CS3000: Algorithms & Data
Jonathan Ullman

Lecture 8:
 Dynamic Programming: RNA Folding, Practice

Feb 3, 2020

RNA Folding

DNA

* DNA is a string of four bases {A,C,G,T}

 Two complementary strands of DNA stick together
and form a double helix

e A—T and C—G are complementary pairs

I

RNA Folding

* RNA is a string of four bases {A,C,G,U}

* A single RNA strand sticks to itself and folds into
complex structures

e A—U and C—G are complementary pairs

RNA Folding

* RNA strand will try to minimize energy (form the
most bonds) subject to constraints

A CAUGAUGSGTCTCAUGU

RNA Folding

* RNA is a string of bases by, ..., b,, € {A,C,G, U}

* The structure is given by a set of bonds S consisting
of pairs (i,j) withi < j

* (Complements) Only A — U or C — G can be paired
* (Matching) No base b; is in two pairsin S
* (No Sharp Turns) If (i,j) € S,theni <j—4

* (Non-Crossing) If (i,j), (k,£) € S then it cannot be the
casethati <k <j<?

RNA Folding

* Input: RNA sequence by, ..., b,, € {A,C,G,U}
* Output: A set of pairs S € {1, ..., n}x{1, ..., n}

* Goal: maximize the size of §

* (Complements) Only A — U or C — G can be paired
* (Matching) No base b; is in two pairsin S

* (No Sharp Turns) If (i,j) € S,theni <j—4

* (Non-Crossing) If (i,j), (k,£) € S then it cannot be the
casethati <k <j<?

Dynamic Programming

* Let O be the optimal set of pairs for by -+ b,
* Case 1: O does not include any pair involving n

e Case 2: O has n pairwithsomet <n—4in0

1 2 t-1 t t+1 i-1

Dynamic Programming

* Let O; ; be the optimal set of pairs for b; - b;

* Case 1: 0; j does not include any pair involving j

* Case 2: 0; j has j pair withsomet < j —4in 0

1 2 t-1 t t+1 i-1

Dynamic Programming

* Let OPT(i, j) be the opt. number of pairs for b; --- b;
* Case 1:j pairs with nothing

* Case 2: j pairswitht <j —4

Dynamic Programming

* Let OPT(i, j) be the opt. number of pairs for b; --- b;
* Case 1:j pairs with nothing
* Case 2:j pairswitht <j — 4

Recurrence:
OPT(i,)
= max{OPT(i,j — 1), max{OPT(i,t — 1) + OPT(t + 1,j — 1)}}

Maximum over all t such that
i<t<j—4
Base Cases: * by, bj are compatible bases

OPT(i,j) = 0ifi > — 4

J

Filling the Table
Sequence: ACCGGUAGU

Recurrence:
OPT(i,j) = max {OPT(i, j—1), max {OPT(i,t—1)+OPT(t+1,j— 1)}}

allowable t

67 8 =3
0 0

0

RNA Folding Summary

« Compute the optimal RNA folding in time 0(n?)
and space 0(n?)

* Dynamic Programming:
* Decide on an optimal pair by — b,
 Remaining RNA is two non-overlapping pieces
* Adding variables: one subproblem for each interval

* Non-crossing is critical

* Think about how the dynamic programming algorithm
changes if we remove each of the conditions

Dynamic Programming Practice

Midterm | Review

Midterm | Topics

* Fundamentals:
* Induction
* Asymptotics
* Recurrences

 Stable Matching
* Divide and Conquer
* Dynamic Programming

Topics: Induction

* Proof by Induction:
n(n+1)
2

« Mathematical formulas, e.g. Y\1* 1 i =

e Spot the bug
 Solutions to recurrences
e Correctness of divide-and-conquer algorithms

* Good way to study:
* Lehman-Leighton-Meyer, Mathematics for CS
* Review divide-and-conquer in Kleinberg-Tardos

Practice Question: Induction

» Suppose you have an unlimited supply of 3 and 7 cent coins,
prove by induction that you can make any amountn = 12.

Topics: Asymptotics

* Asymptotic Notation
c0,0,w, (0
e Relationships between common function types

* Good way to study:
e Kleinberg-Tardos Chapter 2

Topics: Asymptotics

Notation

Topics: Asymptotics

* Constant factors can be ignored
*VC >0 Cn=0(n)

* Smaller exponents are Big-Oh of larger exponents
Va>b n?=0mn%

* Any logarithm is Big-Oh of any polynomial
* Va,e >0 logi n=0(n%)

* Any polynomial is Big-Oh of any exponential
Va>0,b>1 n%*=0(b")

* Lower order terms can be dropped
*n?2+n32 +n=0n?

Practice Question: Asymptotics

* Put these functions in order so that f; = O(f;+1)
° nlogz 7

o 810g2 n

23 log, log, n

2(1082 n)?

n "
i=11

n®log, n

Practice Question: Asymptotics

* Suppose f; = 0(g) and f, = 0(g).
Provethat f; + f, = 0(g).

Topics: Recurrences

* Recurrences
* Representing running time by a recurrence
* Solving common recurrences
* Master Theorem

* Good way to study:
* Erickson book
» Kleinberg-Tardos divide-and-conquer chapter

Practice Question: Recurrences

F(n):
For i = 1,..,n%: Print “Hi”
For i =1,..,3: F(n/3)

* Write a recurrence for the running time of this algorithm.
Write the asymptotic running time given by the recurrence.

Topics: Recurrences

 Consder the recurrence T(n) =+n-T(W/n) + n
with T(1) = 1. Solve using a recursion tree.

Topics: Divide-and-Conquer

* Divide-and-Conquer
* Writing pseudocode
* Proving correctness by induction
* Analyzing running time via recurrences

 Examples we've studied:
* Mergesort, Binary Search, Karatsuba’s, Selection

* Good way to study:
* Example problems from Kleinberg-Tardos or Erickson
* Practice, practice, practice!

Topics: Dynamic Programming

* Dynamic Programming
* |dentify sub-problems
* Write a recurrence, OPT(n) = max{v,, + OPT(n — 6),0PT(n — 1)}
Fill the dynamic programming table
Find the optimal solution
Analyze running time

* Good way to study:
* Example problems from Kleinberg-Tardos or Erickson
* Practice, practice, practice!

Practice Question

* Design an O(n)-time algorithm that takes an array
A|1:n] and returns a sorted array containing the
smallest /n elements of 4

Practice Question

* Consider the following sorting algorithm

A[l:n] is a global array
SillySort(1l,n):
if (n <= 2): put A in order
else:
SillySort(1l,2n/3)
SillySort(n/3,n)
SillySort(1l,2n/3)

* Prove that it is correct
* Analyze its running time

Dynamic Programming Practice

Chocolate Bar Splitting

* Input: A chocolate bar with n X m pieces

* Output: The minimum number of cuts needed to
divide the block into perfect squares

Chocolate Bar Splitting

. . —-1| 7(-8|10|-=5
Vankin’s Mile

—4|-9| 86| 0

s|2[—6|-6| 7

* Input: An n X n board of numbers S e e

71 1|—6| 4|9

* Rules:
* Place a chip on the board
* Keep moving the tile down or right until you fall off
e Score = sum of the numbers your chip visited

* Output: The best possible strategy

