
Crash Recovery Method

Kathleen Durant
CS 3200

Lecture 11

Outline

• Overview of the recovery manager
– Data structures used by the recovery manager

• Checkpointing
• Crash recovery

– Write ahead logging
– ARIES (Algorithm for recovery and isolation

exploiting semantics)

Review: ACID Properties

• Atomicity: either the entire set of operations

happens or none of it does
• Consistency: the set of operations taken together

should move the system for one consistent state
to another consistent state.

• Isolation: each system perceives the system as if
no other transactions were running concurrently
(even though odds are there are other active
transactions)

• Durability: results of a completed transaction
must be permanent - even IF the system crashes

Recovery Manager

• Recovery manager ensures the ACID principles
of atomicity and durability
– Atomicity: either all actions are done or none
– Durability: if a transaction is committed, changes

persist within the database

• Desired behavior
– keep actions of committed transactions
– discard actions of uncommitted transactions

Keep the committed transactions

0
2
4
6
8

10

1 2 3 4

T1
T2
T3
Transaction4

Commit

Commit

Throw away the active transactions work
 T3 and T4 actions should appear in the database

 T1 and T2 actions should not appear in the database

Challenges for the Recovery Manager

• Concurrency is in effect
– Strict 2 phase locking

• Updates are happening in place
– Overwrite of data
– Deletion of records

Transaction

• Series of reads & writes, followed by commit
or abort.
– We will assume that write is atomic on disk.
– In practice, additional details to deal with non-

atomic writes.

• Strict 2PL.
• STEAL, NO-FORCE buffer management
• Write-Ahead Logging

Handling of the buffer pool
• FORCE – every write to

disk?
– Poor performance (many

writes clustered on same
page)

– At least this guarantees the
persistence of the data

• STEAL – allow dirty pages
to be written to disk?
– If so, reading data from

uncommitted transactions
violates atomicity

– If not, poor performance

Force -
every write
to disk

No Force –
write when
optimal

Steal – use
internal DB
buffer for
read

Desired but
complicated

No Steal -
always read
only
committed
data

Easy but
slow

Complications from NO FORCE and
STEAL

• NO FORCE
– What if the system crashes before a modified page

can be written to disk?
– Write as little as possible to a convenient place at

commit time to support REDOing the data update
• STEAL

– Current updated data can be flushed to disk but
still locked by a transaction T1

• What if T1 aborts?
• Need to UNDO the data update done by T1

Solution: Logging

• Record REDO and UNDO information, for
every update, in a log.
– Sequential writes to log (put it on a separate disk).
– Minimal information (diff) written to log, so

multiple updates fit in a single log page.
• Log: An ordered list of REDO/UNDO actions

– Log record contains:
– <XID, pageID, offset, length, old data, new data>
– and additional control info

Write-ahead Logging

• The Write-Ahead Logging Protocol:
1. Must force the log record for an update before

the corresponding data page gets to disk.
2. Must write all log records for a transaction

before commit.
– #1 guarantees Atomicity.
– #2 guarantees Durability.

• Example: ARIES algorithm.

The Log

• Collection of records that represent the history of
actions executed by the DBMS
– Most recent portion of the log is called the log tail
– Tail is in memory
– Rest of the log stored of stable storage

• Actions recorded in the log:
– Update a page
– Commit
– Abort
– End
– Undo an update

Sequencing events

• Each log record has a unique Log
Sequence Number (LSN).
– LSNs always increasing.

• Each data page contains a pageLSN.
• The LSN of the most recent log record

for an update to that page.

• System keeps track of flushedLSN.
– The maximum LSN flushed to disk.

• WAL: Before a page is written to disk LSN ≤
flushedLSN

LSN1
LSN2
LSN3

PageLSN4

Flushed
LSN

PageLSN3
PageLSN2

PageLSN

Tracking operations with records
• Update a page

– UPDATE record is appended to the log tail
– Page LSN of the page is set to LSN of the update record

• Commit
– COMMIT type record is appended to the log with transaction id
– Log tail written to stable storage

• Abort
– ABORT record is appended to the log with the transaction id
– Undo is initiated for this transaction

• End
– After all actions are finished to complete a transaction, an END record

is appended to the log
• Undo an update

– When a transaction is rolled-back, its updates are undone
– When the ‘undone’ actions are complete a compensation log record or

CLR is written

Data structures associated with the log

Log sequence record
• prevLSN (links actions)
• TransactionID
• Type of action
• Length of data
• pageID
• Offset on page
• Initial value
• Final Value

Linking log to transactions
• Transaction Table:

– One entry per active
transaction

– Contains Transaction ID,
status
(running/commited/aborted),
and lastLSN.

• Dirty Page Table:
– One entry per dirty page in

buffer pool.
– Contains recLSN -- the LSN of

the log record which first
caused the page to be dirty.

Update
Action

Log sequence numbers
• Every record in a log has a log sequence number to

uniquely identify it LSN
• References to log sequence numbers in other records

– Previous log sequence number prevLSN
• Links together the log records for a transaction in the log record

– Last sequence number lastLSN
• Most recent log record for this transaction

– Undo next sequence number undonextLSN
• Found in a compensation log record (undo the operations associated

with a transaction)
– Page Log Sequence Number pageLSN

• Stored in the database, one per page – it is the most recent log
sequence number that changed the page

– Recovery Log sequence Number recLSN
• Stored in the dirty page table contains the first log record that caused

this page to be dirty and be stored in the dirty page table

Example of Log, Dirty Page and
Transaction Table

LOG

LSN Prev
LSN

TRANS
ID

type pageId length offset before After

1 NULL T1000 UPDATE P500 3 21 ABC DEF

2 NULL T2000 UPDATE P600 3 41 HIJ KLM

3 2 T2000 UPDATE P500 3 20 GDE QRS

4 1 T1000 UPDATE P505 3 21 TUV WXY

Dirty Page Table

PageId recLSN

P500 1

P600 2

P505 4

Transaction Table

TRANSId lastLSN

T1000 3

T2000 4

Checkpointing
• Periodically, the DBMS creates a checkpoint, in order to

minimize the time taken to recover in the event of a system
crash. Write to log:
– begin_checkpoint record: Indicates when chkpt began.
– end_checkpoint record: Contains current Xact table and dirty

page table. This is a `fuzzy checkpoint’:
• Other transactions continue to run; so these tables

accurate only as of the time of the begin_checkpoint
record.

• No attempt to force dirty pages to disk; effectiveness of
checkpoint limited by oldest unwritten change to a dirty
page. (So it’s a good idea to periodically flush dirty pages to
disk!)

• Store LSN of checkpoint record in a safe place (master
record).

Abort a transaction

• For now, consider an explicit abort of a
transaction
– No crash involved.
– We want to “play back” the log in reverse order,

UNDOing updates.
• Get lastLSN of transaction from the transaction

table.
– Follow chain of log records backward via the prevLSN

field.
• Before starting UNDO, write an Abort log record.

– For recovering from crash during UNDO!

UNDO

• To perform UNDO, must have a lock on data!
– No problem!

• Before restoring old value of a page, write a CLR:
– You continue logging while you UNDO!!
– CLR has one extra field: undonextLSN
– Points to the next LSN to undo (i.e. the prevLSN of the

record we’re currently undoing).
• CLRs never Undone (but they might be Redone

when repeating history: guarantees Atomicity!)
• At end of UNDO, write an “end” log record.

COMMIT

• Write commit record to log.
– All log records up to Xact’s lastLSN are flushed.
– Guarantees that flushedLSN ≥ lastLSN.

• Note that log flushes are sequential,
synchronous writes to disk.
– Many log records per log page.

• Write end record to log.

Crash recovery

• Start from a checkpoint (found via master
record).

• Three phases. Need to:
– ANALYSIS Determine which transactions

committed since checkpoint and which ones failed
– REDO all actions.

• (repeat history)

– UNDO effects of uncommitted transactions (the
active transactions at the time of the crash)

Crash Recovery Phases

Analysis

Redo

Undo

Crash

Last
Checkpoint

Smallest recLSN
In dirty page
number after
Analysis

Oldest log record
of Transaction
Active at crash

Analysis Phase
• Reconstruct state at latest checkpoint.

– Get dirty page table and transaction table from
end_checkpoint record.

• Scan log forward from begin_checkpoint.
– End record: Remove transaction from transaction

table.
– Other records: Add new transaction to transaction

table, set lastLSN=LSN, change transaction status
on commit.

– Update record: If P not in Dirty Page Table,
• Add P to DIRTY PAGE TABLE, set its recLSN=LSN.

At the end of the Analysis Phase

• When Analysis phase reaches the end of log:
– Know all transactions that were active at time of

crash
– Know all dirty pages (maybe some false positives,

but that’s ok)
– Know smallest recLSN of all dirty pages

• REDO phase has the information it needs to
do its job

REDO Phase

• We repeat History to reconstruct state at crash:
– Reapply all updates (even aborted transactions), redo

CLRs (compensation log record).
– Scan forward from log record with smallest recLSN of

all dirty pages. For each CLR or update log record with
LSN L, REDO the action unless:

• Affected page is not in the Dirty Page Table, or
• Affected page is in Dirty Page Table, but has recLSN > L, or

pageLSN (in DB) >= L. (need to read page from disk for this)

• To REDO an action:
– Reapply logged action.
– Set pageLSN to L. No additional logging!

Undo Algorithm
• Know “loser” Xacts from reconstructed Xact Table

– Xact Table has lastLSN (most recent log record) for each Xact
• 1. ToUndo={ L | L is lastLSN of a loser Xact}
• 2. Repeat:

– Choose largest LSN L among ToUndo.
– If L is a CLR record and its undoNextLSN is NULL

• Write an End record for this Xact.
– If L is a CLR record and its undoNextLSN is not NULL
– Add undoNextLSN to ToUndo
– Else this LSN is an update. Undo the update, write a CLR,

addupdate log record’s prevLSN to ToUndo.
• 3. Until ToUndo is empty.

Additional Crash Issues

• What happens if system crashes during
Analysis? During REDO?

• How do you limit the amount of work in
REDO?
– Flush asynchronously in the background.
– Watch “hot spots”!

• How do you limit the amount of work in
UNDO?
– Avoid long-running Xacts.

B

Example

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

00
05
10
15
20
25
30
35
40
45

(LSN) LOG

B

Log
 Sequence
 Number

First write for page?
Have all dirty pages?
Identified all active X?

Log, Dirty Page and Transaction Table

LOG

LSN Prev
LSN

TRANS
ID

type pageId length offset before After

10 NULL T1 UPDATE P5 3 21 ABC DEF

15 NULL T2 UPDATE P3 3 41 HIJ KLM

20 10 T1 ABORT

25 20 T1 UNDO

30 25 T1 END

35 NULL T3 UPDATE P1 3 41 DEF HHH

40 15 T2 UPDATE P5 3 48 SED AWK

45 NULL RESTART

Dirty Page Table

PageId recLSN

P5 10

P3 15

P1 35

Transaction Table

TRANSId lastLSN Status

T1 30 Aborted

T2 40 Progress

T3 35 Progress

B

Analysis Phase Example

00
05
10
15
20
25
30
35
40
45

(LSN) LOG

B

Log
 Sequence
 Number

First write for page?
Have all dirty pages?
Identified all active X?

Active
Transactions
T2
T3

Dirty Pages
P5 10 T1
P3 15 T2
P1 35 T3

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

RecLSN?

Start

B

Redo Phase Example

00
05
10
15
20
25
30
35
40
45

(LSN) LOG

B

Log
 Sequence
 Number

First write for page?
Have all dirty pages?
Identified all active X?

Active
Transactions
T2
T3

Dirty Pages
P5 10 T1
P3 15 T2
P1 35 T3

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

RecLSN?

B

Undo Phase Example

00
05
10
15
20
25
30
35
40
45

(LSN) LOG

B
Log
 Sequence
 Number

First write for page?
Have all dirty pages?
Identified all active X?

Active
Transactions
T2
T3

Dirty Pages
P5 10 T1
P3 15 T2
P1 35 T3

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

Start

Summary: Recovery Manager

• Recovery Manager guarantees Atomicity and
Durability.

– Use WAL to allow STEAL/NO-FORCE without
sacrificing correctness.

• LSNs identify log records; linked into
backwards chains per transaction (via
prevLSN).

• pageLSN allows comparison of data page and
log records

Summary

• Checkpointing: A quick way to limit the
amount of log to scan on recovery.

• Recovery works in 3 phases:
– Analysis: Walks forward from checkpoint.
– Redo: Walks forward from oldest recLSN.
– Undo: Walks backward from end to first LSN of

oldest transaction still active at crash.

	Crash Recovery Method
	Outline
	Review: ACID Properties
	Recovery Manager
	Keep the committed transactions
	Challenges for the Recovery Manager
	Transaction
	Handling of the buffer pool
	Complications from NO FORCE and STEAL
	Solution: Logging
	Write-ahead Logging
	The Log
	Sequencing events
	Tracking operations with records
	Data structures associated with the log
	Log sequence numbers
	Example of Log, Dirty Page and Transaction Table
	Checkpointing
	Abort a transaction
	UNDO
	COMMIT
	Crash recovery
	Crash Recovery Phases
	Analysis Phase
	At the end of the Analysis Phase
	REDO Phase
	Undo Algorithm
	Additional Crash Issues
	Example
	Log, Dirty Page and Transaction Table
	Analysis Phase Example
	Redo Phase Example
	Undo Phase Example
	Summary: Recovery Manager
	Summary

