
CS3000:	Algorithms	&	Data
Jonathan	Ullman

Lecture	8:	
• Dynamic	Programming:	RNA	Folding,	Practice

Feb	3,	2020



RNA	Folding



DNA

• DNA	is	a	string	of	four	bases	{A,C,G,T}
• Two	complementary	strands	of	DNA	stick	together	
and	form	a	double	helix
• A—T and	C—G are	complementary	pairs



RNA	Folding

• RNA	is	a	string	of	four	bases	{A,C,G,U}
• A	single	RNA	strand	sticks	to	itself	and	folds	into	
complex	structures
• A—U and	C—G are	complementary	pairs



RNA	Folding

• RNA	strand	will	try	to	minimize	energy (form	the	
most	bonds)	subject	to	constraints



RNA	Folding

• RNA	is	a	string	of	bases	𝒃𝟏,… , 𝒃𝒏 ∈ 𝑨, 𝑪, 𝑮, 𝑼
• The	structure	is	given	by	a	set	of	bonds	𝑆 consisting	
of	pairs	 𝑖, 𝑗 with	𝑖 < 𝑗

• (Complements)	Only	𝐴 − 𝑈 or	𝐶 − 𝐺 can	be	paired

• (Matching)	No	base	𝑏5 is	in	two	pairs	in	𝑆

• (No	Sharp	Turns)	If	 𝑖, 𝑗 ∈ 𝑆,	then	𝑖 < 𝑗 − 4

• (Non-Crossing)	If	 𝑖, 𝑗 , 𝑘, ℓ ∈ 𝑆 then	it	cannot	be	the	
case	that	𝑖 < 𝑘 < 𝑗 < ℓ



RNA	Folding

• Input:	RNA	sequence	𝒃𝟏,… , 𝒃𝒏 ∈ 𝐴, 𝐶, 𝐺, 𝑈
• Output:	A	set	of	pairs	𝑆 ⊆ 1,… , 𝑛 × 1,… , 𝑛
• Goal:	maximize	the	size	of	𝑆

• (Complements)	Only	𝐴 − 𝑈 or	𝐶 − 𝐺 can	be	paired

• (Matching)	No	base	𝑏5 is	in	two	pairs	in	𝑆

• (No	Sharp	Turns)	If	 𝑖, 𝑗 ∈ 𝑆,	then	𝑖 < 𝑗 − 4

• (Non-Crossing)	If	 𝑖, 𝑗 , 𝑘, ℓ ∈ 𝑆 then	it	cannot	be	the	
case	that	𝑖 < 𝑘 < 𝑗 < ℓ



Dynamic	Programming

• Let	𝑂 be	the	optimal	set	of	pairs	for	𝑏> ⋯𝑏@
• Case	1: 𝑂 does	not	include	any	pair	involving	𝑛

• Case	2:	𝑂 has	𝑛 pair	with	some	𝑡 < 𝑛 − 4 in	𝑂



Dynamic	Programming

• Let	𝑂5,B be	the	optimal	set	of	pairs	for	𝑏5 ⋯𝑏B
• Case	1: 𝑂5,B does	not	include	any	pair	involving	𝑗

• Case	2:	𝑂5,B has	𝑗 pair	with	some	𝑡 < 𝑗 − 4 in	𝑂



Dynamic	Programming

• Let	OPT 𝑖, 𝑗 be	the	opt.	number of	pairs	for	𝑏5 ⋯𝑏B
• Case	1: 𝑗 pairs	with	nothing

• Case	2:	𝑗 pairs	with	𝑡 < 𝑗 − 4



Dynamic	Programming

• Let	OPT 𝑖, 𝑗 be	the	opt.	number of	pairs	for	𝑏5 ⋯𝑏B
• Case	1: 𝑗 pairs	with	nothing
• Case	2:	𝑗 pairs	with	𝑡 < 𝑗 − 4

Recurrence:
OPT 𝑖, 𝑗
= max OPT 𝑖, 𝑗 − 1 ,max OPT 𝑖, 𝑡 − 1 + OPT 𝑡 + 1, 𝑗 − 1

Base	Cases:
OPT 𝑖, 𝑗 = 0 if	𝑖 ≥ 𝑗 − 4

Maximum	over	all	𝑡 such	that
• 𝑖 ≤ 𝑡 < 𝑗 − 4
• 𝑏N, 𝑏B are	compatible	bases



Filling	the	Table

Recurrence:
OPT 𝑖, 𝑗 = max OPT 𝑖, 𝑗 − 1 , max

OPPQROSPT	N
OPT 𝑖, 𝑡 − 1 + OPT 𝑡 + 1, 𝑗 − 1

6 7 8 j	=	9

4 0 0 0

3 0 0

2 0

i	=	1

Sequence:	𝐴𝐶𝐶𝐺𝐺𝑈𝐴𝐺𝑈



RNA	Folding	Summary

• Compute	the	optimal	RNA	folding in	time	𝑂 𝑛V
and	space	𝑂 𝑛W

• Dynamic	Programming:
• Decide	on	an	optimal	pair	𝑏N − 𝑏@
• Remaining	RNA	is	two	non-overlapping	pieces
• Adding	variables: one	subproblem	for	each	interval

• Non-crossing is	critical
• Think	about	how	the	dynamic	programming	algorithm	
changes	if	we	remove	each	of	the	conditions



Dynamic	Programming	Practice



Midterm	I	Review



Midterm	I	Topics

• Fundamentals:
• Induction
• Asymptotics
• Recurrences

• Stable	Matching
• Divide	and	Conquer
• Dynamic	Programming



Topics:	Induction

• Proof	by	Induction:
• Mathematical	formulas,	e.g.	∑ 𝑖@

5Y> = @ @Z>
W

• Spot	the	bug
• Solutions	to	recurrences
• Correctness	of	divide-and-conquer	algorithms

• Good	way	to	study:
• Lehman-Leighton-Meyer,	Mathematics	for	CS
• Review	divide-and-conquer	in	Kleinberg-Tardos



Practice	Question:	Induction

• Suppose	you	have	an	unlimited	supply	of	3	and	7	cent	coins,	
prove	by	induction	that	you	can	make	any	amount	𝑛 ≥ 12.



Topics:	Asymptotics

• Asymptotic	Notation
• 𝑜, 𝑂, 𝜔, Ω, Θ
• Relationships	between	common	function	types

• Good	way	to	study:
• Kleinberg-Tardos Chapter	2



Notation …	means	… Think… E.g.

f(n)=O(n) ∃𝑐 > 0, 𝑛c > 0, ∀𝑛 ≥ 𝑛c:
0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔(𝑛)

At	most	
“≤”

100n2 =	O(n3)

f(n)=W(g(n)) ∃𝑐 > 0, 𝑛c > 0, ∀𝑛 ≥ 𝑛c:
0 ≤ 𝑐𝑔 𝑛 ≤ 𝑓(𝑛)

At	least	
“≥”

2n =	W(n100)

f(n)=Q(g(n)) 𝑓 𝑛 = 𝑂 𝑔 𝑛 	and	
𝑓 𝑛 = 𝛺(𝑔 𝑛 )

Equals
“=”

log(n!)	=	Q(n	log	n)

f(n)=o(g(n)) ∀𝑐 > 0, ∃𝑛c > 0, ∀𝑛 ≥ 𝑛c:
0 ≤ 𝑓 𝑛 < 𝑐𝑔(𝑛)

Less	than
“<”

n2 =	o(2n)

f(n)=w(g(n)) ∀𝑐 > 0, ∃𝑛c > 0, ∀𝑛 ≥ 𝑛c:
0 ≤ 𝑐𝑔 𝑛 < 𝑓(𝑛)

Greater	than
“>”

n2 =	w(log	n)

Topics:	Asymptotics



• Constant	factors	can	be	ignored
• ∀𝐶 > 0				𝐶𝑛 = 𝑂 𝑛

• Smaller	exponents	are	Big-Oh	of	larger	exponents
• ∀𝑎 > 𝑏				𝑛l = 𝑂 𝑛m

• Any	logarithm	is	Big-Oh	of	any	polynomial	
• ∀𝑎, 𝜀 > 0			 logWm 	𝑛 = 𝑂 𝑛r

• Any	polynomial	is	Big-Oh	of	any	exponential
• ∀	𝑎 > 0, 𝑏 > 1			𝑛m = 𝑂 𝑏@

• Lower	order	terms	can	be	dropped
• 𝑛W + 𝑛V/W + 𝑛 = 𝑂 𝑛W

Topics:	Asymptotics



Practice	Question:	Asymptotics

• Put	these	functions	in	order	so	that	𝑓5 = 𝑂 𝑓5Z>
• 𝑛PQtu v

• 8PQtu @

• 2V PQtu PQtu @

• 2 PQtu @ u

• ∑ 𝑖@
5Y>

• 𝑛W logW 𝑛



Practice	Question:	Asymptotics

• Suppose	𝑓> = 𝑂 𝑔 and	𝑓W = 𝑂 𝑔 .																																								
Prove	that	𝑓> + 𝑓W = 𝑂 𝑔 .



Topics:	Recurrences

• Recurrences
• Representing	running	time	by	a	recurrence
• Solving	common	recurrences
• Master	Theorem

• Good	way	to	study:
• Erickson	book
• Kleinberg-Tardos divide-and-conquer	chapter	



Practice	Question:	Recurrences

• Write	a	recurrence	for	the	running	time	of	this	algorithm.		
Write	the	asymptotic	running	time	given	by	the	recurrence.

F(n):
For i = 1,…,n2: Print “Hi”
For i = 1,…,3: F(n/3)



Topics:	Recurrences

• Consder	the	recurrence	𝑇 𝑛 = 𝑛� ⋅ 𝑇 𝑛� + 𝑛
with	𝑇 1 = 1.		Solve	using	a	recursion	tree.



Topics:	Divide-and-Conquer

• Divide-and-Conquer
• Writing	pseudocode
• Proving	correctness	by	induction
• Analyzing	running	time	via	recurrences

• Examples	we’ve	studied:	
• Mergesort,	Binary	Search,	Karatsuba’s,	Selection

• Good	way	to	study:
• Example	problems	from	Kleinberg-Tardos or	Erickson
• Practice,	practice,	practice!



Topics:	Dynamic	Programming

• Dynamic	Programming
• Identify	sub-problems
• Write	a	recurrence,	𝑂𝑃𝑇 𝑛 = max 𝑣@ + 𝑂𝑃𝑇 𝑛 − 6 , 𝑂𝑃𝑇(𝑛 − 1)
• Fill	the	dynamic	programming	table
• Find	the	optimal	solution
• Analyze	running	time

• Good	way	to	study:
• Example	problems	from	Kleinberg-Tardos or	Erickson
• Practice,	practice,	practice!



Practice	Question

• Design	an	𝑂(𝑛)-time	algorithm	that	takes	an	array	
𝐴[1: 𝑛] and	returns	a	sorted	array	containing	the	
smallest	 𝑛� elements	of	𝐴



Practice	Question

• Consider	the	following	sorting	algorithm

• Prove	that	it	is	correct
• Analyze	its	running	time

A[1:n] is a global array
SillySort(1,n):
if (n <= 2): put A in order
else:
SillySort(1,2n/3)
SillySort(n/3,n)
SillySort(1,2n/3)



Dynamic	Programming	Practice



Chocolate	Bar	Splitting

• Input:	A	chocolate	bar	with	𝑛	×	𝑚 pieces
• Output:	The	minimum	number	of	cuts	needed	to	
divide	the	block	into	perfect	squares



Chocolate	Bar	Splitting



Vankin’s	Mile

• Input:	An	𝑛	×	𝑛 board	of	numbers

• Rules:
• Place	a	chip	on	the	board
• Keep	moving	the	tile	down or	right until	you	fall	off
• Score	=	sum	of	the	numbers	your	chip	visited

• Output:	The	best	possible	strategy


