
Dynamic Hash Indexes
& Tree-Structured

Indexes

Kathleen Durant PhD
Northeastern University
Lecture 16

Index Concept
• Main idea: A separate data structure used to locate records
• Most generally, index is a list of value/address pairs

• Each pair is an index “entry”
• Value is the index “key”
• Address will point to a data record, or to a data page

• There might be many records on a page
• The assumption is that the value/address pair will be much

smaller in size than the full record
• If index is small, a copy can be maintained in memory

• Permanent disk copy is still needed

2

Indexing Pitfalls
• Index itself is a file

• Occupies disk space
• Must worry about maintenance, consistency, recovery, etc.

• Large indices won't fit in memory
• May require multiple seeks to locate record entry

3

Essential for Multilevel Indexes

• Should support efficient random access
• Should also support efficient sequential access, if possible

• Should have low height
• Should be efficiently updatable
• Should be storage-efficient
• Top level(s) should fit in memory

4

Hashing Index

5

Hash index record
• As for any index, 3 alternatives for data entries

k*:
• Data record with key value k
• <k, rid of data record with search key value k>
• <k, list of rids of data records with search key k>

6

Hashing mechanism

• Your index is a collection of buckets (bucket =
page)

• Define a hash function, h, that maps a key to a
bucket.

• Store the corresponding data in that bucket.
• Collisions

• Multiple keys hash to the same bucket.
• Store multiple keys in the same bucket.

• What do you do when buckets fill?
• Chaining: link new pages(overflow pages) off the bucket.

7

Extendible Hashing
• Main Idea: Use a directory of (logical) pointers to

bucket pages
• Situation: Bucket (primary page) becomes full.

Why not re-organize file by doubling # of buckets?
• Reading and writing all pages is expensive

• Idea: Use directory of pointers to buckets, double # of buckets
by doubling the directory, splitting just the bucket that
overflowed
• Directory much smaller than file, so doubling it is much cheaper.

Only one page of data entries is split. No overflow page!
• Trick lies in how hash function is adjusted!

8

Example
• Directory is array of size 4.
• To find bucket for r, take last

`global depth’ # bits of h(r);
we denote r by h(r).
• If h(r) = 5 = binary 101, it

is in bucket pointed to by
01.

 Insert: If bucket is full, split it (allocate new page, re-distribute).

 If necessary, double the directory. (As we will see, splitting a
 bucket does not always require doubling; we can tell by
 comparing global depth with local depth for the split bucket.)

13* 00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

Insert h(r)=20 (Causes Doubling)

20*

00
01
10
11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

1* 5* 21* 13*

32* 16*

10*

15* 7* 19*

4* 12*

19*

2

2

2

000

001
010

011
100

101

110
111

3

3

3
DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

32*

1* 5* 21* 13*

16*

10*

15* 7*

4* 20* 12*

LOCAL DEPTH

GLOBAL DEPTH

10

Points to Note
• 20 = binary 10100. Last 2 bits (00) tell us r belongs

in A or A2. Last 3 bits needed to tell which.
• Global depth of directory: Max # of bits needed to tell

which bucket an entry belongs to.
• Local depth of a bucket: # of bits used to determine if an

entry belongs to this bucket.
• When does bucket split cause directory doubling?

• Before insert, local depth of bucket = global depth. Insert
causes local depth to become > global depth; directory is
doubled by copying it over and `fixing’ pointer to split
image page. (Use of least significant bits enables efficient
doubling via copying of directory!) 11

Directory Doubling

00

01

10

11

2

Why use least significant bits in directory?
 Allows for doubling via copying!

000

001

010

011

3

100

101

110

111

vs.

0

1

1

6*
6*

6*

6 = 110

00

10

01

11

2

3

0

1

1

6*
6* 6*

6 = 110
000

100

010

110

001

101

011

111

Least Significant Most Significant
12

Comments on Extendible
Hashing
• If directory fits in memory, equality search answered with one

disk access; else two.
• 100MB file, 100 bytes/rec, 4K pages contains 1,000,000 records (as

data entries) and 25,000 directory elements; chances are high that
directory will fit in memory.

• Directory grows in spurts, and, if the distribution of hash values is
skewed, directory can grow large.

• Multiple entries with same hash value cause problems
• Need a decent hash function

• Delete: If removal of data entry makes bucket empty, can be
merged with `split image’. If each directory element points to
same bucket as its split image, can halve directory.

13

Linear Hashing
• This is another dynamic hashing scheme, an alternative to

Extendible Hashing.
• LH handles the problem of long overflow chains without using a

directory, and handles duplicates.
• Idea: Use a family of hash functions h0, h1, h2, ...

• hi(key) = h(key) mod(2iN); N = initial # buckets
• h is some hash function (range is not 0 to N-1)
• If N = 2d0, for some d0, hi consists of applying h and looking at the last

di bits, where di = d0 + i.
• hi+1 doubles the range of hi (similar to directory doubling)

• Duplicates extendible hash without the directory – since extendible
hash always adds 1 bit to the bucket’s address 14

Linear Hashing Details
• Directory avoided in LH by using overflow pages, and choosing

bucket to split round-robin.
• Splitting proceeds in `rounds’. Round ends when all NR initial (for round

R) buckets are split. Buckets 0 to Next-1 have been split; Next to NR yet
to be split.

• Current round number is Level.
• Search: To find bucket for data entry r, find hLevel(r):

• If hLevel(r) in range `Next to NR’ , r belongs here.
• Else, r could belong to bucket hLevel(r) or bucket hLevel(r) +

NR; must apply hLevel+1(r) to find out.

15

Extendible Hashing vs. Linear
Hashing
• Dynamic Extendible Hashing

• Periodically double the size of the database directory.
• Rehash every key.

• Dynamic Linear Hashing (Litwin)
• Grow table one bucket at a time.
• Split buckets sequentially; rehash just the splitting bucket.
• Maintain overflow buckets as necessary.
• Keep track of max bucket to identify the correct number of bits to

consider in the hash value

16

Overview of LH File
• In the middle of a round.

Level h

Buckets that existed at the
beginning of this round:

this is the range of

Next
Bucket to be split

of other buckets) in this round

Level h search key value) (

search key value) (

Buckets split in this round:
If
is in this range, must use
h Level+1

`split image' bucket.
to decide if entry is in

created (through splitting
`split image' buckets:

17

Linear Hashing (Contd.)
• Insert: Find bucket by applying hLevel / hLevel+1:

• If bucket to insert into is full:
• Add overflow page and insert data entry.
• (Maybe) Split Next bucket and increment Next.

• Can choose any criterion to `trigger’ split.
• Since buckets are split round-robin, long overflow

chains don’t develop!
• Doubling of directory in Extendible Hashing is

similar; switching of hash functions is implicit in
how the # of bits examined is increased. 18

Example of Linear Hashing
• On split, hLevel+1 is used to redistribute

entries.

0
h h

1

(This info
is for illustration
only!)

Level=0, N=4

00

01

10

11

000

001

010

011

(The actual contents
of the linear hashed
file)

Next=0
PRIMARY

PAGES

Data entry r
with h(r)=5

Primary
bucket page

44* 36* 32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

0
h h

1

Level=0

00

01

10

11

000

001

010

011

Next=1

PRIMARY
PAGES

44* 36*

32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

OVERFLOW
PAGES

43*

00 100

Insert 43*

Example: End of a Round

0 h h 1

22*

00

01

10

11

000

001

010

011

00 100

Next=3

01

10

101

110

Level=0
PRIMARY
PAGES

OVERFLOW
PAGES

32*

9*

5*

14*

25*

66* 10* 18* 34*

35* 31* 7* 11* 43*

44* 36*

37* 29*

30*

0 h h 1

37*

00

01

10

11

000

001

010

011

00 100

10

101

110

Next=0

Level=1

111

11

PRIMARY
PAGES

OVERFLOW
PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31* 7*

50*

Insert 50*

20

Summary: Hash-Based Indexes
• Hash-based indexes: best for equality searches,

cannot support range searches.
• Static Hashing can lead to long overflow

chains.
• Extendible Hashing avoids overflow pages by

splitting a full bucket when a new data entry is
to be added to it. (Duplicates may require
overflow pages.)
• Directory to keep track of buckets, doubles periodically.
• Can get large with skewed data; additional I/O if this

does not fit in main memory. 21

Summary: Linear hashing
• Linear Hashing avoids directory by splitting buckets round-robin,

and using overflow pages.
• Overflow pages not likely to be long.
• Duplicates handled easily.
• Space utilization could be lower than Extendible Hashing, since splits

not concentrated on `dense’ data areas.

• Can tune criterion for triggering splits to trade-off
slightly longer chains for better space utilization.

• For hash-based indexes, a skewed data distribution is one in
which the hash values of data entries are not uniformly
distributed

22

Tree Structured Indexes

• Tree-structured indexing techniques support both
range searches and equality searches.

• Tree structures with search keys on value-based
domains
• ISAM: static structure
• B+ tree: dynamic, adjusts gracefully under inserts and

deletes.

• Tree structures with the search key on multi-
dimensional objects
• R-tree, R*-tree representation of spatial data 23

Introduction

• As for any index, 3 alternatives for data entries k*:
• Data record with key value k
• <k, rid of data record with search key value k>
• <k, list of rids of data records with search key k>

• Choice is orthogonal to the indexing technique used to locate data
entries k*.

• Tree-structured indexing techniques support both range searches
and equality searches.

• ISAM: static structure; B+ tree: dynamic, adjusts gracefully
under inserts and deletes.

24

Range Searches
• ``Find all students with gpa > 3.0’’

• If data is in a sorted file, do binary search to find first such
student, then scan to find others.

• Cost of binary search can be quite high.
• Simple idea: Create an `index’ file.

* Can do binary search on (smaller) index file!

Page 1 Page 2 Page N Page 3 Data File

k2 kN k1 Index File

25

ISAM
• = Indexed Sequential Access Method

• IBM terminology
• “Indexed Sequential” more general term (non-IBM)
• ISAM as described in textbook is very close to B+ tree

• simpler versions exist

• Main idea: maintain sequential ordered file but give it an
index
• Sequentiality for efficient “batch” processing
• Index for random record access

26

ISAM Technique
• Build a dense index of the pages (1st level index)

• Sparse from a record viewpoint
• Then build an index of the 1st level index (2nd level index)
• Continue recursively until top level index fits on 1 page
• Some implementations may stop after a fixed # of levels27

27

Updating an ISAM File
• Data set must be kept sequential

• So that it can be processed without the index
• May have to rewrite entire file to add records
• Could use overflow pages

• chained together or in fixed locations (overflow area)

• Index is usually NOT updated as records are added or deleted
• Once in a while the whole thing is “reorganized”

• Data pages recopied to eliminate overflows
• Index recreated

28

ISAM Pros, Cons
• Pro

• Relatively simple
• Great for true sequential access

• Cons
• Not very dynamic
• Inefficient if lots of overflow pages
• Can only be one ISAM index per file

29

ISAM

• Leaf pages contain sorted data records (e.g., Alt 1 index).
• Non-leaf part directs searches to the data records; static once built
• Inserts/deletes: use overflow pages, bad for frequent inserts.

P 0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages
(static!)

Pages
Overflow

page
Primary pages

Leaf

30

Comments on ISAM
• File creation: Leaf (data) pages allocated

sequentially, sorted by search key; then index
pages allocated, then space for overflow pages.

• Index entries: <search key value, page id>; they
`direct’ search for data entries, which are in leaf
pages.

• Search: Start at root; use key comparisons to go
to leaf. Cost log F N ; F = # entries/index pg, N =
leaf pgs

• Insert: Find leaf data entry belongs to, and put it
there.

• Delete: Find and remove from leaf; if empty
overflow page, de-allocate.

* Static tree structure: inserts/deletes affect only leaf pages.

Data
Pages

Index Pages

Overflow pages

Example ISAM Tree
• Each node can hold 2 entries; no need for `next-leaf-page’

pointers. (Why?)

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

32

After Inserting 23*, 48*, 41*,
42* ...

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index
Pages

Pages

Primary

33

 ... Then Deleting 42*, 51*,
97*

* Note that 51* appears in index levels, but not in leaf!

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41*

34

Comments on ISAM

• Main problem
• Long overflow chains after many inserts, high I/O cost for retrieval.

• Advantages
• Simple when updates are rare.
• Leaf pages are allocated in sequence, leading to sequential I/O.
• Non-leaf pages are static; for concurrent access, no need to lock

non-leaf pages

• Good performance for frequent updates?
 B+tree!

35

B trees Introduction
• A B-tree is a keyed index structure, comparable to a

number of memory resident keyed lookup
structures
• Balanced binary tree, AVL tree, and the 2-3 tree.

• Difference B-tree is meant to reside on disk
• Can be partially memory-resident when entries in the

structure are accessed.

• The B-tree structure is the most common used
index type in databases today.
• It is provided by ORACLE, DB2, and INGRES.

36

B-tree Organization
A B-tree helps minimize access to the index / directory
A B-tree is a tree where:

• Each node contains s slots for a index record and s + 1 pointers
• Each node is always at least ½ full

Order: the maximum number of keys in a non-leaf node
Fanout of a node: the number of pointers out of the node
• It is a type of Multi-way tree

37

The B-Tree Shape
• A B-tree is built upside down with the root at the

top and the leaves at the bottom.
• All nodes above the leaf level, including the root,

are called directory nodes or index nodes.
• Directory nodes below the root are called internal

nodes.
• The root node is known as level 1 of the B-tree and

successively lower levels are given successively
larger level numbers with the leaf nodes at the
lowest level.

• The total number of levels is called the depth of
the B-tree.

38

•Balanced and Unbalanced Trees

Trees can be balanced or unbalanced.

In a balanced tree, every path from the route to a leaf node
is the same length.

A tree that is balanced has at most logorder n levels. This is
desirable for an index.

39

B+ Tree: Most Widely Used Index
• Search for a record requires a tranversal from the root to the

appropriate leaf
• Height-balanced given arbitrary inserts/deletes.

• F = fanout, N = # leaf pages, Height = Log F N.
• Minimum 50% occupancy (except for root).

• Each non-root node contains [n/2, n] entries, where n is the max
of keys in a node, called order of the tree.

• Root node can have [1, n] entries.

Index Entries

Data Entries
("Sequence set")

(Direct search)

40

Definition of B+ tree
• A B-tree of order n is a height-balanced tree ,

where each node may have up to n children, and
in which:
• All leaves (leaf nodes) are on the same level
• No node can contain more than n children
• All nodes except the root have at least n/2 children
• The root is either a leaf node, or it has at least n/2

children

41

Example B+ Tree

• Search begins at root, and key comparisons direct it to a
leaf (as in ISAM).

• Search for 5*, 15*, all data entries >= 24* ...

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

<13
≥13 <17

≥17 <24 ≥24 <30
≥30

42

B+ Trees in Practice

• Typical order: 200. Typical fill-factor: 67%.
• Average fan-out for internal nodes = 133

• Typical capacities:
• Height 4: 1334 = 312,900,700 records
• Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:
• Level 1 = 1 page = 8 Kbytes
• Level 2 = 133 pages = 1 Mbyte
• Level 3 = 17,689 pages = 133 MBytes

43

Insertion in B-Tree
• 1. 2.
• a, g, f,b: k:

a b f g

a b g k

f

44

Insertion (cont.)

• 3. 4.
• d, h, m: j:

• 5. 6.
• e, s, i, r: x:
•

f

 a b d g h k m

f j

a b d g h k m

f j

a b d e k m r s g h i

f j r

g h i s x k m a b d e 45

Insertion (cont.)

7.
 c, l, n, t, u:

8.
 p:

c f j r

s t u x k l m n g h i a b d e

j

a b d e k l n p

m r c f

g h i s t u x

46

Inserting a Data Entry into a B+ Tree
• Find correct leaf L.
• Put data entry onto L.

• If L has enough space, done!
• Else, must split L (into L and a new node L2)

• Redistribute entries evenly, copy up middle key.
• Insert index entry pointing to L2 into parent of L.

• This can happen recursively
• To split index node, redistribute entries evenly, but push up

middle key. (Contrast with leaf splits.)

• Splits “grow” tree; root split increases height.
• Tree growth: gets wider or one level taller at top.

47

Previous B+ Tree Example

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 25* 27* 29* 33* 34* 38* 39*

13

Inserting 8*

48

Previous B+ Tree Example

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 25* 27* 29* 33* 34* 38* 39*

13

Inserting 8*

 2* 3 5 7 13 14 16 17 19 20 24 25 27 29 29 30 33 34 38 39

49

Inserting 8* into Example B+ Tree

• Minimum
occupancy is
guaranteed in
both leaf and
index pg splits.

• Note difference
between copy-
up and push-
up. Reasons for
this?

2* 3* 5* 7* 8*

5
Entry to be inserted in parent node.
(Note that 5 is
continues to appear in the leaf.)

s copied up and

appears once in the index. Contrast

5 24 30

17

13

Entry to be inserted in parent node.
(Note that 17 is pushed up and only

this with a leaf split.)

No need to duplicate
Index record in index

Need a data record
and an index record

Example B+ Tree After Inserting 8*

 Notice that root was split, leading to increase in height.

 In this example, we can avoid split by re-distributing entries between
siblings; but not usually done in practice.

2* 3*

Root
17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8*

51

Deleting a Data Entry from a B+ Tree
• Start at root, find leaf L where entry belongs.
• Remove the entry.

• If L is at least half-full, done
• If L has only n/2 - 1 entries

• Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

• If re-distribution fails, merge L and sibling.

• If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

• Merge could propagate to root, decreasing height. 52

Current B+ Tree

2* 3*

Root
17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8*

Delete 19*

Delete 20*

53

• One record on page after deletions
• Move records over from sibling page

• Record 24 to the left

Example Tree After Deleting 19*
and 20* ...

• Deleting 19* is easy.
• Deleting 20* is done with re-distribution. Notice

how middle key is copied up.

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

13 5

7* 5* 8* 22* 24*

27

27* 29*

54

New B+ Tree ...

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

13 5

7* 5* 8* 22* 24*

27

27* 29*

Delete 24*

55

 ... And Then Deleting 24*
• Merge the two leaves to form

[22,27,29].
• Observe toss of index entry

([30]on right), and pull down
of index entry (below [17]).

30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39* 5* 8*

Root
30 13 5 17

56

Example of Non-leaf Re-distribution
• Tree is shown below during deletion of 24*.
• In contrast to previous example, can re-distribute entry from

left child of root to right child.

Root

13 5 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39* 22* 27* 29* 21* 7* 5* 8* 3* 2*

57

After Re-distribution
• Intuitively, entries are re-distributed by `pushing through’ the

splitting entry in the parent node.
• It suffices to re-distribute index entry with key 20; we’ve re-

distributed 17 as well for illustration.

14* 16* 33* 34* 38* 39* 22* 27* 29* 17* 18* 20* 21* 7* 5* 8* 2* 3*

Root

13 5

17

30 20 22

58

59

8/5/
2015

B+Tree Growth and Change
The big idea: When a node is full, it splits.

• middle value is propagated upward
• If we’re lucky, there’s room for it in the level above

• two new nodes are at same level as original node
• Height of tree increases only when the root splits

• A very nice property
• This is what keeps the tree perfectly balanced

• Recommended: split only “on the way down”
• On deletion: two adjacent nodes recombine if both are < half

full

Duplicate records
• Up to now we have considered 1 record for each key
• How do we handle duplicate records?

• Search – find first page with the given value then retrieve more
‘next’ leaf page until the criterion fails

• Delete – How do we identify which record to delete?
• Treat the search key as including the record id – since it makes the

record unique

60

Prefix Key Compression
• Height of a B+ tree depends on the number of data entries and

the size of index entries
• Size of index entries determines the number of index entries that

will fit on a page – and therefore the fan-out of the tree.
• Key Compression can increase fan-out. (Why?)
• Key values in index entries only `direct traffic’; can often

compress them.
• E.g., adjacent index entries with search key values
 [Dave Jones, David Smith and Devarakonda Murthy]
• Can we abbreviate David Smith to Dav?

• Not correct! Can only compress David Smith to Davi.
• In general, while compressing, must leave each index entry greater

than every key value (in any subtree) to its left.

• Insert/delete must be suitably modified.

61

Prefix Key compression

Alligator Antelope Baboon

62

… Amardillo …… Anteater

Antel Key
Compression

Bulk Loading of a B+ Tree
• Have a large collection of records, and want to

create a B+ tree on some field. Doing so by
repeatedly inserting records?
• Slow due to repeated traversals and splits
• Significant locking overhead.
• Not necessarily the optimal structure. An example?
• Low storage utility. An example?

• Bulk Loading can be done much more efficiently!

63

Bulk Loading Algorithm
• Initialization:

• Sort all data entries
• Insert pointer to the first (leaf) page into a new (root) page.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

64

Page splitting during bulk
insert
• Insert the minimal key value for each page
• Continue until all data pages processed

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

6 10

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

6 12

10

Bulk Loading Algorithm (Contd.)

• Index entries for
leaf pages always
enter into r*,
right-most index
page just above
leaf level.

• When the r*
node fills up, it
splits.

• Split may go up
right-most path
to the root.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Root

Data entry pages
not yet in B+ tree 35 23 12 6

10 20

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree
Data entry pages

Summary of Bulk Loading
• Option 1: multiple inserts.

• Slow due to I/O cost and locking overhead.
• Does not provide sequential storage of leaves.
• Sometimes low storage utility.

• Option 2: Bulk Loading
• Advantages for concurrency control.
• Fewer I/Os during build.
• Leaves will be stored sequentially (and linked, of

course).
• Can control “fill factor” on pages. 67

A Note on `Order’

• Order (n) concept replaced by physical space
criterion in practice (`at least half-full’).
• Index pages can typically hold many more entries than

leaf pages.
• Variable sized records and search keys means different

nodes will contain different number of entries.
• Even with fixed length fields, multiple records with the

same search key value (duplicates) can lead to variable-
sized data entries (if we use Alternative (3)).

68

Summary: Tree-based Index

• Tree-structured indexes are ideal for range-searches,
also good for equality searches.

• ISAM is a static structure.
• Only leaf pages modified; overflow pages needed.
• Overflow chains can degrade performance unless size of data set and

data distribution stay constant.

• B+ tree is a dynamic structure.
• Inserts/deletes leave tree height-balanced; log F N cost.
• High fanout (F) means depth rarely more than 3 or 4.
• Almost always better than maintaining a sorted file.

69

Summary: B+ trees

• Typically, 67% occupancy on average.
• Usually preferable to ISAM, modulo locking considerations; adjusts

to growth gracefully.
• If data entries are data records, splits can change rids
• Key compression increases fan-out, reduces height.
• Bulk loading can be much faster than repeated inserts for creating a

B+ tree on a large data set.
• Most widely used index in database management systems because

of its versatility. One of the most optimized components of a
DBMS.

70

	Dynamic Hash Indexes & Tree-Structured Indexes
	Index Concept
	Indexing Pitfalls
	Essential for Multilevel Indexes
	Hashing Index
	Hash index record
	Hashing mechanism
	Extendible Hashing
	Example
	Insert h(r)=20 (Causes Doubling)
	Points to Note
	Directory Doubling
	Comments on Extendible Hashing
	Linear Hashing
	Linear Hashing Details
	Extendible Hashing vs. Linear Hashing
	Overview of LH File
	Linear Hashing (Contd.)
	Example of Linear Hashing
	Example: End of a Round
	Summary: Hash-Based Indexes
	Summary: Linear hashing
	Tree Structured Indexes
	Introduction
	Range Searches
	ISAM
	ISAM Technique
	Updating an ISAM File
	ISAM Pros, Cons
	ISAM
	Comments on ISAM
	Example ISAM Tree
	After Inserting 23*, 48*, 41*, 42* ...
	 ... Then Deleting 42*, 51*, 97*
	Comments on ISAM
	B trees Introduction
	Slide Number 37
	The B-Tree Shape
	Slide Number 39
	B+ Tree: Most Widely Used Index
	Definition of B+ tree
	Example B+ Tree
	B+ Trees in Practice
	Insertion in B-Tree
	Insertion (cont.)
	Insertion (cont.)
	Inserting a Data Entry into a B+ Tree
	Previous B+ Tree Example
	Previous B+ Tree Example
	Inserting 8* into Example B+ Tree
	Example B+ Tree After Inserting 8*
	Deleting a Data Entry from a B+ Tree
	Current B+ Tree
	Example Tree After Deleting 19* and 20* ...
	New B+ Tree ...
	 ... And Then Deleting 24*
	Example of Non-leaf Re-distribution
	After Re-distribution
	B+Tree Growth and Change
	Duplicate records
	Prefix Key Compression
	Prefix Key compression
	Bulk Loading of a B+ Tree
	Bulk Loading Algorithm
	Page splitting during bulk insert
	Bulk Loading Algorithm (Contd.)
	Summary of Bulk Loading
	A Note on `Order’
	Summary: Tree-based Index
	Summary: B+ trees

