
DEADLOCK AND
ISOLATION LEVELS
Kathleen Durant PhD

Lesson 10

CS3200

1

Outline for the day

• Precedence graph

• Deadlock prevention and detection

• Waits-for graph

• My SQL Granular Locking

• Concurrency without locking

• Optimistic Concurrency Control

• Timestamp based concurrency control

2

Precedence Graph

• To determine if a schedule is conflict serializable we use a
precedence graph

• Transactions are vertices of the graph

• There is an edge from T1 to T2 if T1 must happen before T2 in
any equivalent serial schedule

• Edge T1 -> T2 if in the schedule we have:

• T1 Read(R) followed by T2 Write(R) for the same resource R

• T1 Write(R) followed by T2 Read(R)

• T1 Write(R) followed by T2 Write(R)

• The schedule is serializable if there are no cycles

3

Example 1: Precedence Graph
T1 T2

X(A)

R(A)

W(A)

X(B) X(A)

R(B)

W(B)

R(A)

W(A)

X(B)

R(B)

W(B)

Fill in the edges

T1 T2

4

Example 2: Precedence graph
T1 T2

S(A)

R(A)

S(A)

R(A)

X(B)

R(B)

W(B)

X(C)

R(C)

W(C)

T1 T2

Fill in the edges

5

Example 3: Precedence Graph

T1 T2

Read(A)

Write(A)

Read(B)

Write(B)

Read(A)

Write(A)

Read(B)

Write(B) Fill in the edges

T1 T2

6

Concurrency Control Techniques

• Two basic concurrency control techniques:

• Locking

• Timestamping

• Both are conservative approaches: delay transactions in
case they conflict with other transactions.

• Optimistic methods assume conflict is rare and only check
for conflicts at commit.

Pearson Education © 2014 7

7

Locking
Transaction uses locks to deny access to other
transactions and so prevent incorrect updates.

• Most widely used approach to ensure serializability.

• Generally, a transaction must claim a shared (read) or
exclusive (write) lock on a data item before read or write.

• Lock prevents another transaction from modifying item or
even reading it, in the case of a write lock.

Pearson Education © 2014 8

8

Locking - Basic Rules

• If transaction has shared lock on item, can read but not
update item.

• If transaction has exclusive lock on item, can both read and
update item.

• Reads cannot conflict, so more than one transaction can hold
shared locks simultaneously on same item.

• Exclusive lock gives transaction exclusive access to that item.

Pearson Education © 2014 9

9

Locking - Basic Rules

• Some systems allow transaction to upgrade read lock to an
exclusive lock, or downgrade exclusive lock to a shared lock.

Pearson Education © 2014 10

10

Deadlock

An impasse that may result when two (or more) transactions
are each waiting for locks held by the other to be released.

Pearson Education © 2014 11

11

Handling Deadlocks

• Three general techniques for handling deadlock:

• Timeouts.

• Deadlock prevention.

• Deadlock detection and recovery.

T1 T2

12

Timeouts

• Transaction that requests lock will only wait for a system-
defined period of time.

• If lock has not been granted within this period, lock
request times out.

• In this case, DBMS assumes transaction may be
deadlocked, even though it may not be, and it aborts and
automatically restarts the transaction.

Pearson Education © 2014 13

13

Deadlock Detection and Recovery

• DBMS allows deadlock to occur but recognizes it and breaks
it.

• Usually handled by construction of wait-for graph (WFG)
showing transaction dependencies:

• Create a node for each transaction.

• Create edge Ti -> Tj, if Ti waiting to lock item locked by
Tj.

• Deadlock exists if and only if WFG contains cycle.

• WFG is created at regular intervals.

Pearson Education © 2014 14

14

Example - Wait-For-Graph (WFG)

Pearson Education © 2014 15

15

Timestamping
–preventing deadlocks

• Transactions ordered globally so that older transactions,
transactions with smaller timestamps, get priority in the
event of conflict.

• Conflict is resolved by rolling back and restarting
transaction.

• No locks so no deadlock.

Pearson Education © 2014

17

Deadlock Prevention

• DBMS looks ahead to see if transaction would cause
deadlock and never allows deadlock to occur.

• Could order transactions using transaction timestamps:

• Wait-Die - only an older transaction can wait for younger one,
otherwise transaction is aborted (dies) and restarted with
same timestamp.

• Wound-Wait - only a younger transaction can wait for an older
one. If older transaction requests lock held by younger one,
younger one is aborted (wounded).

Pearson Education © 2014

18

Timestamping

Timestamp

A unique identifier created by DBMS that indicates relative
starting time of a transaction.

• Can be generated by using system clock at time transaction
started, or by incrementing a logical counter every time a
new transaction starts.

Pearson Education © 2014

19

Timestamping (No locks)

• Read/write proceeds only if last update on that data item
was carried out by an older transaction.

• Otherwise, transaction requesting read/write is restarted
and given a new timestamp.

• Also timestamps for data items (stored in the DB):

• read-timestamp - timestamp of last transaction to read item;

• write-timestamp - timestamp of last transaction to write item.

Pearson Education © 2014

20

Timestamping - Read(x)

• Consider a transaction T with timestamp ts(T):

ts(T) < write_timestamp(x)

• x already updated by younger (later) transaction.

• Transaction must be aborted and restarted with a new timestamp.

ts(T) < read_timestamp(x)

• x already read by younger transaction.

• Roll back transaction and restart it using a later timestamp.

Pearson Education © 2014 21

21

Timestamping - Write(x)

ts(T) < write_timestamp(x)

• x already written by younger transaction.

• Write can safely be ignored - ignore obsolete write rule.

• Otherwise, operation is accepted and executed.

Pearson Education © 2014

22

Example–Basic Timestamp Ordering

Pearson Education © 2014

23

Optimistic Techniques

• Based on assumption that conflict is rare and more
efficient to let transactions proceed without delays to
ensure serializability.

• At commit, check is made to determine whether conflict
has occurred.

• If there is a conflict, transaction must be rolled back and
restarted.

• Potentially allows greater concurrency than traditional
protocols.

Pearson Education © 2014 26

26

Performance of Locking

• Locks force transactions to wait
• Abort and restart due to deadlock wastes the work done by the

aborted transaction

• In practice, deadlocks are rare, e.g., due to lock downgrades
approach

• Waiting for locks becomes bigger problem as more
transactions execute concurrently
• Allowing more concurrent transactions initially increases

throughput, but at some point leads to thrashing

• Need to limit maximum number of concurrent transactions to
prevent thrashing

• Minimize lock contention by reducing the time a transaction
holds locks and by avoiding hotspots (objects frequently
accessed) 31

Controlling Locking Overhead
• Declaring transaction as “READ ONLY” increases concurrency

• Isolation level: trade off concurrency against exposure of
transaction to other transaction’s uncommitted changes

• Degrees of serializability

Isolation level Dirty Read Nonrepeatable
Read

Phantom

READ
UNCOMMITTED

Maybe Maybe Maybe

READ COMMITTED No Maybe Maybe

REPEATABLE READ No No Maybe

SERIALIZABLE No No No

32

Isolation levels

• SERIALIZABLE: obtains locks on (sets of) accessed objects and
holds them until the end

• REPEATABLE READ: same locks as for serializable transaction,
but does not lock sets of objects at higher level

• READ COMMITTED: obtains X-locks before writing and holds
them until the end; obtains S-locks before reading, but
releases them immediately after reading

• READ UNCOMMITTED: does not obtain S-locks for reading;
not allowed to perform any writes

• Does not request any locks ever

33

Hierarchy of Granularity

• Could represent granularity of locks in a hierarchical structure.

• Root node represents entire database, level 1s represent files,
etc.

• When node is locked, all its descendants are also locked.

• DBMS should check hierarchical path before granting lock.

Pearson Education © 2014 35

35

Lock Modes: State Intent

• Allows transactions to lock at each level but with a
special protocol using new ‘intentions’ locks.
• Can be read intent (intent share) or write intent (intent

exclusive)

• Before viewing an item, transaction must set
intention locks on all its ancestors (higher level
containers)

• Locks are applied top-down, released bottom-up

IS IX S X

IS

IX

S

X

36

Granularity of Data Items

• Size of data items chosen as unit of protection by concurrency
control protocol.

• Ranging from coarse to fine:

• The entire database.

• A file.

• A table.

• A page (or area or database spaced).

• A record.

• A field value of a record.

Pearson Education © 2014 37

37

Levels of locking
• Each transaction

starts from the root
of the hierarchy

• To get S or IS lock on
a node, must hold IS
or IX on parent node

• To get X or IX on a
node, must hold IX on
parent node

• Must release locks in
bottom-up order

• Equivalent to directly
setting locks at the
leaf levels 38

Granularity of Data Items

• Tradeoff:

• coarser, the lower the degree of concurrency;

• finer, more locking information that is needed to be stored.

• Best item size depends on the types of transactions.

Pearson Education © 2014 39

39

ISOLATION LEVEL: MYSQL

• SET TRANSACTION ISOLATION LEVEL levels;
• SERIALIZABLE
• REPEATABLE READ
• READ COMMITTED
• READ UNCOMMITTED

• Default is that the command affects the next transaction
• Can also set the ISOLATION LEVEL for the current session and

globally
• SET [GLOBAL|SESSION] TRANSACTION ISOLATION LEVEL levels;
• GLOBAL applies globally for all subsequent sessions. Existing sessions

are unaffected.
• SESSION applies to all subsequent transactions performed within the

current session
• Can also define the access method for the query

• SET TRANSACTION READ ONLY
• SET TRANSACTION READ WRITE

40

INNODB and Transactions

• All user activity occurs inside a transaction

• If autocommit mode is enabled, each SQL statement forms a
single transaction on its own.

• Perform a multiple-statement transaction by starting it with
an explicit START TRANSACTION

• autocommit mode is disabled within a session with SET
autocommit = 0,
• The session will have a transaction open until it is explicitly closed

• Issue commit or rollback to close the transaction

• Default InnoDB Isolation level is REPEATABLE READ

• InnoDB performs row level locking
• Only if two transactions try to modify the same row does one of

the transactions wait for the other to complete 41

InnoDB and locks

• InnoDB implements standard row-level locking where there
are two types of locks
• (S) shared locks

• permits the transaction that holds the lock to read a row.

• (X) exclusive locks
• permits the transaction that holds the lock to update or delete a row.

• InnoDB supports multiple granularity locking which permits
coexistence of record locks and locks on entire tables.
• Intention locks are table locks in InnoDB that indicate which type

of lock a transaction will require later for a row in that table.

• Intention shared (IS) Transaction T intends to set S locks on
individual rows in table t. (SELECT … LOCK IN SHARE MODE)

• Intention exclusive(IX) Transaction T intends to set X locks on
individual rows in table t (SELECT … LOCK FOR UPDATE) 42

Granting locks

• A lock is granted to a requesting transaction if it is compatible
with existing locks

• A transaction waits until the conflicting existing lock is
released

• If a lock request conflicts with an existing lock and cannot be
granted because it would cause deadlock, an error occurs

• Main purpose of IX and IS locks is to show that someone is
locking a row, or going to lock a row in the table.

• SHOW ENGINE INNODB STATUS;

• To report on any transactions and deadlock conditions.

43

Summary

• Precedence graph allow us to represent
transactions whose actions involve reading and
writing the same data object

• Deadlocks can be assumed, prevented or
detected.
• Assumed if a transaction is waiting longer than the system time

limit n – the system aborts and restarts the transaction

• Detected via waits-for graph

• Prevented via timestamps

• Optimistic concurrency control aims to minimize
the cost of Concurrency Control
• Best when reads are common and writes are rare

44

