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Index Concept 
• Main idea: A separate data structure used to locate records  
• Most generally, index is a list of value/address pairs 

• Each pair is an index “entry” 
• Value is the index “key” 
• Address will point to a data record, or to a data page 

• There might be many records on a page 
• The assumption is that the value/address pair will be much 

smaller in size than the full record 
• If index is small, a copy can be maintained in memory 

• Permanent disk copy is still needed 
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Indexing Pitfalls 
• Index itself is a file 

• Occupies disk space 
• Must worry about maintenance, consistency, recovery, etc. 

• Large indices won't fit in memory 
• May require multiple seeks to locate record entry 
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Essential for Multilevel Indexes 

• Should support efficient random access 
• Should also support efficient sequential access, if possible 

• Should have low height 
• Should be efficiently updatable 
• Should be storage-efficient 
• Top level(s) should fit in memory 
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Hashing Index  
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Hash index record  
• As for any index, 3 alternatives for data entries 

k*: 
• Data record with key value k 
• <k, rid of data record with search key value k> 
• <k, list of rids of data records with search key k> 
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Hashing mechanism 
 

• Your index is a collection of buckets (bucket = 
page) 

• Define a hash function, h, that maps a key to a 
bucket. 

• Store the corresponding data in that bucket. 
• Collisions 

• Multiple keys hash to the same bucket. 
• Store multiple keys in the same bucket. 

• What do you do when buckets fill? 
• Chaining: link new pages(overflow pages) off the bucket. 
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Extendible Hashing 
• Main Idea: Use a directory of (logical) pointers to 

bucket pages 
• Situation: Bucket (primary page) becomes full. 

Why not re-organize file by doubling # of buckets? 
• Reading and writing all pages is expensive 

• Idea:  Use directory of pointers to buckets, double # of buckets 
by doubling the directory, splitting just the bucket that 
overflowed 
• Directory much smaller than file, so doubling it is much cheaper.  

Only one page of data entries is split.  No overflow page! 
• Trick lies in how hash function is adjusted! 
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Example 
• Directory is array of size 4. 
• To find bucket for r, take last 

`global depth’ # bits of h(r); 
we denote r by h(r). 
• If h(r) = 5 = binary 101,  it 

is in bucket pointed to by 
01. 

 Insert:  If bucket is full, split it (allocate new page, re-distribute). 

 If necessary, double the directory.  (As we will see, splitting a 
    bucket does not always require doubling; we can tell by  
    comparing global depth with local depth for the split bucket.) 

13* 00 

01 

10 

11 

2 

2 

2 

2 

2 

LOCAL DEPTH 

GLOBAL DEPTH 

DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

DATA PAGES 

10* 
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4* 12* 32* 16* 

15* 7* 19* 

5* 



Insert h(r)=20 (Causes Doubling) 
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111 

3 

3 

3 
DIRECTORY 

Bucket A 
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Bucket C 

Bucket D 
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LOCAL DEPTH 

GLOBAL DEPTH 
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Points to Note 
• 20 = binary 10100.  Last 2 bits (00) tell us r belongs 

in A or A2.  Last 3 bits needed to tell which. 
• Global depth of directory:  Max # of  bits needed to tell 

which bucket an entry belongs to. 
• Local depth of a bucket: # of bits used to determine if an 

entry belongs to this bucket. 
• When does bucket split cause directory doubling? 

• Before insert, local depth of bucket = global depth.  Insert 
causes local depth to become > global depth; directory is 
doubled by copying it over and `fixing’ pointer to split 
image page.  (Use of least significant bits enables efficient 
doubling via copying of directory!) 11 



Directory Doubling 

00 

01 

10 

11 

2 

Why use least significant bits in directory? 
 Allows for doubling via copying! 

000 
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6* 

6 = 110 

00 

10 

01 

11 

2 

3 

0 

1 

1 

6* 
6* 6* 

6 = 110 
000 

100 

010 

110 

001 

101 

011 

111 

Least Significant Most Significant 
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Comments on Extendible 
Hashing 
• If directory fits in memory, equality search answered with one 

disk access; else two. 
• 100MB file, 100 bytes/rec, 4K pages contains 1,000,000 records (as 

data entries) and 25,000 directory elements; chances are high that 
directory will fit in memory. 

• Directory grows in spurts, and, if the distribution of hash values is 
skewed, directory can grow large. 

• Multiple entries with same hash value cause problems 
• Need a decent hash function  

• Delete:  If removal of data entry makes bucket empty, can be 
merged with `split image’.  If each directory element points to 
same bucket as its split image, can halve directory.  
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Linear Hashing 
• This is another dynamic hashing scheme, an alternative to 

Extendible Hashing. 
• LH handles the problem of long overflow chains without using a 

directory, and handles duplicates. 
•  Idea:  Use a family of hash functions h0, h1, h2, ... 

• hi(key) = h(key) mod(2iN);  N = initial # buckets 
• h is some hash function (range is not 0 to N-1) 
• If N = 2d0, for some d0, hi consists of applying h and looking at the last 

di bits, where di = d0 + i. 
• hi+1 doubles the range of hi (similar to directory doubling) 

• Duplicates extendible hash without the directory – since extendible 
hash always adds 1 bit to the bucket’s address 14 



Linear Hashing Details 
• Directory avoided in LH by using overflow pages, and choosing 

bucket to split round-robin. 
• Splitting proceeds in `rounds’.  Round ends when all NR initial (for round 

R) buckets are split.  Buckets 0 to Next-1 have been split;  Next to NR yet 
to be split. 

• Current round number is Level. 
• Search: To find bucket for data entry r, find hLevel(r): 

• If hLevel(r) in range `Next to NR’ , r belongs here. 
• Else, r could belong to bucket hLevel(r) or bucket hLevel(r) + 

NR; must apply hLevel+1(r) to find out. 
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Extendible Hashing vs. Linear 
Hashing 
• Dynamic Extendible Hashing 

• Periodically double the size of the database directory. 
• Rehash every key. 

• Dynamic Linear Hashing (Litwin) 
• Grow table one bucket at a time. 
•  Split buckets sequentially; rehash just the splitting bucket. 
• Maintain overflow buckets as necessary. 
• Keep track of max bucket to identify the correct number of bits to 

consider in the hash value 
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Overview of LH File  
• In the middle of a round. 

Level h  

Buckets that existed at the 
beginning of this round:  

this is the range of 

Next 
Bucket to be split  

of other buckets) in this round 

Level h  search key value  ) ( 

search key value  ) ( 

Buckets split in this round: 
If  
is in this range, must use 
h  Level+1 

`split image' bucket. 
to decide if entry is in  

created (through splitting 
`split image' buckets: 
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Linear Hashing (Contd.) 
• Insert:  Find bucket by applying hLevel / hLevel+1:  

• If bucket to insert into is full: 
• Add overflow page and insert data entry. 
• (Maybe) Split Next bucket and increment Next. 

• Can choose any criterion to `trigger’ split.  
• Since buckets are split round-robin, long overflow 

chains don’t develop! 
• Doubling of directory in Extendible Hashing is 

similar; switching of hash functions is implicit in 
how the # of bits examined is increased. 18 



Example of Linear Hashing 
• On split, hLevel+1 is used to redistribute 

entries. 

0 
h h 
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is for illustration 
only!) 
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Example:  End of a Round 
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Summary: Hash-Based Indexes  
• Hash-based indexes: best for equality searches, 

cannot support range searches. 
• Static Hashing can lead to long overflow 

chains. 
• Extendible Hashing avoids overflow pages by 

splitting a full bucket when a new data entry is 
to be added to it.  (Duplicates may require 
overflow pages.) 
• Directory to keep track of buckets, doubles periodically. 
• Can get large with skewed data; additional I/O if this 

does not fit in main memory. 21 



Summary: Linear hashing  
• Linear Hashing avoids directory by splitting buckets round-robin, 

and using overflow pages.  
• Overflow pages not likely to be long. 
• Duplicates handled easily. 
• Space utilization could be lower than Extendible Hashing, since splits 

not concentrated on `dense’ data areas. 

• Can tune criterion for triggering splits to trade-off 
slightly longer chains for better space utilization. 

• For hash-based indexes, a skewed data distribution is one in 
which the hash values of data entries are not uniformly 
distributed 
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Tree Structured Indexes 

• Tree-structured indexing techniques support both 
range searches and equality searches. 

• Tree structures with search keys on value-based 
domains 
• ISAM:  static structure  
• B+ tree:  dynamic, adjusts gracefully under inserts and 

deletes. 

• Tree structures with the search key on multi-
dimensional objects  
• R-tree, R*-tree representation of spatial data 23 



Introduction 

• As for any index, 3 alternatives for data entries k*: 
•  Data record with key value k 
•  <k, rid of data record with search key value k> 
•  <k, list of rids of data records with search key k> 

• Choice is orthogonal to the indexing technique used to locate data 
entries k*. 

• Tree-structured indexing techniques support both range searches 
and equality searches. 

• ISAM:  static structure;  B+ tree:  dynamic, adjusts gracefully 
under inserts and deletes. 
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Range Searches 
• ``Find all students with gpa > 3.0’’ 

• If data is in a sorted file, do binary search to find first such 
student, then scan to find others. 

• Cost of binary search can be quite high. 
• Simple idea:  Create an `index’ file. 

* Can do binary search on (smaller) index file! 

Page 1 Page 2 Page N Page 3 Data File 

k2 kN k1 Index File 
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ISAM 
• = Indexed Sequential Access Method 

• IBM terminology 
• “Indexed Sequential” more general term (non-IBM) 
• ISAM as described in textbook is very close to B+ tree 

• simpler versions exist 

• Main idea: maintain sequential  ordered file but give it an 
index 
• Sequentiality for efficient “batch” processing 
• Index for random record access 
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ISAM Technique 
• Build a dense index of the pages (1st level index) 

• Sparse from a record viewpoint 
• Then build an index of the 1st level index (2nd level index) 
• Continue recursively until top level index fits on 1 page 
• Some implementations may stop after a fixed # of levels27 
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Updating an ISAM File 
• Data set must be kept sequential 

• So that it can be processed without the index 
• May have to rewrite entire file to add records 
• Could use overflow pages 

• chained together or in fixed locations (overflow area) 

• Index is usually NOT updated as records are added or deleted 
• Once in a while the whole thing is “reorganized” 

• Data pages recopied to eliminate overflows 
• Index recreated 
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ISAM Pros, Cons 
• Pro 

• Relatively simple 
• Great for true sequential access 

• Cons 
• Not very dynamic 
• Inefficient if lots of overflow pages 
• Can only be one ISAM index per file  
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ISAM 

• Leaf pages contain sorted data records (e.g., Alt 1 index). 
• Non-leaf part directs searches to the data records; static once built 
• Inserts/deletes: use overflow pages, bad for frequent inserts. 

P 0 K 1 P 1 K 2 P 2 K m P m 

index entry 

Non-leaf 
Pages 
(static!) 

Pages 
Overflow  

page 
Primary pages 

Leaf 

30 



Comments on ISAM 
• File creation:  Leaf (data) pages allocated                  

sequentially, sorted by search key; then index        
pages allocated, then space for overflow pages. 

• Index entries:  <search key value, page id>;  they   
`direct’ search for data entries, which are in leaf 
pages. 

• Search:  Start at root; use key comparisons to go 
to leaf.  Cost     log F N ; F = # entries/index pg, N = 
# leaf pgs 

• Insert:  Find leaf data entry belongs to, and put it 
there. 

• Delete:  Find and remove from leaf; if empty 
overflow page, de-allocate.  

* Static tree structure:  inserts/deletes affect only leaf pages. 

Data 
Pages 

Index Pages 

Overflow pages 



Example ISAM Tree 
• Each node can hold 2 entries; no need for `next-leaf-page’ 

pointers.  (Why?) 

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97* 

20 33 51 63 

40 

Root 
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After Inserting 23*, 48*, 41*, 
42* ... 

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97* 

20 33 51 63 

40 

Root 

23* 48* 41* 

42* 

Overflow 

Pages 

Leaf 

Index 
Pages 

Pages 

Primary 
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          ... Then Deleting 42*, 51*, 
97* 

* Note that 51* appears in index levels, but  not in leaf! 

10* 15* 20* 27* 33* 37* 40* 46* 55* 63* 

20 33 51 63 

40 

Root 

23* 48* 41* 
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Comments on ISAM 

• Main problem 
• Long overflow chains after many inserts, high I/O cost for retrieval. 

• Advantages 
• Simple when updates are rare. 
• Leaf pages are allocated in sequence, leading to sequential I/O. 
• Non-leaf pages are static; for concurrent access, no need to lock 

non-leaf pages 

• Good performance for frequent updates? 
    B+tree! 
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B trees Introduction 
• A B-tree is a keyed index structure, comparable to a 

number of memory resident keyed lookup 
structures  
• Balanced binary tree,  AVL tree, and the 2-3 tree. 

• Difference B-tree is meant to reside on disk 
•  Can be partially memory-resident when entries in the 

structure are accessed. 

• The B-tree structure is the most common used 
index type in databases today. 
• It is provided by ORACLE, DB2, and INGRES. 
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B-tree Organization  
A B-tree helps minimize access to the index  / directory  
A B-tree is a tree where: 

• Each node contains s slots for a index record and s + 1 pointers 
• Each node is always at least ½ full  

Order: the maximum number of keys in a non-leaf node 
Fanout of a node: the number of pointers out of the node 
• It is a type of Multi-way tree 
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The B-Tree Shape 
• A B-tree is built upside down with the root at the 

top and the leaves at the bottom. 
• All nodes above the leaf  level, including the root, 

are called directory nodes or index nodes. 
• Directory nodes below the root are called internal 

nodes. 
• The root node is known as level 1 of the B-tree and 

successively lower levels are given successively 
larger level numbers with the leaf nodes at the 
lowest level. 

• The total number of  levels is called the depth of 
the B-tree. 
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•Balanced and Unbalanced Trees 

Trees can be balanced or unbalanced.  
 

In a balanced tree, every path from the route to a leaf node 
is the same length.  

A tree that is balanced has at most logorder n levels. This is 
desirable for an index.  
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B+ Tree: Most Widely Used Index 
• Search for a record requires a tranversal from the root to the 

appropriate leaf 
• Height-balanced given arbitrary inserts/deletes. 

• F = fanout, N = # leaf pages, Height = Log F N. 
• Minimum 50% occupancy (except for root).   

• Each non-root node contains [ n/2, n ] entries, where n is the max 
# of keys in a node, called order of the tree. 

• Root node can have [1, n] entries. 

Index Entries 

Data Entries 
("Sequence set") 

(Direct search) 
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Definition of B+ tree 
• A B-tree of order n is a height-balanced tree , 

where each node may have up to n children, and 
in which: 
• All leaves (leaf nodes) are on the same level  
• No node can contain more than n children 
• All nodes except the root have at least  n/2 children 
• The root is either a leaf node, or it has at least n/2 

children 
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Example B+ Tree 

• Search begins at root, and key comparisons direct it to a 
leaf (as in ISAM). 

• Search for 5*, 15*, all data entries >= 24* ... 

Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 

<13 
≥13 <17 

≥17 <24 ≥24 <30 
≥30 
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B+ Trees in Practice 

• Typical order: 200.  Typical fill-factor: 67%. 
• Average fan-out for internal nodes = 133 

• Typical capacities: 
• Height 4: 1334 = 312,900,700 records 
• Height 3: 1333 =     2,352,637 records 

• Can often hold top levels in buffer pool: 
• Level 1 =           1 page  =     8 Kbytes 
• Level 2 =      133 pages =     1 Mbyte 
• Level 3 = 17,689 pages = 133 MBytes        
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Insertion in B-Tree 
• 1.                                          2. 
•   a, g, f,b:                                 k:   

a    b    f    g 

a     b g     k 

f 
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Insertion (cont.) 

• 3.                                           4. 
•    d, h, m:                                    j: 

 
 
 

• 5.                                            6. 
•   e, s, i, r:                                   x: 
•   

f 

  a   b d     g  h  k  m 

f     j 

a    b    d  g   h k   m 

f    j 

a  b   d  e k m  r  s g  h  i 

f    j   r  

g  h  i  s    x k  m a  b  d  e 45 



Insertion (cont.) 

7. 
  c, l, n, t, u: 
 
 
 
8. 
  p: 

c   f    j     r 

s   t   u   x   k    l   m   n      g  h   i a    b d    e 

j 

a    b d   e k   l n   p 

m   r c   f 

g   h   i s    t    u   x   
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Inserting a Data Entry into a B+ Tree 
• Find correct leaf L.  
• Put data entry onto L. 

• If L has enough space, done! 
• Else, must split  L (into L and a new node L2) 

• Redistribute entries evenly, copy up middle key. 
• Insert index entry pointing to L2 into parent of L. 

• This can happen recursively 
• To split index node, redistribute entries evenly, but push up 

middle key.  (Contrast with leaf splits.) 

• Splits “grow” tree; root split increases height.   
• Tree growth: gets wider or one level taller at top. 
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Previous B+ Tree Example 

Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 22* 25* 27* 29* 33* 34* 38* 39* 

13 

Inserting 8* 
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Previous B+ Tree Example 

Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 25* 27* 29* 33* 34* 38* 39* 

13 

Inserting 8* 

 2*      3 5     7 13  14 16  17 19  20 24 25  27 29   29  30 33 34  38  39 
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Inserting 8* into Example B+ Tree 

• Minimum 
occupancy is 
guaranteed in 
both leaf and 
index pg splits. 

• Note difference 
between copy-
up and push-
up. Reasons for 
this? 

2* 3* 5* 7* 8* 

5 
Entry to be inserted in parent node. 
(Note that 5 is 
continues to appear in the leaf.) 

s copied up and 

appears once in the index. Contrast 

5 24 30 

17 

13 

Entry to be inserted in parent node. 
(Note that 17 is pushed up and only 

this with a leaf split.) 

No need to duplicate 
Index record in index 

Need a data record 
and an index record 



Example B+ Tree After Inserting 8* 

 Notice that root was split, leading to increase in height. 

 In this example, we can avoid split by re-distributing entries between 
siblings;  but not usually done in practice. 

2* 3* 

Root 
17 

24 30 

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 5 

7* 5* 8* 
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Deleting a Data Entry from a B+ Tree 
• Start at root, find leaf L where entry belongs. 
• Remove the entry. 

• If L is at least half-full, done 
• If L has only n/2 - 1 entries 

• Try to re-distribute, borrowing from sibling (adjacent 
node with same parent as L). 

• If re-distribution fails, merge L and sibling. 

• If merge occurred, must delete entry (pointing to L 
or sibling) from parent of L. 

• Merge could propagate to root, decreasing height. 52 



Current B+ Tree 

2* 3* 

Root 
17 

24 30 

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 5 

7* 5* 8* 

Delete 19* 

Delete 20* 

53 

• One record  on page after deletions  
• Move records over from sibling page 

• Record 24 to the left  



Example Tree After Deleting 19* 
and 20* ... 

• Deleting 19* is easy. 
• Deleting 20* is done with re-distribution. Notice 

how middle key is copied up. 

2* 3* 

Root 

17 

30 

14* 16* 33* 34* 38* 39* 

13 5 

7* 5* 8* 22* 24* 

27 

27* 29* 
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New B+ Tree ... 

2* 3* 

Root 

17 

30 

14* 16* 33* 34* 38* 39* 

13 5 

7* 5* 8* 22* 24* 

27 

27* 29* 

Delete 24* 
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        ... And Then Deleting 24* 
• Merge the two leaves to form 

[22,27,29]. 
• Observe toss of index entry 

([30]on right), and pull down 
of index entry (below [17]). 

30 

22* 27* 29* 33* 34* 38* 39* 

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39* 5* 8* 

Root 
30 13 5 17 
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Example of Non-leaf Re-distribution 
• Tree is shown below during deletion of 24*.  
• In contrast to previous example, can re-distribute entry from 

left child of root to right child.   

Root 

13 5 17 20 

22 

30 

14* 16* 17* 18* 20* 33* 34* 38* 39* 22* 27* 29* 21* 7* 5* 8* 3* 2* 
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After Re-distribution 
• Intuitively, entries are re-distributed by `pushing through’ the 

splitting entry in the parent node. 
• It suffices to re-distribute index entry with key 20; we’ve re-

distributed 17 as well for illustration. 

14* 16* 33* 34* 38* 39* 22* 27* 29* 17* 18* 20* 21* 7* 5* 8* 2* 3* 

Root 

13 5 

17 

30 20 22 
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B+Tree Growth and Change 
The big idea: When a node is full, it splits. 

• middle value is propagated upward 
• If we’re lucky, there’s room for it in the level above 

• two new nodes are at same level as original node 
• Height of tree increases only when the root splits 

• A very nice property 
• This is what keeps the tree perfectly balanced 

• Recommended: split only “on the way down” 
• On deletion: two adjacent nodes recombine if both are < half 

full 



Duplicate records 
• Up to now we have  considered 1 record for each  key  
• How do we handle duplicate records? 

• Search – find first page with the given value then retrieve more 
‘next’ leaf page until the criterion fails  

• Delete – How do we identify which record to delete? 
• Treat the search key as including the record id – since it makes the 

record unique  
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Prefix Key Compression 
• Height of a B+ tree depends on the number of data entries and 

the size of  index entries 
• Size of index entries determines the number of index entries that 

will fit on a page – and therefore the fan-out of the tree.  
• Key Compression can increase fan-out.  (Why?) 
• Key values in index entries only `direct traffic’; can often 

compress them. 
• E.g., adjacent index entries with search key values  
   [Dave Jones, David Smith and Devarakonda Murthy]  
• Can we abbreviate David Smith to Dav?  

• Not correct! Can only compress David Smith to Davi. 
• In general, while compressing, must leave each index entry greater 

than every key value (in any subtree) to its left. 

• Insert/delete must be suitably modified. 
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Prefix Key compression  

Alligator Antelope Baboon 

62 

… Amardillo  …… Anteater 

Antel Key  
Compression  



Bulk Loading of a B+ Tree 
• Have a large collection of records, and want to 

create a B+ tree on some field. Doing so by 
repeatedly inserting records?  
• Slow due to repeated traversals and splits  
• Significant locking overhead. 
• Not necessarily the optimal structure. An example? 
• Low storage utility. An example? 

• Bulk Loading can be done much more efficiently! 
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Bulk Loading Algorithm 
• Initialization:   

• Sort all data entries  
• Insert pointer to the first (leaf) page into a new (root) page. 

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

Sorted pages of data entries; not yet in B+ tree 
Root 

64 



Page splitting during bulk 
insert 
• Insert the minimal key value for each page   
• Continue until all data pages processed  

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

6 10 

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

6 12 

10 



Bulk Loading Algorithm (Contd.) 

• Index entries for 
leaf pages always 
enter into r*, 
right-most index 
page just above 
leaf level.   

• When the r* 
node fills up, it 
splits.   

• Split may go up 
right-most path 
to the root. 

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

Root 

Data entry pages  
not yet in B+ tree 35 23 12 6 

10 20 

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

6 

Root 
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12 23 
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35 
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not yet in B+ tree 
Data entry pages  



Summary of Bulk Loading 
• Option 1: multiple inserts. 

• Slow due to I/O cost and locking overhead. 
• Does not provide sequential storage of leaves.  
• Sometimes low storage utility. 

• Option 2: Bulk Loading  
• Advantages for concurrency control. 
• Fewer I/Os during build. 
• Leaves will be stored sequentially (and linked, of 

course). 
• Can control “fill factor” on pages. 67 



A Note on `Order’ 

• Order (n) concept replaced by physical space 
criterion in practice (`at least half-full’). 
• Index pages can typically hold many more entries than 

leaf pages. 
• Variable sized records and search keys means different 

nodes will contain different number of entries. 
• Even with fixed length fields, multiple records with the 

same search key value (duplicates) can lead to variable-
sized data entries (if we use Alternative (3)). 
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Summary: Tree-based Index 

• Tree-structured indexes are ideal for range-searches, 
also good for equality searches. 

• ISAM is a static structure. 
• Only leaf pages modified; overflow pages needed. 
• Overflow chains can degrade performance unless size of data set and 

data distribution stay constant. 

• B+ tree is a dynamic structure. 
• Inserts/deletes leave tree height-balanced; log F N cost. 
• High fanout (F) means depth rarely more than 3 or 4. 
• Almost always better than maintaining a sorted file. 
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Summary: B+ trees  

• Typically, 67% occupancy on average. 
• Usually preferable to ISAM, modulo locking considerations; adjusts 

to growth gracefully. 
• If data entries are data records, splits can change rids 
• Key compression increases fan-out, reduces height. 
• Bulk loading can be much faster than repeated inserts for creating a 

B+ tree on a large data set. 
• Most widely used index in database management systems because 

of its versatility.  One of the most optimized components of a 
DBMS. 
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