
Files, Storage and
RAID
Kathleen Durant PhD
CS 3200 Lesson 14
Northeastern University

1

Outline
• Review concepts from last lecture
• File organizations – Disk Manager
• Buffer manager (new content Ch. 9.3 - 9.7)
• Index organization within a file

• Clustered vs. Non-clustered

• I/O Cost Model
• RAID (new content Ch. 9.2)

2

Disks and Files
• DBMS stores information on (“hard”) disks.
• This has major implications for DBMS design

• READ: transfer data from disk to main memory
(RAM).

• WRITE: transfer data from RAM to disk.
• Both are high-cost operations, relative to in-

memory operations, so must be planned
carefully

3

Why Not Store Everything in Main Memory?

• Costs too much. $1000 will buy you either 128MB
of RAM or 7.5GB of disk (as of 2005).

• Main memory is volatile. We want data to be
saved between runs. (Obviously!)

• Typical storage hierarchy:
• Main memory (RAM) for data currently being used.
• Disk for the main database (secondary storage).
• Tapes for archiving older versions of the data (tertiary

storage).

4

Disk Basics
• Disk: secondary storage device of choice.
• Main advantage over tapes: random access vs. sequential.
• Data is stored and retrieved in units called disk blocks or

pages.
• A disk block/page is a contiguous sequence of bytes.
• Size is a DBMS parameter, 4KB or 8KB.

• Like RAM, disks support direct access to a page.
• Unlike RAM, time to retrieve a page varies

• It depends upon the location on disk.

Therefore, relative placement of pages on disk
has major impact on DBMS performance. 5

Components of a Disk
• The platters spin (say,

90rps)

Spindle

• The arm assembly is
moved in or out to
position a head on a
desired track. Tracks
under heads make a
cylinder (imaginary).

Arm assembly

• Only one head
reads/writes at any
one time.

Platters

Disk head

Arm movement

Tracks

Sector

• Block size is a multiple of a sector size (which is
fixed).

Accessing a Disk Page
• Time to access (read/write) a disk block:

• Seek time: moving arms to position disk head on
track

• Rotational delay: waiting for block to rotate
under head

• Transfer time: actually moving data to & from
disk surface

• Seek time and rotational delay dominate.
• Seek time varies from about 1 to 20msec
• Rotational delay varies from 0 to 10msec
• Transfer rate is about 1msec per 4KB page

• Key to lower I/O cost:

Platters

Disk head

Arm movement

Tracks

Sector

Reduce seek & rotation delays
 7

Arranging Pages on Disk
• Blocks in a file should be arranged sequentially on

disk (by `next’), to minimize seek and rotational
delay.

• `Next’ block concept:
• Blocks on same track, followed by
• Blocks on same cylinder, followed by
• Blocks on adjacent cylinder

• For a sequential scan, pre-fetching several pages
at a time is a big win

8

Disk Space Management
• Lowest layer of DBMS software manages space on

disk.
• Higher levels call upon this layer to:

• allocate/de-allocate a page
• read/write a page

• Request for a sequence of pages must be satisfied by
allocating the pages sequentially on disk. Higher
levels don’t need to know how this is done, or how
free space is managed.

9

When a Page is Requested ...
• If requested page is not in the buffer pool:

• Choose a frame for replacement
• If frame is dirty, write it to disk
• Read requested page into chosen frame

• Pin the page and return its address.

 If requests can be predicted (e.g., sequential scans)
 pages can be pre-fetched several pages at a time!

10

Buffer Management in a DBMS

• Data must be in RAM for DBMS to operate on it!
• Table of <frame#, pageid> pairs is maintained.

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

11

Buffer Management Activities
• Requestor of page must unpin it, and indicate

whether page has been modified:
• Dirty bit is used for this.

• Page in pool may be requested multiple times
• A pin count is used. A page is a candidate for

replacement iff pin count = 0.

• Concurrency control & recovery manager will
handle the additional I/O when a frame is
chosen for replacement. (Write-Ahead Log
protocol) 12

Buffer Replacement Policy
• Frame is chosen for replacement by a

Replacement policy:
• Least-recently-used (LRU), Clock, MRU, FIFO, LIFO etc.

• Policy can have big impact on # of I/O’s; depends
on the access pattern

• Sequential flooding: Nasty situation caused by
LRU + repeated sequential scans.
• # buffer frames < # pages in file means each page

request causes an I/O. MRU much better in this
situation (but not in all situations, of course). 13

Data usage patterns
• Just a few basic data access patterns in RDBS, with

noticeable locality behaviors
• Reason why stochastic policies do not work well in

managing buffer
• DB operations can be broken down or decomposed into a

subset of these access patterns
• To reduce I/Os expose these patterns to the buffer

manager for correct estimation of:
• Buffer size - many queries share the buffer pool; need to

know how to allocate frames to each query
• Replacement policy - evict unused pages to make room for

newly requested pages.
• Steal or no-steal policy

14

Disk Space Manager
• Disk space manager is the lowest layer of DBMS

managing space on disk.
• Higher levels call upon this layer to:

• Allocate/de-allocate a page or sequence of pages
• Read/Write a page

• Requests for a sequence of pages are satisfied by
allocating the pages sequentially on disk!
• Higher levels don’t need to know how this is done, or how

free space is managed.

15

File Control? DBMS vs. OS System
 Discussion: Operating System already knows how to manage disk

space

 Why not let OS manage these tasks?
 • Differences in OS support: portability issues
• Some limitations, e.g., files can’t span disks.
• Buffer management in DBMS requires ability to:

• Pin a page in buffer pool, force a page to disk (important
for implementing Concurrency Control & Recovery),

• Adjust replacement policy, and pre-fetch pages based on
access patterns in typical DB operations.

• Too important to the efficiency of a DBMS to leave it to
another system

16

Record Abstraction: File of Records

• Page or block is OK when doing I/O, but higher
levels of DBMS operate on records, and files of
records.

• FILE: A collection of pages, each file containing a
specific collection of records. Must support:
• Insert/Delete/Modify record
• Read a specific record (specified using a record id)
• Scan all records (possibly with some conditions on the

records to be retrieved)
17

Files
• Access method layer offers an abstraction of

disk-resident data: a file of records residing on
multiple pages
• A number of fields are organized in a record
• A collection of records are organized in a page
• A collection of pages are organized in a file

18

File structure types
• Heap (random order) files

• Suitable when typical access is a file scan retrieving all
records.

• Sorted Files
• Best if records must be retrieved in some order, or

only a `range’ of records is needed.
• Indexes = data structures to organize records via

trees or hashing.
• Like sorted files, they speed up searches for a subset

of records, based on values in certain (“search key”)
fields

• Updates are much faster than in sorted files.
19

Record Formats: Fixed Length

• Information about field types same for all
records in a file; stored in system catalogs.

• Finding i’th field requires scan of record.

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

20

Record Formats: Variable Length
Two alternative formats (# fields is fixed):

 Second offers direct access to i’th field, efficient storage
of nulls (special don’t know value); small directory
overhead.

4 $ $ $ $

Field
Count

Fields Delimited by Special Symbols

F1 F2 F3 F4

F1 F2 F3 F4

Array of Field Offsets

21

Page Formats: Fixed Length Records

Record id = <page id, slot #>. In first alternative, move a record for
free space management – involves updating rid; may not be
acceptable.

Slot 1
Slot 2

Slot N

.

N M 1 0 . . .
M ... 3 2 1

PACKED UNPACKED, BITMAP

Slot 1
Slot 2

Slot N

Free
Space

Slot M
1 1

number
of records

number
of slots

22

Page Formats: Variable Length Records

Can move records on page without changing rid; so, attractive for
fixed-length records too.

Page i
Rid = (i,N)

Rid = (i,2)

Rid = (i,1)

Pointer
to start
of free
space

SLOT DIRECTORY

N . . . 2 1
20 16 24 N

slots

23

Unordered (Heap) Files
• Simplest file structure contains records in no

particular order.
• As file grows and shrinks, disk pages are allocated

and de-allocated.
• To support record level operations, we must:

• Keep track of the pages in a file
• Keep track of free space on pages
• Keep track of the records on a page

• There are many alternatives for keeping track of
this. 24

Heap File Implemented as a
List

The header page id and Heap file name must be stored
someplace.
Each page contains 2 `pointers’ plus data.

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page Pages with

Free Space

Full Pages

25

Heap File Using a Page
Directory

• The entry for a page includes a pointer to the page and can
include the number of free bytes on the page.

• The directory is a collection of pages; linked list implementation is
just one alternative.
• Much smaller than linked list of all Heap File pages!

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

26

Indexes
• A Heap file allows us to retrieve records:

• by specifying the rid, or
• by scanning all records sequentially

• Sometimes, we want to retrieve records by specifying the
values in one or more fields
• Examples:
• Find all students in the “CS” department
• Find all students with a gpa > 3

• Indexes are file structures that enable us to answer such
value-based queries efficiently.

27

Indexes
• An index on a file speeds up selections on the search key fields

for the index
• Any subset of the fields of a relation can be the search key for an

index on the relation
• Search key is not the same as a key in the DB

• An index contains a collection of data entries, and supports
efficient retrieval of all data entries k* with a given key value
k.

28

Cost Model Analysis Review
• We ignore CPU costs, for simplicity:

• B: The number of data pages (Blocks)
• R: Number of records per page (Records)
• D: (Average) time to read or write a single disk page

• Measuring number of page I/O’s
• ignores gains of pre-fetching a sequence of pages; thus,

even I/O cost is only approximated

• Average-case analysis; based on several simplifying
assumptions

 Far from Precise but Good enough to show the overall
trends!

29

Comparing File Organization
• Heap files (random order; insert at eof)
• Sorted files, sorted on attributes <age, sal>
• Clustered B+ tree file, Alternative 1, search key

<age, sal>
• Heap file with unclustered B + tree index on

search key <age, sal>
• Heap file with unclustered hash index on search

key <age, sal>

30

Five operations to compare
• Scan: Fetch all records from disk
• Equality search
• Range selection
• Insert a record
• Delete a record

31

Assumptions for the File
Organizations
• Heap Files:

• Equality selection on key; exactly one match.
• Sorted Files:

• Files compacted after deletions.
• Indexes:

• Alternatives 2, 3: data entry size = 10% of record size
• Tree: 67% occupancy (Close to AUC for 1 std dev.).

• Implies file size = 1.5 data size (because of extra free
space)

• Hash: No overflow buckets.
• 80% page occupancy => File size = 1.25 data size

32

Summary of workload
File Type Scan Equality

Search
Range
Search

Insert Delete

Heap BD .5BD BD 2D Search + D

Sorted BD D log2B Dlog2B + #
matching p.

Search + BD Search + BD

Clustered 1.5BD D LogF1.5B DLogF1.5B +
matched
pages

Search + D Search + D

Unclustered
tree index

BD(R +
0.15)

D(1+
logF0.15B)

D(LogF0.15B
+ #
matching
records)

D(3 +
logF0.15B)

Search + 2D

Unclustered
Hash index

BD(R +
0.125)

2D BD 4D Searches +
2D 33

RAID
• Disk Array: Arrangement of several disks that gives

abstraction of a single, large disk.
• Goals: Increase performance and reliability.

• High capacity and high speed by using multiple disks in parallel
• High reliability by storing data redundantly, so that data can be

recovered even if a disk fails

• Two main techniques:
• Data striping: Data is partitioned; size of a partition is called the

striping unit. Partitions are distributed over several disks.
• Redundancy: More disks -> more failures. Redundant information

allows reconstruction of data if a disk fails.
34

New Problems from RAID

• The chance that some disk out of a set of N disks
will fail is much higher than the chance that a
specific single disk will fail.
• E.g., a system with 100 disks, each with MTTF of 100,000 hours

(approx. 11 years), will have a system MTTF of 1000 hours (approx. 41
days)

MTTF = Mean time to failure

35

Improvement of Reliability via Redundancy

• Redundancy – store extra information that can be
used to rebuild information lost in a disk failure

• E.g., Mirroring (or shadowing)
• Duplicate every disk. Logical disk consists of two physical

disks.
• Every write is carried out on both disks

• Reads can take place from either disk

• If one disk in a pair fails, data still available in the other
• Data loss would occur only if a disk fails, and its mirror disk also

fails before the system is repaired
• Probability of combined event is very small

• Except for dependent failure modes such as fire or building
collapse or electrical power surges

36

Improvement in Performance via Parallelism

• Two main goals of parallelism in a disk system:
1. Load balance multiple small accesses to increase throughput
2. Parallelize large accesses to reduce response time.

• Improve transfer rate by striping data across multiple disks.
• Bit-level striping – split the bits of each byte across multiple

disks
• But seek/access time worse than for a single disk

• Bit level striping is not used much any more

• Block-level striping – with n disks, block i of a file goes to
disk (i mod n) + 1
• Requests for different blocks can run in parallel if the blocks reside on

different disks
• A request for a long sequence of blocks can utilize all disks in parallel

37

RAID Levels 0,1
• RAID organizations, or RAID levels, have differing cost, performance and reliability

characteristics
• RAID Level 0: Block striping; non-redundant.

• Used in high-performance applications where data lost is not critical.
• Best write performance of all RAID levels

• RAID Level 1: Mirrored disks
• Most expensive solution
• Maximum transfer rate = transfer rate of one disk
• Popular for applications such as storing log files in a database system
• Each write is 2 writes since has 2 copies of the data
• Read is scheduled for the copy that has the lowest expected wait time

• RAID 0+1: Mirrored disks with block striping
• Offers best write performance.
• Maximum transfer rate = transfer rate of one disk

38

RAID Level 2
• RAID Level 2: Memory-Style Error-Correcting-Codes (ECC) with bit striping.

• Striping unit is a single bit
• Parallel reads, a write involves two disks.
• Maximum transfer rate = aggregate bandwidth
• Good for large data requests since block size defined across all disks -

but bad for small requests
• Number of parity bits grows logarithmically with number of data disks
• Parity data uses Hamming code - contains quality of data and quality of

disks

39

RAID Level 3
• RAID Level 3: Bit-Interleaved Parity

• Striping Unit: One bit.
• Only 1 check disk so lowest overhead
• Each read and write request involves all disks; disk array can process one

request at a time.
• Faster data transfer than with a single disk, but fewer I/Os per second

since every disk has to participate in every I/O. Performance similar to
RAID2

• When writing data, corresponding parity bits must also be
computed and written to a parity bit disk

• To recover data of a damaged disk, compute XOR of bits from
other disks (including parity bit disk)

40

RAID Levels 4
• RAID Level 4: Block-Interleaved Parity; uses block-level striping, and keeps

a parity block on a separate disk for corresponding blocks from N other
disks.
• Striping Unit: One disk block. One check disk.
• Parallel reads possible for small requests (can limit request to the disk

where the data resides) , large requests can utilize full bandwidth
• When writing data block, corresponding block of parity bits must also be

computed and written to parity disk
• To find value of a damaged block, compute XOR of bits from

corresponding blocks (including parity block) from other disks.

41

RAID Levels (4 Cont.)
• Provides higher I/O rates for independent block reads than Level 3

• Block read goes to a single disk, so blocks stored on different disks can be
read in parallel

• Before writing a block, parity data must be computed
• Can be done by using old parity block, old value of current block and

new value of current block (2 block reads + 2 block writes)
• Or by recomputing the parity value using the new values of blocks

corresponding to the parity block
• More efficient for writing large amounts of data sequentially

• Parity block becomes a bottleneck for independent block writes since
every block write also writes to parity disk

42

RAID Level 5
• RAID Level 5: Block-Interleaved Distributed Parity;

partitions data and parity among all N + 1 disks, rather than
storing data in N disks and parity in 1 disk.
• E.g., with 5 disks, parity block for nth set of blocks is stored on disk (n

mod 5) + 1, with the data blocks stored on the other 4 disks.
• Higher I/O rates than Level 4.

• Block writes occur in parallel if the blocks and their parity blocks
are on different disks.

• Subsumes Level 4: provides same benefits, but avoids bottleneck of
parity disk.

43

RAID Level 6
• RAID Level 6: P+Q Redundancy scheme; similar to Level 5, but

stores extra redundant information to guard against multiple
disk failures.

• Can recover from 2 simultaneous disk failures
• Better reliability than Level 5 at a higher cost; not used as widely.

44

Choice of RAID Level
• Factors in choosing RAID level

• Monetary cost
• Performance: Number of I/O operations per second, and bandwidth

during normal operation
• Performance during failure
• Performance during rebuild of failed disk

• Including time taken to rebuild failed disk
• RAID 0 is used only when data safety is not important

• E.g. data can be recovered quickly from other sources
• Level 2 and 4 never used since they are subsumed by 3 and 5
• Level 3 is not used since bit-striping forces single block reads

to access all disks, wasting disk arm movement
• Level 6 is rarely used since levels 1 and 5 offer adequate

safety for most applications
• So competition is mainly between 1 and 5 45

Choice of RAID Level (Cont.)
• Level 1 provides much better write performance than level 5

• Level 5 requires at least 2 block reads and 2 block writes to write a single
block, whereas Level 1 only requires 2 block writes

• Level 1 preferred for high update environments such as log disks
• Level 1 had higher storage cost than level 5

• disk drive capacities increasing rapidly (50%/year) whereas disk access
times have decreased at a slower rate (x 3 in 10 years)

• I/O requirements have increased greatly, e.g. for Web servers
• When enough disks have been bought to satisfy required rate of I/O, they

often have spare storage capacity
• So there is often no extra monetary cost for Level 1

• Level 5 is preferred for applications with low update rate,
and large amounts of data

• Level 1 is preferred for all other applications
46

Summary: File and Buffer
Manager
• Disks provide cheap, non-volatile storage.

• Random access, but cost depends on location of page on
disk; important to arrange data sequentially to minimize
seek and rotation delays.

• Buffer manager brings pages into RAM.
• Page stays in RAM until released by requestor.
• Written to disk when frame chosen for replacement (which

is sometime after requestor releases the page).
• Choice of frame to replace based on replacement policy.
• Tries to pre-fetch several pages at a time.

47

Summary: File Organization
• File layer keeps track of pages in a file, and

supports abstraction of a collection of records.
• Pages with free space identified using linked list or

directory structure (similar to how pages in file are
kept track of).

• Indexes support efficient retrieval of records
based on the values in some fields.

• Many alternatives file organizations exists, each
appropriate in some situations
 48

Summary: File manager
• DBMS vs. OS File Support

• DBMS needs features not found in many OS’s, e.g.,
forcing a page to disk, controlling the order of page
writes to disk, files spanning disks, ability to control pre-
fetching and page replacement policy based on
predictable access patterns, etc.

• Variable length record format with field offset
directory offers support for direct access to i’th
field and null values.

• Slotted page format supports variable length
records and allows records to move on page. 49

Summary: Index
• Data entries can be actual data records, <key,

rid> pairs, or <key, rid-list> pairs.
• Choice orthogonal to indexing technique used to

locate data entries with a given key value.
• Can have several indexes on a given file of data

records, each with a different search key.

• Indexes can be classified as clustered vs.
unclustered and primary vs. secondary.

• Differences have important consequences for
utility/performance. 50

Summary: Workload to Index
• Understanding the nature of the workload and

performance goals essential to developing a good design.
• What are the important queries and updates?
• What attributes and relations are involved?

• Indexes must be chosen to speed up important queries
(and perhaps some updates).
• Index maintenance overhead on updates to key fields.
• Choose indexes that can help many queries, if possible.
• Build indexes to support index-only strategies.
• Clustering is an important decision; since only one index on a

given relation can be clustered
• Order of fields in composite index key can be important. 51

	Files, Storage and RAID
	Outline
	Disks and Files
	Why Not Store Everything in Main Memory?
	Disk Basics
	Components of a Disk
	Accessing a Disk Page
	Arranging Pages on Disk
	Disk Space Management
	When a Page is Requested ...
	Buffer Management in a DBMS
	Buffer Management Activities
	Buffer Replacement Policy
	Data usage patterns
	Disk Space Manager
	File Control? DBMS vs. OS System
	Record Abstraction: File of Records
	Files
	File structure types
	Record Formats: Fixed Length
	Record Formats: Variable Length
	Page Formats: Fixed Length Records
	Page Formats: Variable Length Records
	Unordered (Heap) Files
	Heap File Implemented as a List
	Heap File Using a Page Directory
	Indexes
	Indexes
	Cost Model Analysis Review
	Comparing File Organization
	Five operations to compare
	Assumptions for the File Organizations
	Summary of workload
	RAID
	New Problems from RAID
	Improvement of Reliability via Redundancy
	Improvement in Performance via Parallelism
	RAID Levels 0,1
	RAID Level 2
	RAID Level 3
	RAID Levels 4
	RAID Levels (4 Cont.)
	RAID Level 5
	RAID Level 6
	Choice of RAID Level
	Choice of RAID Level (Cont.)
	Summary: File and Buffer Manager
	Summary: File Organization
	Summary: File manager
	Summary: Index
	Summary: Workload to Index

