37 



Set Operations 
• Intersection and cross-product special cases of join. 

• Intersection: equality on all fields. 
• Union (Distinct) and Except similar; we’ll do union. 
• Sorting based approach to union: 

• Sort both relations (on combination of all attributes). 
• Scan sorted relations and merge them, removing duplicates. 

• Hashing based approach to union: 
• Partition R and S using hash function h. 
• For each R-partition, build in-memory hash table (using h2). 

Scan S-partition. For each tuple, probe the hash table. If the 
tuple is in the hash table, discard it; o.w. add it to the hash 
table. 38 



Aggregate Operations (AVG, MIN, etc.) 
• Without grouping : 

• In general, requires scanning the relation. 
• Given index whose search key includes all attributes in the 

SELECT or WHERE clauses, can do index-only scan.   
• With grouping (GROUP BY): 

• Sort on group-by attributes, then scan relation and compute 
aggregate for each group.  (Can improve upon this by combining 
sorting and aggregate computation.) 

• Hashing on group-by attributes also works. 
• Given tree index whose search key includes all attributes in 

SELECT, WHERE and GROUP BY clauses: can do index-only scan;  
if group-by attributes form prefix of search key, can retrieve data 
entries/tuples in group-by order. 
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Summary 
• A virtue of relational DBMSs: queries are composed of a few 

basic operators; the implementation of these operators can be 
carefully tuned. 

• Algorithms for evaluating relational operators use some simple 
ideas extensively: 
• Indexing:  Can use WHERE conditions to retrieve small set of tuples 

(selections, joins) 
• Iteration:  Sometimes, faster to scan all tuples even if there is an 

index. (And sometimes, we can scan the data entries in an index 
instead of the table itself.) 

• Partitioning: By using sorting or hashing, we can partition the input 
tuples and replace an expensive operation by similar operations on 
smaller inputs. 
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Summary: Query plan 
• Many implementation techniques for each 

operator; no universally superior technique for 
most operators.   

• Must consider available alternatives for each 
operation in a query and choose best one based 
on: 
• system state (e.g., memory) and  
• statistics (table size, # tuples matching value k).   

• This is part of the broader task of optimizing a 
query composed of several ops.  41 
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