
Recoverability
Kathleen Durant PhD

CS3200

Lesson 11

1

Recovery Manager

• Recovery manager ensures the ACID principles of
atomicity and durability

• Atomicity: either all actions in a transaction
are done or none are done

• Durability: if a transaction is committed,
changes persist within the database

• Desired behavior

• keep actions of committed transactions

• discard actions of uncommitted transactions

Keep the committed
transactions

0

2

4

6

8

10

1 2 3 4

T1

T2

T3

Transaction4
Commit

Commit

Throw away the active transactions
work

 T3 and T4 actions should appear in the database

 T1 and T2 actions should not appear in the database

Database Recovery

Process of restoring database to a correct state in the event
of a failure.

• Need for Recovery Control

• Two types of storage: volatile (main memory) and
nonvolatile.

• Volatile storage does not survive system crashes.

• Stable storage represents information that has
been replicated in several nonvolatile storage
media with independent failure modes.

Pearson Education © 2014 4

Types of Failures

• System crashes, resulting in loss of main memory.

• Media failures, resulting in loss of parts of secondary storage.

• Application software errors.

• Natural physical disasters.

• Carelessness or unintentional destruction of data or facilities.

• Sabotage.

Pearson Education © 2014 5

Transactions andRecovery

• Transactions represent basic unit of recovery.

• Recovery manager responsible for atomicity and
durability.

• If failure occurs between commit and database buffers
being flushed to secondary storage then, to ensure
durability, recovery manager has to redo (rollforward)
transaction’s updates.

Pearson Education © 2014 6

Transactions andRecovery

• If transaction had not committed at failure time, recovery
manager has to undo (rollback) any effects of that transaction
for atomicity.

• Partial undo - only one transaction has to be undone.

• Global undo - all transactions have to be undone.

Pearson Education © 2014 7

Buffer pool management
• FORCE – every write to

disk?
• Poor performance (many

writes clustered on same
page)

• At least this guarantees the
persistence of the data

• STEAL – allow dirty pages
to be written to disk?
• If so, reading data from

uncommitted transactions
violates atomicity

• If not, poor performance

Force -
every
write to
disk

No Force –
write when
optimal

Steal – use
internal DB
buffer for
read

Desired but
complicated

No Steal -
always read
only
committed
data

Easy but
slow

Complications from NO FORCE and
STEAL
• NO FORCE

• What if the system crashes before a modified page can
be written to disk?

• Write as little as possible to a convenient place at
commit time to support REDOing the data update

• STEAL

• Current updated data can be flushed to disk but still
locked by a transaction T1

• What if T1 aborts?

• Need to UNDO the data update done by T1

Example

• DBMS starts at time t0, but fails at time tf. Assume data for
transactions T2 and T3 have been written to secondary storage.

• T1 and T6 have to be undone. In absence of any other
information, recovery manager has to redo T2, T3, T4, and T5.

Pearson Education © 2014 10

Recovery Facilities

• DBMS should provide following facilities to assist with
recovery:

• Backup mechanism, which makes periodic
backup copies of database.

• Logging facilities, which keep track of current
state of transactions and database changes.

• Checkpoint facility, which enables updates to
database in progress to be made permanent.

• Recovery manager, which allows DBMS to restore
database to consistent state following a failure.

Pearson Education © 2014 11

Log File

• Collection of records that represent the history of actions
executed by the DBMS

• Contains information about all updates to database:

• Transaction records.

• Checkpoint records.

• Often used for other purposes (for example, auditing).

Pearson Education © 2014 12

Log FileData

• Transaction records contain:

• Transaction identifier.

• Type of log record, (transaction start, insert, update, delete,
abort, commit).

• Identifier of data item affected by database action (insert, delete,
and update operations).

• Before-image of data item.

• After-image of data item.

• Log management information (Transaction operation links)

Pearson Education © 2014 13

Write-ahead Logging

• The Write-Ahead Logging Protocol:

1. Must force the log record to permanent
storage before the corresponding data page
gets written to disk.

2. Must write all log records for a transaction
before commit.

• #1 guarantees Atomicity.

• #2 guarantees Durability.

Sample LogFile

Pearson Education © 2014 15

Log File

• Log file may be duplexed or triplexed.

• Log file sometimes split into two separate random-access
files.

• Potential bottleneck; critical in determining overall
performance.

Pearson Education © 2014 16

Checkpointing

Checkpoint

Point of synchronization between database and log file. All
buffers are force-written to secondary storage.

• Checkpoint record is created containing identifiers of all
active transactions.

• When failure occurs:

• Redo all transactions that committed since the checkpoint and

• Undo all transactions active at time of crash.

Pearson Education © 2014 17

Checkpointing

• In previous example, with checkpoint at time tc, changes
made by T2 and T3 have been written to secondary storage.

• Thus:

• only redo T4 and T5,

• undo transactions T1 and T6.

Pearson Education © 2014 18

RecoveryTechniques

• If database has been damaged:

• Need to restore last backup copy of database and
reapply updates of committed transactions using
log file.

• If database is only inconsistent:

• Need to undo changes that caused inconsistency.
May also need to redo some transactions to
ensure updates reach secondary storage.

• Do not need backup version of the database, but
can restore database using before- and after-
images in the log file.

Pearson Education © 2014 19

MainRecoveryTechniques

• Three main recovery techniques:

• Deferred Update

• Immediate Update

• Shadow Paging

Pearson Education © 2014 20

Deferred Update

• Updates are not written to the database until after a
transaction has reached its commit point.

• If transaction fails before commit, it will not have modified
database and so no undoing of changes required.

• May be necessary to redo updates of committed transactions
as their effect may not have reached database.

Pearson Education © 2014 21

ImmediateUpdate

• Updates are applied to database as they occur.

• Need to redo updates of committed transactions following a
failure.

• May need to undo effects of transactions that had not
committed at time of failure.

• Essential that log records are written before write to
database. Write-ahead log protocol.

Pearson Education © 2014 22

ImmediateUpdate

• If no “transaction commit” record in log, then that
transaction was active at failure and must be undone.

• Undo operations are performed in reverse order in which
they were written to log.

Pearson Education © 2014 23

ShadowPaging

• Maintain two page tables during life of a
transaction: current page and shadow page
table.

• When transaction starts, two pages are the
same.

• Shadow page table is never changed thereafter
and is used to restore database in event of
failure.

• During transaction, current page table records
all updates to database.

• When transaction completes, current page
table becomes shadow page table.

Pearson Education © 2014 24

Summary
• Recovery Manager guarantees Atomicity and Durability.

• Different recovery techniques available

• The recovery of a database is dependent on the type of
failure the database encountered

• If the current version of the database is not recoverable
use the log and a backup version of the database to get
the database to a consistent state

• If the current version of the database is recoverable and in
an inconsistent state then use the Log with the current
version of the database to recover from the failure.

• Checkpointing: A quick way to limit the amount of log to
scan on recovery

25

