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Outline for the day

• Precedence graph

• Deadlock prevention and detection

• Waits-for graph

• My SQL Granular Locking

• Concurrency without locking 

• Optimistic Concurrency Control

• Timestamp based concurrency control
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Precedence Graph 

• To determine if a schedule is conflict serializable we use a 
precedence graph

• Transactions are vertices of the graph

• There is an edge from T1 to T2 if T1 must happen before T2 in 
any equivalent serial schedule

• Edge T1 -> T2 if in the schedule we have:

• T1 Read(R) followed by T2 Write(R) for the same resource R

• T1 Write(R) followed by T2 Read(R)

• T1 Write(R) followed by T2 Write(R)

• The schedule is serializable if there are no cycles
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Example 1: Precedence Graph
T1 T2

X(A)

R(A)

W(A) 

X(B) X(A)

R(B)

W(B)

R(A)

W(A)

X(B)

R(B)

W(B)

Fill in the edges 

T1 T2
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Example 2: Precedence graph
T1 T2

S(A)

R(A)

S(A)

R(A)

X(B)

R(B)

W(B)

X(C)

R(C)

W(C)

T1 T2

Fill in the edges 
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Example 3: Precedence Graph

T1 T2

Read(A)

Write(A)

Read(B)

Write(B)

Read(A)

Write(A)

Read(B)

Write(B) Fill in the edges 

T1 T2

6



Concurrency Control Techniques

• Two basic concurrency control techniques:

• Locking

• Timestamping

• Both are conservative approaches: delay transactions in
case they conflict with other transactions.

• Optimistic methods assume conflict is rare and only check
for conflicts at commit.
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Locking
Transaction uses locks to deny access to other
transactions and so prevent incorrect updates.

• Most widely used approach to ensure serializability.

• Generally, a transaction must claim a shared (read) or
exclusive (write) lock on a data item before read or write.

• Lock prevents another transaction from modifying item or
even reading it, in the case of a write lock.
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Locking - Basic Rules

• If transaction has shared lock on item, can read but not
update item.

• If transaction has exclusive lock on item, can both read and
update item.

• Reads cannot conflict, so more than one transaction can hold
shared locks simultaneously on same item.

• Exclusive lock gives transaction exclusive access to that item.

Pearson Education © 2014 9

9



Locking - Basic Rules

• Some systems allow transaction to upgrade read lock to an
exclusive lock, or downgrade exclusive lock to a shared lock.
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Deadlock

An impasse that may result when two (or more) transactions
are each waiting for locks held by the other to be released.
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Handling Deadlocks 

• Three general techniques for handling deadlock:

• Timeouts.

• Deadlock prevention.

• Deadlock detection and recovery.

T1 T2
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Timeouts

• Transaction that requests lock will only wait for a system-
defined period of time.

• If lock has not been granted within this period, lock
request times out.

• In this case, DBMS assumes transaction may be
deadlocked, even though it may not be, and it aborts and
automatically restarts the transaction.

Pearson Education © 2014 13

13



Deadlock Detection and Recovery

• DBMS allows deadlock to occur but recognizes it and breaks
it.

• Usually handled by construction of wait-for graph (WFG)
showing transaction dependencies:

• Create a node for each transaction.

• Create edge Ti -> Tj, if Ti waiting to lock item locked by
Tj.

• Deadlock exists if and only if WFG contains cycle.

• WFG is created at regular intervals.
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Example - Wait-For-Graph (WFG)

Pearson Education © 2014 15

15



Timestamping
–preventing deadlocks

• Transactions ordered globally so that older transactions,
transactions with smaller timestamps, get priority in the
event of conflict.

• Conflict is resolved by rolling back and restarting
transaction.

• No locks so no deadlock.
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Deadlock Prevention

• DBMS looks ahead to see if transaction would cause
deadlock and never allows deadlock to occur.

• Could order transactions using transaction timestamps:

• Wait-Die - only an older transaction can wait for younger one,
otherwise transaction is aborted (dies) and restarted with
same timestamp.

• Wound-Wait - only a younger transaction can wait for an older
one. If older transaction requests lock held by younger one,
younger one is aborted (wounded).
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Timestamping

Timestamp

A unique identifier created by DBMS that indicates relative
starting time of a transaction.

• Can be generated by using system clock at time transaction
started, or by incrementing a logical counter every time a
new transaction starts.

Pearson Education © 2014

19



Timestamping (No locks)

• Read/write proceeds only if last update on that data item
was carried out by an older transaction.

• Otherwise, transaction requesting read/write is restarted
and given a new timestamp.

• Also timestamps for data items (stored in the DB):

• read-timestamp - timestamp of last transaction to read item;

• write-timestamp - timestamp of last transaction to write item.
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Timestamping - Read(x)

• Consider a transaction T with timestamp ts(T):

ts(T) < write_timestamp(x)

• x already updated by younger (later) transaction.

• Transaction must be aborted and restarted with a new timestamp.

ts(T) < read_timestamp(x)

• x already read by younger transaction.

• Roll back transaction and restart it using a later timestamp.
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Timestamping - Write(x)

ts(T) < write_timestamp(x)

• x already written by younger transaction.

• Write can safely be ignored - ignore obsolete write rule.

• Otherwise, operation is accepted and executed.
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Example–Basic Timestamp Ordering

Pearson Education © 2014

23



Optimistic Techniques

• Based on assumption that conflict is rare and more
efficient to let transactions proceed without delays to
ensure serializability.

• At commit, check is made to determine whether conflict
has occurred.

• If there is a conflict, transaction must be rolled back and
restarted.

• Potentially allows greater concurrency than traditional
protocols.
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Performance of Locking

• Locks force transactions to wait
• Abort and restart due to deadlock wastes the work done by the 

aborted transaction

• In practice, deadlocks are rare, e.g., due to lock downgrades 
approach

• Waiting for locks becomes bigger problem as more 
transactions execute concurrently
• Allowing more concurrent transactions initially increases 

throughput, but at some point leads to thrashing

• Need to limit maximum number of concurrent transactions to 
prevent thrashing

• Minimize lock contention by reducing the time a transaction 
holds locks and by avoiding hotspots (objects frequently 
accessed) 31



Controlling Locking Overhead
• Declaring transaction as “READ ONLY” increases concurrency

• Isolation level: trade off concurrency against exposure of 
transaction to other transaction’s uncommitted changes

• Degrees of serializability 

Isolation level Dirty Read Nonrepeatable
Read

Phantom

READ 
UNCOMMITTED

Maybe Maybe Maybe

READ COMMITTED No Maybe Maybe

REPEATABLE READ No No Maybe

SERIALIZABLE No No No
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Isolation levels

• SERIALIZABLE: obtains locks on (sets of) accessed objects and 
holds them until the end

• REPEATABLE READ: same locks as for serializable transaction, 
but does not lock sets of objects at higher level

• READ COMMITTED: obtains X-locks before writing and holds 
them until the end; obtains S-locks before reading, but 
releases them immediately after reading

• READ UNCOMMITTED: does not obtain S-locks for reading; 
not allowed to perform any writes

• Does not request any locks ever
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Hierarchy of Granularity

• Could represent granularity of locks in a hierarchical structure.

• Root node represents entire database, level 1s represent files,
etc.

• When node is locked, all its descendants are also locked.

• DBMS should check hierarchical path before granting lock.
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Lock Modes: State Intent

• Allows transactions to lock at each level but with a 
special protocol using new ‘intentions’ locks.
• Can be read intent (intent share) or write intent (intent 

exclusive )

• Before viewing an item, transaction must set 
intention locks on all its ancestors (higher level 
containers)

• Locks are applied top-down, released bottom-up

IS IX S X

IS   

IX  

S  

X
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Granularity of Data Items

• Size of data items chosen as unit of protection by concurrency
control protocol.

• Ranging from coarse to fine:

• The entire database.

• A file.

• A table.

• A page (or area or database spaced).

• A record.

• A field value of a record.
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Levels of locking
• Each transaction 

starts from the root 
of the hierarchy

• To get S or IS lock on  
a node, must hold IS 
or IX on parent node

• To get X or IX on a 
node, must hold IX on 
parent node

• Must release locks in 
bottom-up order

• Equivalent to directly 
setting locks at the 
leaf levels 38



Granularity of Data Items

• Tradeoff:

• coarser, the lower the degree of concurrency;

• finer, more locking information that is needed to be stored.

• Best item size depends on the types of transactions.
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ISOLATION LEVEL: MYSQL

• SET TRANSACTION  ISOLATION LEVEL levels;
• SERIALIZABLE
• REPEATABLE READ
• READ COMMITTED
• READ UNCOMMITTED

• Default is that the command affects the next transaction 
• Can also set the ISOLATION LEVEL for the current session and 

globally
• SET [GLOBAL|SESSION] TRANSACTION  ISOLATION LEVEL levels;
• GLOBAL applies globally for all subsequent sessions. Existing sessions 

are unaffected.
• SESSION applies to all subsequent transactions performed within the 

current session
• Can also define the access method for the query 

• SET TRANSACTION READ ONLY
• SET TRANSACTION READ WRITE
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INNODB and Transactions

• All user activity occurs inside a transaction

• If autocommit mode is enabled, each SQL statement forms a 
single transaction on its own.

• Perform a multiple-statement transaction by starting it with 
an explicit START TRANSACTION

• autocommit mode is disabled within a session with SET 
autocommit = 0,
• The session will have a transaction open until it is explicitly closed

• Issue commit or rollback to close the transaction

• Default InnoDB Isolation level is REPEATABLE READ

• InnoDB performs row level locking 
• Only if two transactions try to modify the same row does one of 

the transactions wait for the other to complete 41



InnoDB and locks

• InnoDB implements standard row-level locking where there 
are two types of locks
• (S) shared locks

• permits the transaction that holds the lock to read a row.

• (X) exclusive locks 
• permits the transaction that holds the lock to update or delete a row.

• InnoDB supports multiple granularity locking which permits 
coexistence of record locks and locks on entire tables.
• Intention locks are table locks in InnoDB that indicate which type 

of lock a transaction will require later for a row in that table.

• Intention shared (IS) Transaction T intends to set S locks on 
individual rows in table t. (SELECT … LOCK IN SHARE MODE)

• Intention exclusive(IX) Transaction T intends to set X locks on 
individual rows in table t (SELECT … LOCK FOR UPDATE) 42



Granting locks

• A lock is granted to a requesting transaction if it is compatible 
with existing locks

• A transaction waits until the conflicting existing lock is 
released

• If a lock request conflicts with an existing lock and cannot be 
granted because it would cause deadlock, an error occurs

• Main purpose of IX and IS locks is to show that someone is 
locking a row, or going to lock a row in the table.

• SHOW ENGINE INNODB STATUS;

• To report on any transactions and deadlock conditions.
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Summary

• Precedence graph allow us to represent 
transactions whose actions involve reading and 
writing the same data object

• Deadlocks can be assumed, prevented or 
detected.
• Assumed if a transaction is waiting longer than the system time 

limit n – the system aborts and restarts the transaction

• Detected via waits-for graph

• Prevented via timestamps 

• Optimistic concurrency control aims to minimize 
the cost of Concurrency Control
• Best when reads are common and writes are rare
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