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ABSTRACT

Batch environments are notoriously unfriendly because it’s
not easy to interactively diagnose the health of a job. A job
may be terminated without warning when it reaches the end
of an allotted runtime slot, or it may terminate even sooner
due to an unsuspected bug that occurs only at large scale.

Two strategies are proposed that take advantage of DMT-
CP (Distributed MultiThreaded CheckPointing) for system-
level checkpointing. First, we describe a three-phase de-
bugging strategy that permits one to interactively debug
long-running MPI applications that were developed for non-
interactive batch environments. Second, we review how to
use the SLURM resource manager capability to easily im-
plement extended batch sessions that overcome the typical
limitation of 24 hours maximum for a single batch job on
large HPC resources. We argue for greater use of this lesser
known capability, as a means to remove the necessity for
the application-specific checkpointing found in many long-
running jobs.

CCS Concepts

•Software and its engineering → Checkpoint / restart; Soft-
ware testing and debugging;
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Checkpointing is typically used in high-performance com-
puting for fault tolerance. If a computation fails, whether
for reasons of hardware failure or temporary software fail-
ure, then the user restarts the computation from a pre-
vious checkpoint. Two classic software packages used for
this purpose in High-Performance Computing (HPC) are:
DMTCP [2,7] and BLCR [10,14].

Going beyond fault tolerance, we describe two checkpoint-
ing scenarios particularly targeted toward batch environ-
ments:

• extended batch sessions for long-running jobs; and

• three-phase debugging for interactively debugging long-
running MPI batch jobs.

1.1 Extended batch sessions for long-running
jobs

In the first scenario, we consider the use of checkpointing
to save the state of a running computation near the expira-
tion of its runtime allotment in a batch system (for example,
using [23]). This provides a type of insurance for the user.
If a job terminates well in advance of the runtime allotment,
then there is no checkpoint and thus, there is no cost.

In this scenario, we review how elements from resource
managers and a checkpointing package can be used to handle
long-running programs. Hooks for this are already available
using SLURM [23], and can be used with any checkpointing
package. TORQUETM 3.0 has a related capability, by invok-
ing a checkpoint during pbs_mom shutdown. However, the
TORQUE facility seems to be closely tied to BLCR [10,14].

While this scenario is not novel in itself, it seems not to
be widely known. It is also noted that this technique can
be used even when the resource manager does not directly
support checkpointing: Given that the duration of a batch
time slot is known in advance, it is easy to invoke a timer in
a helper function or program that invokes a checkpoint just
prior to job termination. It is argued that this system-level
checkpointing solution has particular importance in reliev-
ing application developers from the need to include a special
routine for saving the state of an application. While many
large software systems include routines for saving state, this
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methodology is often considered error-prone. The issue is
that a new feature is added to the software, and a separate
routine for saving the state must be correspondingly up-
dated. Thus, the maintainer of code for saving state must
also have some knowledge of the data structures throughout
the rest of the code.

The importance of checkpointing near the expiration of
the runtime allotment of a batch system offers a special
opportunity when considered in combination with the po-
tential for resource managers to provide system-generated
predictions of runtime duration. As described in [27], users
typically over-estimate their runtime requirements in order
to avoid having their job killed before completion. Those au-
thors argue that system-generated runtime predictions offer
a more accurate assessment, and can then offer additional
sources of backfill for a backfill-based queuing algorithm.
As described above, system-level checkpointing removes the
penalty associated with a wrong system-generated runtime
prediction.

1.2 Three-phase debugging
Next, we consider the second of the two scenarios. The

second scenario is especially important for application de-
velopers, as opposed to end users of an application. This
scenario considers interactive debugging of MPI jobs run-
ning in a non-interactive batch environment. Once a code
base has been developed, there are three important aspects
of maintaining and extending that code.

Debugging: To make sure the code runs and yields correct
results.

Profiling: To analyze the code to identify performance bot-
tlenecks.

Optimization: To make the code run faster and/or consume
fewer resources.

This work makes a particular contribution to debugging.
It allows one to checkpoint a long-running job just prior to
a software problem, whether that problem is a crash, soft-
ware “hanging”, premature termination, incorrect interme-
diate values, or any other condition of interest. After that,
one can repeatedly restart, attach a debugger, and interac-
tively inspect the causes of the problem. This contributes
to the debugging process in four ways.

Reproducibility: To find and freeze a scenario where the
software problem is reproducible.

Reduction: To reduce that problem to its essence.

Deduction: For developing hypotheses on what the cause of
the problem might be.

Experimentation: To filter out invalid hypotheses.

A three-phase debugging methodology is described that
allows one to checkpoint within seconds to minutes prior to
a software problem, as desired.

This leaves open the question of how many MPI processes
can be restarted on a single “debug node”. Even though a
typical cluster will provide users with interactive computers
for code development and debugging, those computers are
often diskless. Hence, they have no swapfile and can only
accommodate as many processes as fit in RAM. Even where

a swapfile exists, a user will soon experience thrashing as
many restarted MPI processes begin to page.

For this reason, a variant of three-phase debugging is also
described in which only a single MPI process is restarted.
This work represents the first demonstration of restarting
just one MPI process from within a widely used checkpoint-
ing package. The strengths and weaknesses of this approach
are also examined.

When running short MPI applications, a competing ap-
proach is to log all MPI messages and events for later re-
play [5, 6, 13, 18]. However, this runs into several problems
when considered for long-running jobs. First, it assumes
that the application runs deterministically. This is usually
not the case even for multi-threaded software within a single
process, and deterministic record-replay continues to be an
active area of research [3,11]. Second, record-replay is espe-
cially inefficient for long-running jobs due to the storage re-
quirements and performance overhead of logging many MPI
messages, with each message potentially containing large
data, for later replay.

1.3 DMTCP
In this work, DMTCP (Distributed MultiThreaded Check-

Pointing) is used as a vehicle for transparent, system-level
checkpointing. System-level checkpointing requires no coop-
eration from the application. None of the target application,
library, and operating system are modified. In particular,
system-level checkpointing is always transparent to the ap-
plication.

1.4 Organization of paper
Section 2 discusses the use of long-running batch sessions

and its importance in combination with system-generated
runtime predictions. Section 3 describes the three-phase de-
bugging strategy for interactive debugging of long-running
batch jobs. Section 4 presents an experimental evaluation.
Section 5 presents related work. Finally, a conclusion and
discussion of future work appear in Section 6.

2. EXTENDED BATCH SESSIONS
At most HPC sites, the maximum runtime duration of a

batch job is 24 hours or less and this is a problem for long-
running jobs. We overcome this limit through a system-
initiated checkpoint. For example, a batch reservation for
24 hours might include a system-initiated checkpoint near
termination — perhaps at the beginning of hour 23. This
costs nothing if the job completes before hour 23. Hence,
such a policy could be safely adopted for all batch jobs in a
queue. As an example, the SLURM strigger command [23]
provides a simple mechanism to implement just such a facil-
ity. The effectiveness of such an approach depends on ques-
tions such as the time to checkpoint. We present a small
experimental study in Section 4.2 that shows that check-
pointing can generally be achieved in less than a minute —
even for the HPCG benchmark [9] stressing both dense and
sparse linear algebra. This benchmark was tested with up
to 1024 MPI processes, using 1.2 GB per process (1.2 TB
total).

The current ideas complement previous work on system-
generated prediction of runtime duration [27]. In that work,
the authors argue that users are notorious for over-estimating
the runtime in order to avoid premature termination. System-
generated runtime predictions are shown there to improve



overall performance. By combining this earlier work with
system-initiated checkpoints prior to the scheduled termina-
tion, one achieves the best of both worlds: even if a system-
generated runtime prediction is too short, no work is lost.

Note also that system-generated runtime prediction not
only improves the throughput of a batch system, but it also
provides benefits for the end user. When a user’s job is cho-
sen for backfill, the user’s job completes much sooner than
otherwise. Hence, fast, system-level checkpointing removes
the risk of killing a user’s job and often advances the time
by which the job completes.

3. THREE-PHASE DEBUGGING FOR

LARGE MPI COMPUTATIONS
Debugging software for large MPI computations running

in the batch is often difficult and time-consuming — espe-
cially if a software bug occurs beyond the first few minutes
of a computation. Typically, this requires several cycles in
which print statements are added and an additional batch
job is run.

Ideally, one would run under an interactive debugger such
as GDB, and interactively capture a process that is about to
crash or exit, and begin interactive debugging. But main-
taining a reservation of a large (many-node) HPC computa-
tion in order to debug interactively is an expensive proposi-
tion. Many nodes sit idle while the developer interactively
probes the state of the computation.

Instead, a three-phase debugging strategy is proposed. It
is assumed that the software either crashes or prematurely
exits. The proposed strategy also covers the case in which
software “hangs” (for example, due to a mismatch of sends
and receives in MPI). Hanging can automatically be de-
tected by a user by adding timeouts around the MPI send
and receive calls, and then exiting in the event of a time-
out. (Timeouts are easy to implement, through either of two
mechanisms: MPI_Isend and MPI_Irecv; or the alarm()
system call.)

The next subsection describes the basic three-phase de-
bugging strategy, while the later sections discuss important
variations in the case that a single “debug” computer node
does not have sufficient RAM to prevent thrashing.

3.1 Restarting with all MPI processes
Figure 1 provides an overview of the key steps for three-

phase debugging. In phase 1, a batch job is submitted
and frequent, periodic checkpoints are taken — perhaps
once every hour. When the software crashes or exits, the
bug must occur between the last checkpoint and termina-
tion. In phase 2, one restarts from the last checkpoint
and takes finer-grained (more frequent) checkpoints, such
as every minute. Now the bug is manifested within a single
minute of parallel runtime. Finally, in phase 3, all of the
checkpoint images are copied to a “debug node”, and then
restarted on that single debug node. A debugger can be
attached on restart using standard techniques such as the
attach capability of GDB.

3.2 Restarting with a single MPI process
A variation of this strategy is also proposed, in which only

one of the MPI processes is restarted on the debug node in
phase 3. Such a variation is needed if the swapfile or phys-
ical RAM are not large enough to accommodate efficiently

Debugger

Time: Ckpt: Crash:

Phase 2: batch (frequent checkpoints)

Phase 1: batch

Phase 3: single debug node

Figure 1: Three-phase debugging: The bug always lies be-
tween the last checkpoint and the crash, early termination,
or hanging of the process. In phase 3, a debugger is attached
after restart.

running many MPI processes on a single node. However, an
important caveat for this alternative is that after phase 1,
the user must be able to predict which single MPI process
will need to be restarted in phase 3 under an interactive
debugger.

In this variation, one identifies a single MPI process at the
end of phase 1, where the software problem had occurred.
In this case, one creates a wrapper function around each of
the MPI communication functions. For this exposition, we
assume that MPI_Recv was the last MPI library call requir-
ing inter-process communication. Note that DMTCP makes
such wrapper functions easy to write through the DMTCP
plugin mechanism [8]. Then, in phase 2, one restarts from
the last checkpoint of phase 1, but one issues a checkpoint
after every MPI receive function in the target process.

In this variation, phase 3 consists of restarting (on a single
debug computer), only the single process that will incur the
software problem. It is guaranteed that the user code will
not make additional calls to MPI, since we took a checkpoint
after every invocation of an MPI receive during phase 2. In
phase 3, we are restarting from the last checkpoint.

Identifying the faulty MPI process.
Isolating a single MPI process out of potentially thousands

of processes is an extremely difficult task and we do not
claim to provide a mechanism to predict the faulty process.
However, one can use heuristics such as observing an earlier
run to see which MPI process exited first.

Note that while this technique is not fully automatic or
complete, we propose it as an aid that complements the nor-
mal debugging process of the end user. For example, identi-
fying a process only isolates the actual crash (error), whereas
the original cause of the bug (fault) may have started with
a memory leak, race condition, etc., on a different MPI pro-
cess. As part of the typical debugging process, one can then
approximate the cause of the crash, develop a theory of the
original cause, and then execute an additional run with addi-
tional asserts or print statements, in order to try to confirm
the theory of the original cause.

3.3 Communication-intensive applications
There is a further concern that communication-intensive

applications may make frequent calls to MPI. In this case,
the overhead of many checkpoints would become excessive.



128 256 512 1024

Number of MPI processes

0.0

0.5

1.0

1.5

2.0

2.5

3.0
L
a
u
n
c
h
 t

im
e
 (

s
)

(a) Launch Overhead

256 512 1024

Number of MPI processes

10

12

14

16

18

20

22

24

C
h
e
c
k
p
o
in

t 
ti

m
e
 (

s
)

(b) Checkpoint Overhead

256 512 1024

Number of MPI processes

0

5

10

15

20

R
e
s
ta

rt
 t

im
e
 (

s
)

(c) Restart Overhead

Figure 2: Various overheads for NAS Benchmark LU, Class E, when running with DMTCP. Each case was run five times,
and the graphed line runs through the average value of each case.

A simple strategy to escape this problem is to include a
counter either in the application code or in the wrapper
functions around calls to MPI.

In this scheme, in phase 2a, one might choose to check-
point only when the counter is a multiple of 1,000. A fur-
ther batch phase 2b would then begin by restarting from the
last checkpoint in phase 2a. In phase 2b, one would check-
point only when the counter is a multiple of 100. Similarly,
phase 2c would invoke a checkpoint only when the counter
is a multiple of 10. Finally, phase 2d could then follow the
original strategy of a checkpoint after each MPI call, while
knowing that the total running time would be based on at
most ten iterations of the counter.

Finally, an additional concern exists over bugs or software
problems that only manifest some of the time. Here, we
make the common assumption that if a bug appeared once,
then repeating the job enough times will eventually produce
the bug. The guiding principle is that we only restart from
a given checkpoint if the bug had previously been observed
to occur during the original timeline in which the check-
point was created. Thus, the common assumption implies
here that repeating a restart from the checkpoint enough
times will eventually produce the bug again. Since phases 2
and 3 are always short compared to phase 1, the expense of
possibly requiring multiple restarts is minimal.

4. EXPERIMENTAL EVALUATION
All experiments were conducted on Stampede [24] at TACC

(Texas Advanced Computing Center). Stampede is cur-
rently the #10 supercomputer on the Top500 list [25]. Each
computer node at Stampede has 16 cores, consisting of a
dual-CPU Xeon ES-2680 configuration with 32 GB of RAM.
Stampede uses the SLURM resource manager for allocation
of nodes, but it uses an ibrun or mpirun_rsh command for
launching MPI.

4.1 Checkpoint performance
We first demonstrate the performance of DMTCP: launch

time, checkpoint time and restart time are studied for dif-
ferent scales.

Figure 2a shows that the overhead to launch all MPI pro-
cesses under DMTCP is negligible (less than a second in
most cases). The non-zero overhead is to establish a connec-
tion between an MPI process and the central checkpointing

coordinator of DMTCP.
Figure 2b and Figure 3a demonstrate the checkpoint per-

formance for the NAS LU benchmark (class E), and the
HPCG benchmark. The main difference between these two
benchmarks regarding the checkpoint performance is the
checkpoint image size. In the case of HPCG, the image
size for each process is constant (1.2 GB) as the number of
processes varies, while for LU, the total memory footprint
over all nodes is roughly constant as the number of pro-
cesses varies. For LU, this implies a decreasing trend for the
checkpoint image size per process. However, in both cases,
we observe no significant change in the time to checkpoint
as the number of processes varies. We speculate that this is
because the throughput of Lustre is not near capacity, and
so the bandwidth to stable storage continues to grow as the
total checkpoint image size grows.

Figure 2c shows that the restart time for the NAS LU
benchmark (class E) decreases by a factor of four from 256 pro-
cesses to 512 processes, but does not change much from 512
to 1024. We believe this is due to the buffering mechanism
and parallel nature of the Lustre filesystem. In the case of
256 processes, the checkpoint size per process is much larger,
approximately 1 GB, compared to 600 MB for 512 processes,
and 425 MB for 1024 processes. As a result, for 256 pro-
cesses, it takes more time for each individual process to read
its checkpoint image from disk and restart.

4.2 Extended batch sessions
This section asks the question of how close to the end of

the allotted time for an allocation one can checkpoint. If
one can checkpoint close to the end, many computations
will finish in time and never need a checkpoint. Otherwise,
one will incur checkpoints that are not required. Section 2
summarized these issues.

In extending an MPI application to run beyond its run-
time allocation, it is necessary to checkpoint it prior to the
expiration of its allocation. The SLURM environment allows
a signal to be sent to the process at a fixed time before the
duration of an allocation elapses [23]. It is also easy to create
a small utility process running alongside MPI with the same
functionality, which sends a signal to trigger checkpointing
of an application.

Figure 3a shows the average time to checkpoint in the
case of HPCG to be approximately constant as the number
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Figure 3: Checkpoint and restart overheads for the HPCG
benchmark.

of MPI processes increases. We speculate that the near con-
stant time reflects the ability of the Lustre filesystem to split
a large write into many small buffers that are scheduled for
writing in parallel. The large variance is likely due to the
interference of other users’ jobs running at the same time.

Figure 3b shows that the time to restart in the case of
HPCG increases monotonically with the number of pro-
cesses. Recall that for HPCG the memory usage per process
stays approximately constant across different scales. Conse-
quently, the restart time is dominated by the time to read
the checkpoint images. The parallel nature of the Lustre
filesystem prevents the performance from degrading expo-
nentially. We speculate that the increasing restart time oc-
curs due to the well-known fact that the competing reads
from many simultaneous processes create competing disk
seeks within the hard disk [20, Section 25.5].

In order to simulate this scenario, we test the checkpoint-
ing performance as the frequency of periodic checkpoints is
increased.

4.3 Debugging large MPI computations:
Parallel restart case

This section asks two questions. First, how many MPI
processes may be run, while ensuring feasibility of a restart
on a single development node. The issue is that if the sum of
the working sets of each MPI process is more than the size of
RAM on the development node, then there may be a large
slowdown due to excessive paging (thrashing) of the virtual
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Figure 4: Checkpointing time versus Checkpointing fre-
quency for LU.E.256. Each checkpoint image is 950 MB on
average (total 250 GB).

memory subsystem. To answer this question, we measure
the slowdown on the development node. We restart the
same computation both on the original parallel nodes and
with overcommitment on fewer nodes. We report the time
to complete the computation for different levels of overcom-
mitment for the LU benchmark (class D) of NAS [21].

Analysis of Phase 2.
The second question addressed here is how close to the

software bug can one generate a checkpoint in batch (dur-
ing phase 2). If one could generate a checkpoint just one
second before the software bug, then one could tolerate the
delay due to a lot of thrashing on the development node,
and still interactively proceed with debugging. Interactively
debugging close to the occurrence of the bug is always pre-
ferred over a more traditional core dump.

Three-phase debugging requires very frequent debugging
to minimize the time between the last checkpoint and the
final software failure. Figure 4 demonstrates the feasibility
of checkpointing within two seconds of resuming from a pre-
vious checkpoint. The checkpoint time is dominated by the
time taken by Lustre to write the checkpoint images. The
time taken to save the state of the process in memory and
its associated kernel state is negligible. This is critical for
enabling generation of checkpoint images of an application
close to a software bug.

In Figure 4, the effect of invoking a new checkpoint soon
after the end of the previous checkpoint is evaluated in
the case of the NAS LU (class E) benchmark running on
256 MPI processes. We observe that the checkpoint time
stays approximately constant when a new checkpoint is in-
voked after at least 30 seconds after a previous checkpoint.
Although the checkpointing time on average increases by
approximately 28 % between an interval of 60 seconds and
2 seconds, it stays below 20 seconds for all cases.

The increase in checkpoint time could be attributed to
the increased congestion on the filesystem and the back-end
network used by Lustre.

From Figure 4, we note that even at an interval between
checkpoints of 2 seconds, the average time for the checkpoint
itself is less than 18 seconds. Thus, Phase 2 of Figure 1
could checkpoint at intervals even of two seconds — albeit
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Figure 5: Restart time with overcommitment for LU.D.128
and LU.E.128. Each checkpoint image for LU.D.128 is
210 MB on average. Each checkpoint image for LU.E.128 is
1.5 GB on average.

at a ten-fold slowdown (2 seconds of execution followed by
18 seconds of checkpointing). This is an acceptable trade-
off in the shorter Phase 2, since it results in a maximum
interval of 2 seconds in which to analyze the program under
a debugger in Phase 3.

Analysis of Phase 3.
Figure 5 shows the effect of overcommitment on the to-

tal restart time for the NAS LU (classes D and E) bench-
mark. The size of a checkpoint image in the case of class D is
210 MB. The size of a checkpoint image in the case of class E
is 1.5 GB. In each case, the MPI ranks are distributed evenly
among the available nodes. The time to restart the applica-
tion increases with the increasing levels of overcommitment
because Lustre optimizes the reads that are issued in parallel
from many nodes.

The compute nodes on Stampede are configured with no
swapfile, and hence, restarting doesn’t work for the cases
where the required RAM per node nears or exceeds the avail-
able limit on Stampede (32 GB), namely, LU.E.256 over less
than 16 nodes, LU.E.128 over less than 8 nodes. In the case
of LU.E.256, each MPI rank uses 957 MB of RAM on aver-
age, and for LU.E.128, each MPI rank uses 1.5 GB of RAM
on average.
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Figure 6: Time to completion for LU.D.128 when restarting
with overcommitment.

Figure 6 shows the performance overhead incurred when
restarting the NAS LU benchmark (class D) with overcom-

mitment. In each case, the MPI ranks are distributed evenly
among the available nodes. The same set of checkpoint im-
ages was used in all cases. We observe an exponential slow-
down with increasing levels of overcommitment (or decreas-
ing number of nodes).

4.4 Debugging large MPI computations:
Single restart case

Section 4.3 demonstrated the issue with debugging of batch
jobs when the number of MPI processes is too large, and the
virtual memory subsystem is thrashing when running under
a single development node. Naturally, one limited solution
is to use more than one development node. If the MPI pro-
cesses can be distributed among two or more development
nodes, then the sum of the working sets on a single node is
reduced by half or more.

In this section, we present a solution that fully scales, as
described in Section 3. During phase 1, some conditions
were identified to determine which MPI process will crash.
During phase 2, checkpoints were taken after every MPI re-
ceive on the MPI process of interest. Thus, in phase 3, we
restart on a single development node, but we restart only
the process that will experience the software crash. That
process can then be run under a debugger, and we are guar-
anteed that there will be no further MPI receives. In the
example shown here, the resulting computation for this MPI
process is then deterministic. There is no issue with thrash-
ing, since we are restarting only a single MPI process on the
development node.

We extended DMTCP to support restarting of a single
process without restarting the entire distributed computa-
tion. The DMTCP socket plugin is responsible for check-
pointing and restoring the state of socket connections be-
tween the computation processes. However, when restart-
ing a single process, there are no socket peers and thus,
socket connections cannot be properly restored which re-
sults in a failure. We changed the socket plugin to skip
restoration of the socket connections when indicated by an
environment variable. During the normal, full-computation
restarts, the environment variable is not set and thus sock-
ets are restored, whereas, during single-process restarts, the
environment variable is set to avoid restoration of any sock-
ets. The DMTCP InfiniBand plugin was similarly modified
to skip restoration of InfiniBand connections.

By ensuring that the application gets checkpointed after
the last MPI send, receive, or other calls, we avoid the issue
of the restart process trying to communicate with its peers.
Hence on restart, can attach an interactive debugging ses-
sion by using a debugger such as GDB.

Just one experiment was executed, for the purpose of
demonstrating the feasibility of this methodology. The case
chosen was restarting a single process from an LU.E.256
computation. This corresponds to Figure 2c, in which 256 pro-
cesses were checkpointed. However, only one process is
restarted.

As expected, the restart time is much faster in this case.
We observed a restart time of two seconds, as compared to
the original 15 seconds of Figure 2c to restart all 256 MPI
processes.

5. RELATED WORK
Two checkpointing packages are currently widely used in

support of MPI: DMTCP [2,7] and BLCR [10,14]. Both are



free and open source. DMTCP (Distributed MultiThreaded
CheckPointing) was chosen for this work because it is MPI-
agnostic. While the current experiments were performed for
MVAPICH2, the same code should also support other MPI
implementations.

Extending checkpoint-restart to support the InfiniBand
network was particularly difficult. Cao et al. provided direct
support for InfiniBand [7], and thus maintained the MPI-
agnostic character of DMTCP. In contrast, earlier imple-
mentations of transparent distributed checkpointing over In-
finiBand relied on a custom checkpoint-restart service from
each MPI implementation, in combination with BLCR [14].
Several MPI dialects implemented a checkpoint-restart ser-
vice to disconnect from the network prior to checkpoint, and
re-connect after restart [4, 12,16,17,19,22].

Hursey et al. [15] discussed creating intermediate check-
points, so as to facilitate going back to earlier points in time
in order to analyze a bug. This is similar to phase 1 of
our three-phase debugging scenario, except that we also as-
sume that a bug manifests in a crash, early termination, or
a hanging process. Options to detach a debugger on check-
point and to re-attach on restart are discussed.

In this work, a variation of three-phase debugging pro-
poses to checkpoint after every call to MPI send, receive, or
other calls to the MPI library on a process that is known
to manifest a bug. This allows one to “replay” after restart
without concern for communication with other MPI pro-
cesses. An alternative approach for phase 3 would be to
use message or event logging [5, 6, 13, 18]. However, as dis-
cussed at the end of Section 1.2, this is not practical for
long-running applications.

Tsafrir et al. argue for system-generated runtime predic-
tions rather than user runtime estimates [27]. In that work,
their argument is motivated by the need for small jobs to
insert during backfill. Most batch systems today employ a
backfill algorithm in which larger jobs are given priority, but
shorter jobs are scheduled when it can be shown that some
nodes will be available, but only for a shorter duration. The
authors argue that users habitually over-estimate the run-
time of their jobs because they will not tolerate jobs being
killed due to the expiration of their scheduled runtime. By
more aggressively predicting runtimes, the authors’ system
can “discover” additional small jobs to be used for backfilling
that would not normally be available. The downside of this
approach is that some user jobs will be terminated early if
the runtime prediction is too aggressive.

In this work, we argue for a combination of this idea
with system-initiated checkpoints prior to termination. Nor-
mally, one prefers not to employ checkpointing for short jobs,
due to the high relative overhead. But if the resource man-
ager has predicted that a user job will complete early, then
the overhead of checkpointing will not occur, except in the
infrequent case of an inaccurate prediction. Even in this
infrequent case, no valuable work was lost. And in the fre-
quent case, the user is often rewarded by having his or her
job complete early if it can be executed within a backfill slot.

Finally, we consider the existing state-of-the-art approaches
to debugging MPI applications. The two most common tools
are TotalView [26] and Allinea DDT [1]. DDT (and To-
talView) are particularly difficult to use in the case of a
long-running computation in which the bug does not occur
early. Contrary to the checkpointing approach described
here, once one reaches the bug, one needs to restart the ap-

plication from the beginning and redo an analysis. Further,
the analysis requires running the application at full scale.
This leads to long waits while the job is in the queue or
while it is running and has not yet reached a breakpoint.
Finally, DDT is also limited to only a few languages, as
compared to the debugging approach with DMTCP. In the
approach advocated here, DMTCP operates entirely at the
binary level, and a generic debugger such as GDB can be
used to attach after restart.

Nevertheless, the approach promoted by DDT has a long
history and is undoubtedly easier to use for beginners. The
approach advocated here requires some familiarity with ideas
like the attach mode of GDB, writing new DMTCP plugins
for wrappers around MPI functions, and small modifications
to DMTCP in the case of restarting a single process.

6. CONCLUSION AND FUTURE WORK
While system-level checkpointing is more often used for

fault tolerance, we have shown its applicability and impor-
tance in two additional areas.

First, it is important for extended batch sessions: batch
jobs that threaten to overrun the allotted time for their
reservation. Figure 3a shows that even for large memory-
intensive jobs, 1024 MPI processes can be checkpointed in
less than 45 seconds.

Second, is novel three-phase debugging strategy was in-
troduced for debugging long-running MPI applications, and
where it is not practical to repeatedly restart the application
from the beginning during successive debug cycles. In order
to avoid the long waits from running batch jobs, only the
first phase requires the traditional large resources of a con-
ventional batch job. The second phase consists of a much
shorter batch job over the final interval between checkpoints.
For every two seconds of execution, 18 seconds is spent in
checkpointing (see Figure 4). The overhead of these frequent
checkpoints is considered acceptable for the shorter Phase 2.
In the third phase, all MPI processes are restarted on a sin-
gle “debug node”, and a traditional debugger such as GDB
is attached.

In cases where it is not possible to restart all processes on
a single debug node, a variation was demonstrated in which
the application developer need only restart one of the MPI
processes. Admittedly, this requires the developer to use
prior information (e.g., from intermediate printouts or prior
debugging runs) in order to guess which process needs to be
run under the debugger next. If the developer needs several
trials to discover the MPI process that causes the bug or
other software problem, he or she can re-run phase 2, while
choosing a different MPI process to debug.

In future work, one can explore a variation in which some,
but not all MPI processes are restarted as part of phase 3.
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