
Hash-based Index
Kathleen Durant PhD
CS 3200 Lesson 15
Northeastern University 1

Outline
• Deep dive Hash Index

2

Hashed-Based Indexing
• Static Hashing: A simple solution; does not

support incremental maintenance
• Extendible Hashing: A more advanced

incremental hash-based index
• Gracefully supports inserting and deleting data entries

• Linear Hashing: Another incremental hash-based
index

3

Why is Indexing necessary?
• There are lots of data structures like trees, DAGs, and

things with many algorithms that operate on them
efficiently.

• Why don’t these algorithms and data structures translate
directly into disk-space structures?

• Pointers work nicely in main memory -- how do you
represent pointers in main memory?

• Data structures can be arbitrarily sized, but disk blocks
are fixed size (and are larger than many objects).

• Files typically only grow at the end -- they don’t support
“insert into the middle.”

4

Introduction
• As for any index, 3 alternatives for data entries k*:

• Data record with key value k
• <k, rid of data record with search key value k>
• <k, list of rids of data records with search key k>
• Choice orthogonal to the indexing technique

• Hash-based indexes are best for equality selections. Cannot
support range searches.

• Static and dynamic hashing techniques exist; trade-offs similar
to ISAM vs. B+ trees.

Hashing mechanism

• Your index is a collection of buckets (bucket =
page)

• Define a hash function, h, that maps a key to a
bucket.

• Store the corresponding data in that bucket.
• Collisions

• Multiple keys hash to the same bucket.
• Store multiple keys in the same bucket.

• What do you do when buckets fill?
• Chaining: link new pages(overflow pages) off the bucket.

6

 Hashing to search key

• Buckets contain data entries.
• Hash fn works on search key field of record r. Must

distribute values over range 0 ... M-1.
• h(key) = (a * key + b) usually works well.
• a and b are constants; lots known about how to tune h.

• Long overflow chains can develop and degrade
performance.
• Extendible and Linear Hashing: Dynamic techniques

to fix this problem.
7

Static vs. Dynamic Hashing

• Static: number of buckets predefined; never

changes.
• Either, overflow chains grow very long, OR
• A lot of wasted space in unused buckets.

• Dynamic: number of buckets changes over time.
• Hash function must adapt.
• Usually, start revealing more bits of the hash value as

the hash table grows.

8

Static Hashing
• # primary pages fixed, allocated sequentially, never de-

allocated; overflow pages if needed.
• h(k) mod M = bucket to which data entry with key k belongs.

(M = # of buckets)

h(key) mod N

h
key

Primary bucket pages Overflow pages

2
0

N-1

Static Hashing (Contd.)
• Buckets contain data entries.
• Hash fn works on search key field of record r. Must distribute values

over range 0 ... M-1.
• h(key) = (a * key + b) usually works well.
• a and b are constants; lots known about how to tune h.

• Long overflow chains can develop and degrade performance.
• Extendible and Linear Hashing: Dynamic techniques to fix this problem.

Extendible Hashing

• Situation: Bucket (primary page) becomes full. Why not re-
organize file by doubling # of buckets?
• Reading and writing all pages is expensive!
• Idea: Use directory of pointers to buckets, double # of buckets by

doubling the directory, splitting just the bucket that overflowed!
• Directory much smaller than file, so doubling it is much cheaper.

Only one page of data entries is split. No overflow page!
• Trick lies in how hash function is adjusted!

Static Hash-based Index
• Number of buckets (N) is fixed ahead of time,

when the index is created
• What happens if we insert a lot of data entries?

• Long overflow chains of pages, slower search

• Might consider periodically doubling N
and“rehashing” the file
• Entire file has to be read and written (expensive)
• Index unavailable while reorganizing
• Extendible hashing is a dynamic hash index, which

helps fix this problem 12

Static Hashing
• # primary pages fixed, allocated sequentially, never de-

allocated; overflow pages if needed.
• h(k) mod M = bucket to which data entry with key k belongs.

(M = # of buckets)

h(key) mod N

h
key

Primary bucket pages Overflow pages

2
0

N-1 13

Static hashing
• Buckets map to pages.

• Must be able to directly translate from a bucket
number to a page number.

• Where do you store overflow pages?
• If number of buckets is fixed (static hashing), store

overflow buckets after regular buckets.
• Use free list to manage overflow buckets.

• Static hashing isn’t very practical for databases.
• Databases change in size fairly substantially.
• If you have to pre-allocate, often waste space 14

Extendible Hashing
• Main Idea: Use a directory of (logical) pointers to

bucket pages
• On overflow, double the directory (not # number

of buckets)
• Why does this help?
• Directory much smaller than entire index
• Only one page of data entries is split at a time
• No overflow pages

15

Extendible Hashing
• Situation: Bucket (primary page) becomes full. Why

not re-organize file by doubling # of buckets?
• Reading and writing all pages is expensive!
• Idea: Use directory of pointers to buckets, double # of

buckets by doubling the directory, splitting just the bucket
that overflowed!

• Directory much smaller than file, so doubling it is much
cheaper. Only one page of data entries is split. No overflow
page!

• Trick lies in how hash function is adjusted!
16

Example
• Directory is array of size 4.
• To find bucket for r, take last

`global depth’ # bits of h(r);
we denote r by h(r).
• If h(r) = 5 = binary 101, it is in

bucket pointed to by 01.

 Insert: If bucket is full, split it (allocate new page, re-distribute).

 If necessary, double the directory. (As we will see, splitting a
 bucket does not always require doubling; we can tell by
 comparing global depth with local depth for the split bucket.)

13* 00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D
DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

Insert h(r)=20 (Causes
Doubling)

20*

00
01
10
11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

1* 5* 21* 13*

32* 16*

10*

15* 7* 19*

4* 12*

19*

2

2

2

000

001
010

011
100

101

110
111

3

3

3
DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'

of Bucket A)

32*

1* 5* 21* 13*

16*

10*

15* 7*

4* 20* 12*

LOCAL DEPTH

GLOBAL DEPTH

18

Points to Note
• 20 = binary 10100. Last 2 bits (00) tell us r belongs in A or A2.

Last 3 bits needed to tell which.
• Global depth of directory: Max # of bits needed to tell which bucket

an entry belongs to.
• Local depth of a bucket: # of bits used to determine if an entry

belongs to this bucket.
• When does bucket split cause directory doubling?

• Before insert, local depth of bucket = global depth. Insert causes
local depth to become > global depth; directory is doubled by
copying it over and `fixing’ pointer to split image page. (Use of least
significant bits enables efficient doubling via copying of directory!\)

19

Directory Doubling

00

01

10

11

2

Why use least significant bits in directory?
 Allows for doubling via copying!

000

001

010

011

3

100

101

110

111

vs.

0

1

1

6*
6*

6*

6 = 110

00

10

01

11

2

3

0

1

1

6*
6* 6*

6 = 110
000

100

010

110

001

101

011

111

Least Significant Most Significant
20

Comments on Extendible
Hashing

• If directory fits in memory, equality search answered with one disk
access; else two.
• 100MB file, 100 bytes/rec, 4K pages contains 1,000,000 records (as data

entries) and 25,000 directory elements; chances are high that directory will
fit in memory.

• Directory grows in spurts, and, if the distribution of hash values is skewed,
directory can grow large.

• Multiple entries with same hash value cause problems!
• Delete: If removal of data entry makes bucket empty, can be merged

with `split image’. If each directory element points to same bucket as
its split image, can halve directory.

21

Linear Hashing
• This is another dynamic hashing scheme, an alternative to

Extendible Hashing.
• LH handles the problem of long overflow chains without using a

directory, and handles duplicates.
• Idea: Use a family of hash functions h0, h1, h2, ...

• hi(key) = h(key) mod(2iN); N = initial # buckets
• h is some hash function (range is not 0 to N-1)
• If N = 2d0, for some d0, hi consists of applying h and looking at the last di

bits, where di = d0 + i.
• hi+1 doubles the range of hi (similar to directory doubling)

22

Linear Hashing (Contd.)
• Directory avoided in LH by using overflow pages, and choosing

bucket to split round-robin.
• Splitting proceeds in `rounds’. Round ends when all NR initial (for round

R) buckets are split. Buckets 0 to Next-1 have been split; Next to NR yet
to be split.

• Current round number is Level.
• Search: To find bucket for data entry r, find hLevel(r):

• If hLevel(r) in range `Next to NR’ , r belongs here.
• Else, r could belong to bucket hLevel(r) or bucket hLevel(r) +

NR; must apply hLevel+1(r) to find out.

23

Dynamic Hashing vs. Linear
Hashing
• Dynamic hash implementation.

• Periodically double the size of the database.
• Rehash every key into new table.

• Dynamic Linear Hashing (Litwin)
• Grow table one bucket at a time.
• Split buckets sequentially; rehash just the splitting bucket.
• Maintain overflow buckets as necessary.
• Keep track of max bucket to identify the correct number of bits to

consider in the hash value

24

Overview of LH File
• In the middle of a round.

Level h

Buckets that existed at the
beginning of this round:

this is the range of

Next
Bucket to be split

of other buckets) in this round

Level h search key value) (

search key value) (

Buckets split in this round:
If
is in this range, must use
h Level+1

`split image' bucket.
to decide if entry is in

created (through splitting
`split image' buckets:

25

Linear Hashing (Contd.)
• Insert: Find bucket by applying hLevel / hLevel+1:

• If bucket to insert into is full:
• Add overflow page and insert data entry.
• (Maybe) Split Next bucket and increment Next.

• Can choose any criterion to `trigger’ split.
• Since buckets are split round-robin, long

overflow chains don’t develop!
• Doubling of directory in Extendible Hashing is

similar; switching of hash functions is implicit in
how the # of bits examined is increased. 26

Example of Linear Hashing
• On split, hLevel+1 is used to redistribute entries.

0
h h

1

(This info
is for illustration
only!)

Level=0, N=4

00

01

10

11

000

001

010

011

(The actual contents
of the linear hashed
file)

Next=0
PRIMARY

PAGES

Data entry r
with h(r)=5

Primary
bucket page

44* 36* 32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

0
h h

1

Level=0

00

01

10

11

000

001

010

011

Next=1

PRIMARY
PAGES

44* 36*

32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

OVERFLOW
PAGES

43*

00 100

Example: End of a Round

0 h h 1

22*

00

01

10

11

000

001

010

011

00 100

Next=3

01

10

101

110

Level=0
PRIMARY
PAGES

OVERFLOW
PAGES

32*

9*

5*

14*

25*

66* 10* 18* 34*

35* 31* 7* 11* 43*

44* 36*

37* 29*

30*

0 h h 1

37*

00

01

10

11

000

001

010

011

00 100

10

101

110

Next=0

Level=1

111

11

PRIMARY
PAGES

OVERFLOW
PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31* 7*

50*

28

LH Described as a Variant of EH
• The two schemes are actually quite similar:

• Begin with an EH index where directory has N elements.
• Use overflow pages, split buckets round-robin.
• First split is at bucket 0. (Imagine directory being doubled

at this point.) But elements <1,N+1>, <2,N+2>, ... are the
same. So, need only create directory element N, which
differs from 0, now.
• When bucket 1 splits, create directory element N+1, etc.

• So, directory can double gradually. Also, primary
bucket pages are created in order. If they are
allocated in sequence too (so that finding i’th is
easy), we actually don’t need a directory! Voila, LH. 29

Hash index record
• As for any index, 3 alternatives for data entries

k*:
• Data record with key value k
• <k, rid of data record with search key value k>
• <k, list of rids of data records with search key

k>

30

Summary: Hash-Based Indexes

• Hash-based indexes: best for equality searches,
cannot support range searches.

• Static Hashing can lead to long overflow chains.
• Extendible Hashing avoids overflow pages by

splitting a full bucket when a new data entry is to be
added to it. (Duplicates may require overflow
pages.)
• Directory to keep track of buckets, doubles periodically.
• Can get large with skewed data; additional I/O if this does

not fit in main memory. 31

Summary: Linear hashing
• Linear Hashing avoids directory by splitting buckets

round-robin, and using overflow pages.
• Overflow pages not likely to be long.
• Duplicates handled easily.
• Space utilization could be lower than Extendible Hashing, since splits

not concentrated on `dense’ data areas.

• Can tune criterion for triggering splits to trade-off
slightly longer chains for better space utilization.

• For hash-based indexes, a skewed data
distribution is one in which the hash values
of data entries are not uniformly distributed! 32

	Hash-based Index
	Outline
	Hashed-Based Indexing
	Why is Indexing necessary?
	Introduction
	Hashing mechanism
	 Hashing to search key
	Static vs. Dynamic Hashing�
	Static Hashing
	Static Hashing (Contd.)
	Extendible Hashing
	Static Hash-based Index
	Static Hashing
	Static hashing
	Extendible Hashing
	Extendible Hashing
	Example
	Insert h(r)=20 (Causes Doubling)
	Points to Note
	Directory Doubling
	Comments on Extendible Hashing
	Linear Hashing
	Linear Hashing (Contd.)
	Dynamic Hashing vs. Linear Hashing
	Overview of LH File
	Linear Hashing (Contd.)
	Example of Linear Hashing
	Example: End of a Round
	LH Described as a Variant of EH
	Hash index record
	Summary: Hash-Based Indexes
	Summary: Linear hashing

