
Index Locking and
Concurrency Control
Kathleen Durant PhD
Northeastern University
Lecture 16b
 1

Dynamic Databases
• If we relax the assumption that the DB is a fixed collection of objects,

even Strict 2PL will not assure serializability:
• T1 locks all pages containing sailor records with rating = 1, and finds

oldest sailor (say, age = 71) (Page X)
• Next, T2 inserts a new sailor; rating = 1, age = 96.

• Since the new record can live on a different page – T1 will not have a lock
on the page where the new record is inserted (Page Y)

• T2 also deletes oldest sailor with rating = 2 (and, say, age = 80), and
commits. (Page Z)

• T1 now locks all pages containing sailor records with rating = 2, and
finds oldest (say, age = 63).

• No consistent DB state where T1 is “correct”
• <T1,T2> = <AGES: 71, 80>. <T2,T1> = <AGES: 96,63>
• This scenario <AGES: 71,63>

2

The Problem

• T1 implicitly assumes that it has locked the set of all sailor
records with rating = 1.
• Assumption only holds if no sailor records are added while T1 is

executing
• Need some mechanism to enforce this assumption. (Index

locking and predicate locking.)

• Example shows that conflict serializability
guarantees serializability only if the set of
objects is fixed

3

Index Locking

• If there is a dense index on the rating field using Alternative (2),
T1 should lock the index page containing the data entries with
rating = 1.
• If there are no records with rating = 1, T1 must lock the index page

where such a data entry would be, if it existed
• If there is no suitable index, T1 must lock all pages, and lock the

file/table to prevent new pages from being added, to ensure
that no new records with rating = 1 are added.

r=1

Data

Index

4

Predicate Locking
• Grant lock on all records that satisfy some logical predicate,

e.g. age > 2*salary.
• Index locking is a special case of predicate locking for which an

index supports efficient implementation of the predicate lock.
• In general, predicate locking has a lot of locking overhead.

5

Locking in B+ Trees
• How can we efficiently lock a particular leaf node?

• Btw, don’t confuse this with multiple granularity locking
• One solution: Ignore the tree structure, just lock pages while

traversing the tree, following 2PL.
• This has terrible performance!

• Root node (and many higher level nodes) become bottlenecks
because every tree access begins at the root.

6

Two Useful Observations
• Higher levels of the tree only direct searches for leaf pages.

• For inserts, a node on a path from root to modified leaf must be
locked (in X mode, of course), only if a split can propagate up to
it from the modified leaf. (Similar point holds for deletes.)

• We can exploit these observations to design efficient locking
protocols that guarantee serializability even though they violate
2PL.

7

A Simple Tree Locking Algorithm
• Search: Start at root and go down; repeatedly, S lock child

then unlock parent.
• Insert/Delete: Start at root and go down, obtaining X locks as

needed. Once child is locked, check if it is safe:
• If child is safe, release all locks on ancestors.

• Safe node: Node such that changes will not propagate up
beyond this node.
• Inserts: Node is not full.
• Deletes: Node is not half-empty.

8

Example
ROOT

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:
1) Search 38*
2) Delete 38*
3) Insert 45*
4) Insert 25*

23

9

A Better Tree Locking Algorithm
(See Bayer-Schkolnick paper)

• Search: As before.
• Insert/Delete:

• Set locks as if for search, get to leaf, and set X
lock on leaf.

• If leaf is not safe, release all locks, and restart
Xact using previous Insert/Delete protocol.

• Gambles that only leaf node will be modified; if not, S locks set on
the first pass to leaf are wasteful. In practice, better than
previous algorithm

10

Summary
• Index locking is common, and affects performance significantly.

• Needed when accessing records via index.
• Needed for locking logical sets of records (index locking/predicate

locking).
• Tree-structured indexes:

• Straightforward use of 2PL very inefficient.
• Bayer-Schkolnick illustrates potential for improvement.

• In practice, better techniques now known; do record-level,
rather than page-level locking.

	Index Locking and Concurrency Control
	Dynamic Databases
	The Problem
	Index Locking
	Predicate Locking
	Locking in B+ Trees
	Two Useful Observations
	A Simple Tree Locking Algorithm
	Example
	A Better Tree Locking Algorithm (See Bayer-Schkolnick paper)
	Summary

