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Outline  
• Deep dive Hash Index  
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Hashed-Based Indexing 
• Static Hashing: A simple solution; does not 

support incremental maintenance 
• Extendible Hashing: A more advanced 

incremental hash-based index 
• Gracefully supports inserting and deleting data entries 

• Linear Hashing: Another incremental hash-based 
index 
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Why is Indexing necessary? 
• There are lots of data structures like trees, DAGs,  and 

things with many  algorithms that operate on them 
efficiently. 

• Why don’t these algorithms and data structures translate 
directly into disk-space structures? 

• Pointers work nicely in main memory -- how do you 
represent pointers in main memory? 

• Data structures can be arbitrarily sized, but disk blocks 
are fixed size (and are larger than many objects). 

• Files typically only grow at the end -- they don’t support 
“insert into the middle.” 
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Introduction 
• As for any index, 3 alternatives for data entries k*: 

•  Data record with key value k 
•  <k, rid of data record with search key value k> 
•  <k, list of rids of data records with search key k> 
• Choice orthogonal to the indexing technique 

• Hash-based indexes are best for equality selections. Cannot 
support range searches. 

• Static and dynamic hashing techniques exist; trade-offs similar 
to ISAM vs. B+ trees. 



Hashing mechanism 
 

• Your index is a collection of buckets (bucket = 
page) 

• Define a hash function, h, that maps a key to a 
bucket. 

• Store the corresponding data in that bucket. 
• Collisions 

• Multiple keys hash to the same bucket. 
• Store multiple keys in the same bucket. 

• What do you do when buckets fill? 
• Chaining: link new pages(overflow pages) off the bucket. 
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 Hashing to search key 

• Buckets contain data entries. 
• Hash fn works on search key field of record r.  Must 

distribute values over range 0 ... M-1. 
• h(key) = (a * key + b) usually works well. 
• a and b are constants;  lots known about how to tune h. 

• Long overflow chains can develop and degrade 
performance.   
• Extendible and Linear Hashing: Dynamic techniques 

to fix this problem. 
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Static vs. Dynamic Hashing 
 
• Static: number of buckets predefined; never 

changes. 
• Either, overflow chains grow very long, OR 
• A lot of wasted space in unused buckets. 

• Dynamic: number of buckets changes over time. 
• Hash function must adapt. 
• Usually, start revealing more bits of the hash value as 

the hash table grows. 
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Static Hashing 
• # primary pages fixed, allocated sequentially, never de-

allocated; overflow pages if needed. 
• h(k) mod M = bucket to which data entry with key k belongs. 

(M = # of buckets) 

h(key) mod N 

h 
key 

Primary bucket pages Overflow pages 

2 
0 

N-1 



Static Hashing (Contd.) 
• Buckets contain data entries. 
• Hash fn works on search key field of record r.  Must distribute values 

over range 0 ... M-1. 
• h(key) = (a * key + b) usually works well. 
• a and b are constants;  lots known about how to tune h. 

• Long overflow chains can develop and degrade performance.   
• Extendible and Linear Hashing: Dynamic techniques to fix this problem. 



Extendible Hashing 

• Situation: Bucket (primary page) becomes full. Why not re-
organize file by doubling # of buckets? 
• Reading and writing all pages is expensive! 
• Idea:  Use directory of pointers to buckets, double # of buckets by 

doubling the directory, splitting just the bucket that overflowed! 
• Directory much smaller than file, so doubling it is much cheaper.  

Only one page of data entries is split.  No overflow page! 
• Trick lies in how hash function is adjusted! 



Static Hash-based Index 
• Number of buckets (N) is fixed ahead of time, 

when the index is created 
• What happens if we insert a lot of data entries? 

• Long overflow chains of pages, slower search 

•  Might consider periodically doubling N 
and“rehashing” the file 
• Entire file has to be read and written (expensive) 
• Index unavailable while reorganizing 
• Extendible hashing is a dynamic hash index, which 

helps fix this problem 12 



Static Hashing 
• # primary pages fixed, allocated sequentially, never de-

allocated; overflow pages if needed. 
• h(k) mod M = bucket to which data entry with key k belongs. 

(M = # of buckets) 

h(key) mod N 

h 
key 

Primary bucket pages Overflow pages 

2 
0 

N-1 13 



Static hashing 
• Buckets map to pages. 

• Must be able to directly translate from a bucket 
number to a page number. 

• Where do you store overflow pages? 
• If number of buckets is fixed (static hashing), store 

overflow buckets after regular buckets. 
• Use free list to manage overflow buckets. 

• Static hashing isn’t very practical for databases. 
• Databases change in size fairly substantially. 
• If you have to pre-allocate, often waste space 14 



Extendible Hashing 
• Main Idea: Use a directory of (logical) pointers to 

bucket pages 
• On overflow, double the directory (not # number 

of buckets) 
• Why does this help? 
• Directory much smaller than entire index 
• Only one page of data entries is split at a time 
• No overflow pages 
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Extendible Hashing 
• Situation: Bucket (primary page) becomes full. Why 

not re-organize file by doubling # of buckets? 
• Reading and writing all pages is expensive! 
• Idea:  Use directory of pointers to buckets, double # of 

buckets by doubling the directory, splitting just the bucket 
that overflowed! 

• Directory much smaller than file, so doubling it is much 
cheaper.  Only one page of data entries is split.  No overflow 
page! 

• Trick lies in how hash function is adjusted! 
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Example 
• Directory is array of size 4. 
• To find bucket for r, take last 

`global depth’ # bits of h(r); 
we denote r by h(r). 
• If h(r) = 5 = binary 101,  it is in 

bucket pointed to by 01. 

 Insert:  If bucket is full, split it (allocate new page, re-distribute). 

 If necessary, double the directory.  (As we will see, splitting a 
    bucket does not always require doubling; we can tell by  
    comparing global depth with local depth for the split bucket.) 

13* 00 

01 

10 

11 

2 

2 

2 

2 

2 

LOCAL DEPTH 

GLOBAL DEPTH 

DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 
DATA PAGES 

10* 

1* 21* 

4* 12* 32* 16* 

15* 7* 19* 

5* 



Insert h(r)=20 (Causes 
Doubling) 

20* 

00 
01 
10 
11 

2 2 

2 

2 

LOCAL DEPTH 2 

2 

DIRECTORY 

GLOBAL DEPTH 
Bucket A 

Bucket B 

Bucket C 

Bucket D 

Bucket A2 
(`split image' 
of Bucket A) 

1* 5* 21* 13* 

32* 16* 

10* 

15* 7* 19* 

4* 12* 

19* 

2 

2 

2 

000 

001 
010 

011 
100 

101 

110 
111 

3 

3 

3 
DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

Bucket A2 
(`split image' 

of Bucket A) 

32* 

1* 5* 21* 13* 

16* 

10* 

15* 7* 

4* 20* 12* 

LOCAL DEPTH 

GLOBAL DEPTH 
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Points to Note 
• 20 = binary 10100.  Last 2 bits (00) tell us r belongs in A or A2.  

Last 3 bits needed to tell which. 
• Global depth of directory:  Max # of  bits needed to tell which bucket 

an entry belongs to. 
• Local depth of a bucket: # of bits used to determine if an entry 

belongs to this bucket. 
• When does bucket split cause directory doubling? 

• Before insert, local depth of bucket = global depth.  Insert causes 
local depth to become > global depth; directory is doubled by 
copying it over and `fixing’ pointer to split image page.  (Use of least 
significant bits enables efficient doubling via copying of directory!\) 

19 



Directory Doubling 

00 

01 

10 

11 

2 

Why use least significant bits in directory? 
 Allows for doubling via copying! 

000 
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011 

3 

100 
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110 

111 
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0 

1 

1 

6* 
6* 

6* 

6 = 110 

00 

10 

01 

11 

2 

3 

0 

1 

1 

6* 
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Comments on Extendible 
Hashing 

• If directory fits in memory, equality search answered with one disk 
access; else two. 
• 100MB file, 100 bytes/rec, 4K pages contains 1,000,000 records (as data 

entries) and 25,000 directory elements; chances are high that directory will 
fit in memory. 

• Directory grows in spurts, and, if the distribution of hash values is skewed, 
directory can grow large. 

• Multiple entries with same hash value cause problems! 
• Delete:  If removal of data entry makes bucket empty, can be merged 

with `split image’.  If each directory element points to same bucket as 
its split image, can halve directory.  
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Linear Hashing 
• This is another dynamic hashing scheme, an alternative to 

Extendible Hashing. 
• LH handles the problem of long overflow chains without using a 

directory, and handles duplicates. 
•  Idea:  Use a family of hash functions h0, h1, h2, ... 

• hi(key) = h(key) mod(2iN);  N = initial # buckets 
• h is some hash function (range is not 0 to N-1) 
• If N = 2d0, for some d0, hi consists of applying h and looking at the last di 

bits, where di = d0 + i. 
• hi+1 doubles the range of hi (similar to directory doubling) 
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Linear Hashing (Contd.) 
• Directory avoided in LH by using overflow pages, and choosing 

bucket to split round-robin. 
• Splitting proceeds in `rounds’.  Round ends when all NR initial (for round 

R) buckets are split.  Buckets 0 to Next-1 have been split;  Next to NR yet 
to be split. 

• Current round number is Level. 
• Search: To find bucket for data entry r, find hLevel(r): 

• If hLevel(r) in range `Next to NR’ , r belongs here. 
• Else, r could belong to bucket hLevel(r) or bucket hLevel(r) + 

NR; must apply hLevel+1(r) to find out. 
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Dynamic Hashing vs. Linear 
Hashing 
• Dynamic hash implementation. 

• Periodically double the size of the database. 
• Rehash every key into new table. 

• Dynamic Linear Hashing (Litwin) 
• Grow table one bucket at a time. 
•  Split buckets sequentially; rehash just the splitting bucket. 
• Maintain overflow buckets as necessary. 
• Keep track of max bucket to identify the correct number of bits to 

consider in the hash value 
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Overview of LH File  
• In the middle of a round. 

Level h  

Buckets that existed at the 
beginning of this round:  

this is the range of 

Next 
Bucket to be split  

of other buckets) in this round 

Level h  search key value  ) ( 

search key value  ) ( 

Buckets split in this round: 
If  
is in this range, must use 
h  Level+1 

`split image' bucket. 
to decide if entry is in  

created (through splitting 
`split image' buckets: 
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Linear Hashing (Contd.) 
• Insert:  Find bucket by applying hLevel / hLevel+1:  

• If bucket to insert into is full: 
• Add overflow page and insert data entry. 
• (Maybe) Split Next bucket and increment Next. 

• Can choose any criterion to `trigger’ split.  
• Since buckets are split round-robin, long 

overflow chains don’t develop! 
• Doubling of directory in Extendible Hashing is 

similar; switching of hash functions is implicit in 
how the # of bits examined is increased. 26 



Example of Linear Hashing 
• On split, hLevel+1 is used to redistribute entries. 

0 
h h 

1 

(This info 
is for illustration 
only!) 

Level=0, N=4 
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11 

000 
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of the linear hashed 
file) 

Next=0 
PRIMARY 
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Data entry r 
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Primary  
bucket page 
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14* 18* 10* 30* 

31* 35* 11* 7* 
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10 
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Next=1 

PRIMARY 
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43* 

00 100 



Example:  End of a Round 
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LH Described as a Variant of EH 
• The two schemes are actually quite similar: 

• Begin with an EH index where directory has N elements. 
• Use overflow pages, split buckets round-robin. 
• First split is at bucket 0.  (Imagine directory being doubled 

at this point.)  But elements <1,N+1>, <2,N+2>, ... are the 
same.  So, need only create directory element N, which 
differs from 0, now. 
• When bucket 1 splits, create directory element N+1, etc. 

• So, directory can double gradually. Also, primary 
bucket pages are created in order.  If they are 
allocated in sequence too (so that finding i’th is 
easy), we actually don’t need a directory!  Voila, LH. 29 



Hash index record  
• As for any index, 3 alternatives for data entries 

k*: 
• Data record with key value k 
• <k, rid of data record with search key value k> 
• <k, list of rids of data records with search key 

k> 
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Summary: Hash-Based Indexes  

• Hash-based indexes: best for equality searches, 
cannot support range searches. 

• Static Hashing can lead to long overflow chains. 
• Extendible Hashing avoids overflow pages by 

splitting a full bucket when a new data entry is to be 
added to it.  (Duplicates may require overflow 
pages.) 
• Directory to keep track of buckets, doubles periodically. 
• Can get large with skewed data; additional I/O if this does 

not fit in main memory. 31 



Summary: Linear hashing  
• Linear Hashing avoids directory by splitting buckets 

round-robin, and using overflow pages.  
• Overflow pages not likely to be long. 
• Duplicates handled easily. 
• Space utilization could be lower than Extendible Hashing, since splits 

not concentrated on `dense’ data areas. 

• Can tune criterion for triggering splits to trade-off 
slightly longer chains for better space utilization. 

• For hash-based indexes, a skewed data 
distribution is one in which the hash values 
of data entries are not uniformly distributed! 32 
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