CS7880: Rigorous Approaches to Data Privacy, Spring 2017
POTW #1

Instructor: Jonathan Ullman

Problem 1 (Random Subsampling).

Given a dataset x € X", and m € {0,1,...,n}, a random m-subsample of x is a new (random)
dataset x” € X formed by keeping a random subset of m rows from x and throwing out the
remaining 7 — 1 rows.

(a) Show that for every n € N, |X| > 2, me{l,...,n}, e >0, and 6 < m/n, the algorithm A(x)
that outputs a random m-subsample of x € X" is not (¢, 0)-differentially private.

(b) Although random subsamples do not ensure differential privacy on their own, a random
subsample does have the effect of “amplifying” differential privacy. Let A: X — R be any
algorithm. We define the algorithm A’(x): X" — R as follows: choose x’ to be a random
m-subsample of x, then output A(x’).
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Prove that if A is (¢, 0)-differentially private, then A’ is (( ——, o )-differentially private.
Thus, if we have an algorithm with the relatively weak guarantee of 1-differential privacy,
we can get an algorithm with e-differential privacy by using a random subsample of a
dataset that is larger by a factor of 1/(e® —1) = O(1/¢).

(c) (Optional.) We can also show that some sort of converse is true—for many tasks achieving
(¢,0)-differential privacy requires ()(1/¢) more samples than achieving (1, §)-differential
privacy. Let q(x) = (g1 (x),...,qx(x)) be a collection of statistical queries.! Assume that there
is no (1,9)-differentially private algorithm A : X" — R, such that

Vxe X" E[||A(x)-q(x)]le] < 1/100.

Show that for some n’ = Q)(n/¢), there is no (¢,6/100)-differentially private algorithm
A: X" - Rk such that

Vx' e X" E[|AKX) - q(x)]le] < 1/100.

Solution 1.

(a) Let X ={0,1} and consider the two datasets x = 0" and x’ = 10""!. Now define S = {z €
{0,1}"| z = 0™}. Then for every € and every 6 < m/n

¢ Pr[A(x) € S]+ 6 =06 < % = Pr[A(x)) € S],

contradicting (¢,9)-dp of M.

IRecall that a statistical query g(x) takes a dataset x = (x1,X2,...) € X* of arbitrary size, and outputs By, ~x[(xi)]
for some function ¢ : X — [0, 1].



(b)

We'll use T C {1,...,n} to denote the identities of the m-subsampled rows (i.e. their row
number, not their actual contents). Note that T is a random variable, and that the
randomness of A’ includes both the randomness of the sample T and the random coins of
A. Let x ~ x" be adjacent databases and assume that x and x’ differ only on some row t. Let
xt (or x7) be a subsample from x (or x’) containing the rows in T. Let S be an arbitrary
subset of the range of A’. For convenience, define p = m/n

To show (p(ef —1),pd)-dp, we have to bound the ratio

Pr[A’(x) € S]-po pPr[A(xp)eS|ieT]+(1-p)Pr[A(xr)eS|igT]-po
Pr[A’(x')€S] —  pPr[A(x})eS|ieT]+(1-p)Pr[A(x})eS|ieT]

by e?(¢~1). For convenience, define the quantities

C =Pr[A(x7)eS|ieT]
C'=Pr[A(x;)eS|ieT]
D =Pr[A(xr)€S|ieT]=Pr[A(x}) €S |ieT]

We can rewrite the ratio as

Pr[A’(x)eS] pC+(1-p)D-pd

Pr[A’(x’) € S] pC’+(1-p)D

Now we use the fact that, by (¢,0)-dp, A < e min{C’, D} + 6. The rest is a calculation:

pC+(1-p)D-pbd
(e*min{C’,D}+6)+ (1 —p)D —pd
(min{C’, D} + (¢* = 1)min{C’,D}) + 8) + (1 — p)D — pé
(min{C’, D} + (¢ = 1)(pC" + (1 —p)D) + 6) + (1 —p)D — pd
(Because min{x,y} <ax+(1-a)y forevery 0 <a <1)
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<p(C'+ (e =1)(pC’+ (1 —p)D)+6)+ (1 —p)D —pd (Because min{x,y} < x)
<p(C'+ (e = 1)(pC"+(1-p)D)) + (1 -p)D

< (pC"+(1-p)D)+(p(e =1))(pC"+ (1 -p)D)

<(L+p(ef =1)(pC"+(1-p)D)

e’ V(pC’+(1-p)D)
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So we’ve succeeded in bounding the necessary ratio of probabilities. Note, if you are willing
to settle for (O(em/n), O(0m/n))-dp the calculation is much simpler. All this algebra is
mostly just to get the tight bound.

Assume for the sake of contradiction that there is an (¢,8)-dp algorithm A’ : X" — RK
such that
VX' X E[IIA(x) - q(x)lle] < 1/100.

where n’ ~ n/e will be chosen later. We will construct a (1,ed/¢)-dp algorithm A : X" — R
that satisfies
VxeX" E[|lA(x)-q(x)llo] < 1/100,

which violates the assumption.



Let n =n’/m for m = 1/e. We will simply assume that n’/m is an integer. Given a dataset
x € X", we construct the dataset xg,, € X" by making m identical copies of each row of x.
Now, two observations:

* If x,p are any two datasets in X" that differ on at most one row, then the resulting
datasets xg,,;, Vo are datasets in X" that differ on at most m rows. Therefore, if we
define the algorithm A : X — R¥ to be A(x) = A’(xg), then the resulting algorithm
A satisfies (¢’,0’)-differential privacy for

g =me=1 6 =met™d =ed/¢

by the “group privacy” property of differential privacy.

* Since statistical queries are linear, for every q, we have q(x) = q(xg;;). Therefore, by
assumption
Vxe X" E[||A(x)—q(%)]le] < 1/100.

However, combining these two facts contradicts our assumption that no such (1,ed/¢)-
differentially private algorithm A : X" — RF exists.



