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Outline  
• Review concepts from last lecture 
• File organizations – Disk Manager  
• Buffer manager  (new content Ch. 9.3 - 9.7) 
• Index organization within a file 

• Clustered vs. Non-clustered  

• I/O Cost Model 
• RAID (new content Ch. 9.2) 
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Disks and Files  
• DBMS stores information on (“hard”) disks. 
• This has major implications for DBMS design 

• READ: transfer data from disk to main memory 
(RAM). 

• WRITE: transfer data from RAM to disk. 
• Both are high-cost operations, relative to in-

memory operations, so must be planned 
carefully 
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Why Not Store Everything in Main Memory? 

• Costs too much.  $1000 will buy you either 128MB 
of RAM or 7.5GB of disk  (as of 2005). 

• Main memory is volatile.  We want data to be 
saved between runs.  (Obviously!) 

• Typical storage hierarchy: 
• Main memory (RAM) for data currently being used. 
• Disk for the main database (secondary storage). 
• Tapes for archiving older versions of the data (tertiary 

storage). 
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Disk Basics 
• Disk: secondary storage device of choice.  
• Main advantage over tapes:  random access vs. sequential. 
• Data is stored and retrieved in units called disk blocks or 

pages. 
• A disk block/page is a contiguous sequence of bytes. 
• Size is a DBMS parameter, 4KB or 8KB. 

• Like RAM, disks support direct access to a page. 
• Unlike RAM, time to retrieve a page varies 

• It depends upon the location on disk.   
 
Therefore, relative placement of pages on disk 
has major impact on DBMS performance. 5 



Components of a Disk  
•  The platters spin (say, 

90rps) 
 

Spindle 

•  The arm assembly is 
moved in or out to 
position  a head on a 
desired track. Tracks 
under heads  make    a 
cylinder (imaginary). 

 

Arm assembly 

•  Only one head 
reads/writes at any 
one time. 
 

Platters 

Disk head 

Arm movement 

Tracks 

Sector 

•  Block size is a multiple of  a sector size (which is 
fixed). 



Accessing a Disk Page 
• Time to access (read/write) a disk block: 

• Seek time:  moving arms to position disk head on 
track 

• Rotational delay: waiting for block to rotate 
under head 

• Transfer time: actually moving data to & from 
disk surface 

• Seek time and rotational delay dominate. 
• Seek time varies from about 1 to 20msec 
• Rotational delay varies from 0 to 10msec 
• Transfer rate is about 1msec per 4KB page 

• Key to lower I/O cost: 
  

Platters 

Disk head 

Arm movement 

Tracks 

Sector 

Reduce seek & rotation delays 
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Arranging Pages on Disk 
• Blocks in a file should be arranged sequentially on 

disk (by `next’), to minimize seek and rotational 
delay. 

• `Next’ block concept:   
• Blocks on same track, followed by 
• Blocks on same cylinder, followed by 
• Blocks on adjacent cylinder 

• For a sequential scan, pre-fetching several pages 
at a time is a big win 

8 



Disk Space Management 
• Lowest layer of DBMS software manages space on 

disk. 
• Higher levels call upon this layer to: 

• allocate/de-allocate a page 
• read/write a page 

• Request for a sequence of pages must be satisfied by 
allocating the pages sequentially on disk. Higher 
levels don’t need to know how this is done, or how 
free space is managed. 
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When a Page is Requested ... 
• If requested page is not in the buffer pool: 

• Choose a frame for replacement 
• If  frame is dirty, write it to disk 
• Read requested page into chosen frame 

• Pin the page and return its address.   

  If requests can be predicted (e.g., sequential scans) 
  pages can be pre-fetched several pages at a time! 
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Buffer Management in a DBMS 

• Data must be in RAM for DBMS to operate on it! 
• Table of <frame#, pageid> pairs is maintained. 

DB 

MAIN MEMORY 

DISK 

disk page 

free frame 

Page Requests from Higher Levels 

BUFFER POOL 

choice of frame dictated 
by replacement policy 
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Buffer Management Activities 
• Requestor of page must unpin it, and indicate 

whether page has been modified:  
• Dirty bit is used for this. 

• Page in pool may be requested multiple times  
• A pin count is used.  A page is a candidate for 

replacement iff pin count = 0. 

• Concurrency control  & recovery manager will 
handle the additional I/O when a frame is 
chosen for replacement. (Write-Ahead Log 
protocol ) 12 



Buffer Replacement Policy 
• Frame is chosen for replacement by a 

Replacement policy: 
• Least-recently-used (LRU), Clock, MRU, FIFO, LIFO etc. 

• Policy can have big impact on # of I/O’s; depends 
on the access pattern 

• Sequential flooding:  Nasty situation caused by 
LRU + repeated sequential scans. 
• # buffer frames < # pages in file means each page 

request causes an I/O.  MRU much better in this 
situation (but not in all situations, of course). 13 



Data usage patterns 
• Just a few basic data access patterns in RDBS, with 

noticeable locality behaviors 
• Reason why stochastic policies do not work well in 

managing buffer  
• DB operations can be broken down or decomposed into a 

subset of these access patterns 
• To reduce I/Os expose these patterns to the buffer 

manager for correct estimation of: 
• Buffer size - many queries share the buffer pool; need to 

know how to allocate frames to each query 
• Replacement policy - evict unused pages to make room for 

newly requested pages.  
• Steal or no-steal policy 
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Disk Space Manager 
• Disk space manager is the lowest layer of DBMS 

managing space on disk. 
• Higher levels call upon this layer to: 

• Allocate/de-allocate a page or sequence of pages 
• Read/Write a page 

• Requests for a sequence of pages are satisfied by 
allocating the pages sequentially on disk!   
• Higher levels don’t need to know how this is done, or how 

free space is managed. 
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File Control?  DBMS vs. OS System 
   Discussion: Operating  System already knows how to manage disk 

space 

 Why not let OS manage these tasks? 
 • Differences in OS support: portability issues 
• Some limitations, e.g., files can’t span disks. 
• Buffer management in DBMS requires ability to: 

• Pin a page in buffer pool, force a page to disk (important 
for implementing Concurrency Control & Recovery), 

• Adjust replacement policy, and pre-fetch pages based on 
access patterns in typical DB operations. 

• Too important to the efficiency of a DBMS to leave it to 
another system  
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Record Abstraction: File of Records 

• Page or block is OK when doing I/O, but higher 
levels of DBMS operate on records, and files of 
records. 

• FILE: A collection of pages, each file containing a 
specific collection of records. Must support: 
• Insert/Delete/Modify record 
• Read a specific record (specified using a record id) 
• Scan all records (possibly with some conditions on the 

records to be retrieved) 
17 



Files 
• Access method layer offers an abstraction of 

disk-resident data: a file of records residing on 
multiple pages 
• A number of fields are organized in a record 
• A collection of records are organized in a page 
• A collection of pages are organized in a file 
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File structure types  
• Heap (random order) files 

• Suitable when typical access is a file scan retrieving all 
records. 

• Sorted Files 
• Best if records must be retrieved in some order, or 

only a `range’ of records is needed. 
• Indexes = data structures to organize records via 

trees or hashing. 
• Like sorted files, they speed up searches for a subset 

of records, based on values in certain (“search key”) 
fields 

• Updates are much faster than in sorted files. 
19 



Record Formats:  Fixed Length 

• Information about field types same for all 
records in a file; stored in system catalogs. 

• Finding i’th field requires scan of record. 

Base address (B) 

L1 L2 L3 L4 

F1 F2 F3 F4 

Address = B+L1+L2 
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Record Formats: Variable Length 
Two alternative formats (# fields is fixed): 

 Second offers direct access to i’th field, efficient storage  
of nulls (special don’t know value); small directory 
overhead.  

4 $ $ $ $ 

Field 
Count 

Fields Delimited by Special Symbols 

F1                    F2                   F3                    F4 

F1             F2             F3             F4 

Array of Field Offsets 
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Page Formats: Fixed Length Records 

Record id = <page id, slot #>.  In first alternative, move a record for 
free space management – involves updating rid; may not be 
acceptable. 

Slot 1 
Slot 2 

Slot N 

. . . . . . 

N M 1 0 . . . 
M  ...    3  2  1 

PACKED UNPACKED, BITMAP 

Slot 1 
Slot 2 

Slot N 

Free 
Space 

Slot M 
1 1 

number  
of records 

number 
of slots 
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Page Formats: Variable Length Records 

Can move records on page without changing rid; so, attractive for 
fixed-length records too. 

Page i 
Rid = (i,N) 

Rid = (i,2) 

Rid = (i,1) 

Pointer 
to start 
of free 
space 

SLOT DIRECTORY 

N           . . .            2         1 
20 16 24 N 

# slots 
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Unordered (Heap) Files 
• Simplest file structure contains records in no 

particular order. 
• As file grows and shrinks, disk pages are allocated 

and de-allocated. 
• To support record level operations, we must: 

• Keep track of the pages in a file 
• Keep track of free space on pages 
• Keep track of the records on a page 

• There are many alternatives for keeping track of 
this. 24 



Heap File Implemented as a 
List  

The header page id and Heap file name must be stored 
someplace. 
Each page contains 2 `pointers’ plus data. 

Header 
Page 

Data 
Page 

Data 
Page 

Data 
Page 

Data 
Page 

Data 
Page 

Data 
Page Pages with 

Free Space 

Full Pages 
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Heap File Using a Page 
Directory 

• The entry for a page includes a pointer to the page and can 
include the number of free bytes on the page. 

• The directory is a collection of pages; linked list implementation is 
just one alternative. 
• Much smaller than linked list of all Heap File pages! 

Data 
Page 1 

Data 
Page 2 

Data 
Page N 

Header 
Page 

DIRECTORY 
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Indexes 
• A Heap file allows us to retrieve records: 

• by specifying the rid, or 
• by scanning all records sequentially 

• Sometimes, we want to retrieve records by specifying the 
values in one or more fields 
• Examples: 
• Find all students in the “CS” department 
• Find all students with a gpa > 3 

• Indexes are file structures that enable us to answer such 
value-based queries efficiently. 
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Indexes  
• An index on a file speeds up selections on the search key fields 

for the index 
• Any subset of the fields of a relation can be the search key for an 

index on the relation 
• Search key is not the same as a key in the DB  

• An index contains a collection of data entries, and supports 
efficient retrieval of all data entries k* with a given key value 
k. 
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Cost Model Analysis Review  
• We ignore CPU costs, for simplicity: 

•  B: The number of data pages (Blocks) 
•  R: Number of records per page (Records) 
•  D: (Average) time to read or write a single disk page 

• Measuring number of page I/O’s 
•  ignores gains of pre-fetching a sequence of pages; thus, 

even I/O cost is only approximated 

• Average-case analysis; based on several simplifying  
assumptions 

  Far from Precise but Good enough to show the overall 
trends! 
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Comparing File Organization  
• Heap files (random order; insert at eof) 
• Sorted files, sorted on attributes <age, sal> 
• Clustered B+ tree file, Alternative 1, search key 

<age, sal> 
• Heap file with unclustered B + tree index on 

search key <age, sal> 
• Heap file with unclustered hash index on search 

key <age, sal> 
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Five operations to compare 
• Scan: Fetch all records from disk 
• Equality search 
• Range selection 
• Insert a record 
• Delete a record 
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Assumptions for the File 
Organizations 
• Heap Files: 

• Equality selection on key; exactly one match. 
• Sorted Files: 

• Files compacted after deletions. 
• Indexes: 

• Alternatives 2, 3: data entry size = 10% of record size 
• Tree: 67% occupancy (Close to AUC for 1 std dev. ). 

•  Implies file size = 1.5 data size (because of extra free 
space) 

•  Hash: No overflow buckets. 
• 80% page occupancy => File size = 1.25 data size 
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Summary of workload 
File Type Scan Equality 

Search 
Range 
Search 

Insert Delete 

Heap BD .5BD BD 2D Search + D 

Sorted BD D log2B Dlog2B + # 
matching  p. 

Search + BD Search + BD 

Clustered 1.5BD D LogF1.5B DLogF1.5B + 
# matched 
pages 

Search + D Search + D 

Unclustered 
tree index 

BD(R + 
0.15) 

D(1+ 
logF0.15B) 

D(LogF0.15B 
+ # 
matching 
records) 

D(3 + 
logF0.15B) 

Search + 2D 

Unclustered 
Hash  index 

BD(R + 
0.125) 

2D BD 4D Searches + 
2D 33 



RAID 
• Disk Array: Arrangement of several disks that gives 

abstraction of a single, large disk. 
• Goals: Increase performance and reliability.  

• High capacity and high speed  by using multiple disks in parallel  
• High reliability by storing data redundantly, so that data can be 

recovered even if  a disk fails  
 

• Two main techniques: 
• Data striping: Data is partitioned; size of a partition is called the 

striping unit. Partitions are distributed over several disks. 
• Redundancy: More disks -> more failures. Redundant information 

allows reconstruction of  data if a disk fails. 
34 



New Problems from RAID 

• The chance that some disk out of a set of N disks 
will fail is much higher than the chance that a 
specific single disk will fail. 
•   E.g., a system with 100 disks, each with MTTF of 100,000 hours 

(approx.  11 years), will have a system MTTF of 1000 hours (approx. 41 
days) 

MTTF = Mean time to failure  
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Improvement of Reliability via Redundancy 

• Redundancy – store extra information that can be 
used to rebuild information lost in a disk failure 

• E.g., Mirroring (or shadowing) 
• Duplicate every disk.  Logical disk consists of two physical 

disks. 
• Every write is carried out on both disks 

• Reads can take place from either disk 

• If one disk in a pair fails, data still available in the other 
• Data loss would occur only if a disk fails, and its mirror disk also 

fails before the system is repaired 
• Probability of combined event is very small  

• Except for dependent failure modes such as fire or building 
collapse or electrical power surges 
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Improvement in Performance via Parallelism 

• Two main goals of parallelism in a disk system:  
1. Load balance multiple small accesses to increase throughput 
2. Parallelize large accesses to reduce response time. 

• Improve transfer rate by striping data across multiple disks. 
• Bit-level striping – split the bits of each byte across multiple 

disks 
• But seek/access time worse than for a single disk 

• Bit level striping is not used much any more 

• Block-level striping – with n disks, block i of a file goes to 
disk (i mod n) + 1 
• Requests for different blocks can run in parallel if the blocks reside on 

different disks 
• A request for a long sequence of blocks can utilize all disks in parallel 
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RAID Levels 0,1 
• RAID organizations, or RAID levels, have differing cost, performance and reliability 

characteristics 
• RAID Level 0:  Block striping; non-redundant.  

•  Used in high-performance applications where data lost is not critical.  
• Best write performance of all RAID levels  

• RAID Level 1:  Mirrored disks 
• Most expensive solution  
• Maximum transfer rate = transfer rate of one disk 
• Popular for applications such as storing log files in a database system 
• Each write is 2 writes since has  2 copies of the data  
• Read is scheduled for the copy that has the lowest expected wait time  

• RAID 0+1: Mirrored disks with block striping  
• Offers best write performance.   
• Maximum transfer rate = transfer rate of one disk 
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RAID Level 2 
• RAID Level 2:  Memory-Style Error-Correcting-Codes (ECC) with bit striping. 

• Striping unit is a single bit 
•  Parallel reads, a write involves two disks. 
• Maximum transfer rate = aggregate bandwidth 
• Good for large  data requests since block size defined across all disks - 

but bad for small requests  
• Number of parity bits grows logarithmically with number of data disks 
• Parity data uses Hamming code - contains  quality of data and quality of 

disks  
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RAID Level 3 
• RAID Level 3: Bit-Interleaved Parity 

• Striping Unit: One bit. 
•  Only 1 check disk so  lowest overhead  
• Each read and write request involves all disks; disk array can process one 

request at a time.  
• Faster data transfer than with a single disk, but fewer I/Os per second 

since every disk has to participate in every I/O. Performance similar to 
RAID2 

• When writing data, corresponding parity bits must also be 
computed and written to a parity bit disk 

• To recover data of a damaged disk, compute XOR of bits from 
other disks (including parity bit disk)  
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RAID Levels  4 
• RAID Level 4:  Block-Interleaved Parity; uses block-level striping, and keeps 

a parity block on a separate disk for corresponding blocks from N other 
disks. 
• Striping Unit: One disk block. One check disk. 
• Parallel reads possible for small requests (can limit request to the disk 

where the data resides) , large requests can utilize full bandwidth 
• When writing data block, corresponding block of parity bits must also be 

computed and written to parity disk 
• To find value of a damaged block, compute XOR of bits from 

corresponding blocks (including parity block) from other disks. 
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RAID Levels ( 4 Cont.) 
• Provides higher I/O rates for independent block reads than Level 3  

• Block read goes to a single disk, so blocks stored on different disks can be 
read in parallel 

• Before writing a block, parity data must be computed  
• Can be done by using old parity block, old value of current block and 

new value of current block (2 block reads + 2 block writes) 
• Or by recomputing the parity value using the new values of blocks 

corresponding to the parity block 
• More efficient for writing large amounts of data sequentially 

• Parity block becomes a bottleneck for independent block writes since 
every block write also writes to parity disk 
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RAID Level 5 
• RAID Level 5:  Block-Interleaved Distributed Parity; 

partitions data and parity among all N + 1 disks, rather than 
storing data in N disks and parity in 1 disk. 
• E.g., with 5 disks, parity block for nth set of blocks is stored on disk (n 

mod 5) + 1, with the data blocks stored on the other 4 disks. 
• Higher I/O rates than Level 4.   

• Block writes occur in parallel if the blocks and their parity blocks 
are on different disks. 

• Subsumes Level 4: provides same benefits, but avoids bottleneck of 
parity disk. 
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RAID Level 6 
• RAID Level 6: P+Q Redundancy scheme; similar to Level 5, but 

stores extra redundant information to guard against multiple 
disk failures.  

• Can recover from 2 simultaneous disk failures  
•  Better reliability than Level 5 at a higher cost; not used as widely.  
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Choice of RAID Level 
• Factors in choosing RAID level 

• Monetary cost 
• Performance: Number of I/O operations per second, and bandwidth 

during normal operation 
• Performance during failure 
• Performance during rebuild of failed disk 

• Including time taken to rebuild failed disk 
• RAID 0 is used only when data safety is not important  

• E.g. data can be recovered quickly from other sources 
• Level 2 and 4 never used since they are subsumed by 3 and 5 
• Level 3 is not used since bit-striping forces single block reads 

to access all disks, wasting disk arm movement 
• Level 6 is rarely used since levels 1 and 5 offer adequate 

safety for most applications 
• So competition is mainly between 1 and 5 45 



Choice of RAID Level (Cont.) 
• Level 1 provides much better write performance than level 5 

• Level 5 requires at least 2 block reads and 2 block writes to write a single 
block, whereas Level 1 only requires 2 block writes 

• Level 1 preferred for high update environments such as log disks 
• Level 1 had higher storage cost than level 5 

• disk drive capacities increasing rapidly (50%/year) whereas disk access 
times have decreased at a slower rate (x 3 in 10 years) 

• I/O requirements have increased greatly, e.g. for Web servers 
• When enough disks have been bought to satisfy required rate of I/O, they 

often have spare storage capacity 
•  So there is often no extra monetary cost for Level 1 

• Level 5 is preferred for applications with low update rate, 
and large amounts of data 

•  Level 1 is preferred for all other applications 
46 



Summary: File and Buffer 
Manager 
• Disks provide cheap, non-volatile storage. 

• Random access, but cost depends on location of page on 
disk; important to arrange data sequentially to minimize 
seek and rotation delays. 

• Buffer manager brings pages into RAM. 
• Page stays in RAM until released by requestor. 
• Written to disk when frame chosen for replacement (which 

is sometime after requestor releases the page). 
• Choice of frame to replace based on replacement policy. 
• Tries to pre-fetch several pages at a time. 
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Summary: File Organization 
• File layer keeps track of pages in a file, and 

supports abstraction of a collection of records. 
• Pages with free space identified using linked list or 

directory structure (similar to how pages in file are 
kept track of). 

• Indexes support efficient retrieval of records 
based on the values in some fields. 

• Many alternatives file organizations exists, each 
appropriate in some situations 
 48 



Summary: File manager  
• DBMS vs. OS File Support 

• DBMS needs features not found in many OS’s, e.g., 
forcing a page to disk, controlling the order of page 
writes to disk, files spanning disks, ability to control pre-
fetching and page replacement policy based on 
predictable access patterns, etc. 

• Variable length record format with field offset 
directory offers support for direct access to i’th 
field and null values. 

• Slotted page format supports variable length 
records and allows records to move on page. 49 



Summary: Index 
• Data entries can be actual data records, <key, 

rid> pairs, or <key, rid-list> pairs. 
• Choice orthogonal to indexing technique used to 

locate data entries with a given key value. 
• Can have several indexes on a given file of data 

records, each with a different search key. 

• Indexes can be classified as clustered vs. 
unclustered and primary vs. secondary. 

• Differences have important consequences for 
utility/performance. 50 



Summary: Workload to Index 
• Understanding the nature of the workload and 

performance goals essential to developing a good design. 
• What are the important queries and updates? 
• What attributes and relations are involved? 

• Indexes must be chosen to speed up important queries 
(and perhaps some updates). 
• Index maintenance overhead on updates to key fields. 
• Choose indexes that can help many queries, if possible. 
•  Build indexes to support index-only strategies. 
• Clustering is an important decision;  since only one index on a 

given relation can be clustered 
• Order of fields in composite index key can be important. 51 
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