CS7880: Rigorous Approaches to Data Privacy, Spring 2017 POTW #5

Instructor: Jonathan Ullman

Due Fri, Mar 3rd, 11:59pm (Email to jullman+PrivacyS17@gmail.com)

- You may work on this homework in pairs if you like. If you do, you must write your own solution and state who you worked with.
- Solutions must be typed in LATEX.
- Aim for clarity and brevity over low-level details.

Problem 1 (Determining the Scale via Stability).

In Section 3.3 of Vadhan's survey, there is an algorithm that releases a histogram over a possibly infinite domain with error $O\left(\frac{\log(1/\delta)}{\epsilon n}\right)$. In this problem we will see how to use this algorithm to find the *scale* of data from an unknown distribution.

Suppose we have data drawn from some distribution *D* over \mathbb{R} . The distribution is uniform on some unknown interval $[\mu - \sigma, \mu + \sigma]$. We will assume that the dataset *x* consists of 2*n* iid samples from *D*, and we will design an (ε, δ) -differentially private algorithm to approximate the width of the interval, 2σ .

Hint: I recommend reading through the entire problem before you start. Depending on how you do part (c), you may find it preferable to prove a slightly different statement in part (b). Any pair of statements that leads to the right conclusion is fine.

- (a) Suppose X_1, X_2 are independent samples from *D*. What is the distribution of the random variable $|X_1 X_2|$? Write its probability density function and its mean.
- (b) Suppose we pair up our dataset $x \in \mathbb{R}^{2n}$ into a new dataset $y \in \mathbb{R}^n$ consisting of the *n* numbers $x_1 x_2, x_3 x_4, \dots, x_{2n-1} x_{2n}$. Using a Chernoff bound, prove that for sufficiently large *n*, with probability at least 15/16, at least 2*n*/3 out of the *n* numbers are contained in some interval of width $c\sigma$, for some c < 2.
- (c) Define the infinite set of "buckets" $B_i = [2^i, 2^{i+1})$ for $i \in \mathbb{N}$. For a given dataset y, the histogram of y specifying how many of y's elements fall into each bucket B_i can be computed using the algorithm referenced above. Show how to use this algorithm to design an algorithm that outputs an estimate $\hat{\sigma}$ with the guarantee that when $n = O\left(\frac{\log(1/\delta)}{\varepsilon n}\right)$, with high probability¹, $\hat{\sigma} \in [\sigma/2, 2\sigma]$.

¹You can deduce a more precise failure probability from the proof in Vadhan's survey, but for this problem you can just assume that the algorithm succeeds "with high probability."