CS3000: Algorithms & Data
Jonathan Ullman

M e o

Lecture 8: A
 Dynamic Programming: RNA Folding, Practice

Feb 3, 2020

wﬂamic /\ijramm.\ns g_XamP\eS

Choote a suloset
]n4QNG"l &\"QJUI'V\B One va~abe recosrente

PactAon ‘H\L lu\l\e M4o M—(wvm\)

)

g@f}\r\u\’('e('x L(’_OLH' SG»IUM\U‘

Choote a sooset
\L’\&pSﬂlt\ﬁ- T\AO \/ww\o\e relufrence

C\\oow H/{]c«H prece op
Colit Pstance /A’liénmul%s ﬂealramm-{—

' Cor\cu-’(Sechedolm Choose o sosek
3 O(\Q th‘&\?LQ MU e

’ TZNQX FO\A.W?S Vv up Tems

T\\IO \mrra\Ae (e N\

RNA Folding

DNA

* DNA is a string of four bases {A,C,G,T}

* Two complementary strands of DNA stick together
and form a double helix

* A—T and C—G are complementary pairs

I

RNA Folding

* RNA is a string of four bases {A,C,G,U}

* A single RNA strand sticks to itself and folds into
complex structures

e A—U and C—G are complementary pairs

0700\
a1 o~
no Cmss“‘\‘a/

(&) o
5 6

RNA Folding

* RNA strand will try to minimize energy (form the

UOb—OA no ?OW'S -('OO Clom _{,0%9‘“\‘/

RNA Folding

* RNA is a string of bases by, ..., b,, € {4,C, G, U}

* The structure is given by a set of bonds S consisting
of pairs (i,j) withi < j

* (Complements) Only A — U or C — (G can be paired
* (Matching) No base b; is in two pairs in §
* (No Sharp Turns) If (i,j) € S,theni <j — 4

* (Non-Crossing) If (i,j), (k,£) € S then it cannot be the

case that i <j<{ N RN
o)/ 0 9 ?) e £
L) g J

”~

RNA Folding

* Input: RNA sequence b4, ..., b,, € {A,C,G,U}
* Output: A set of pairs S € {1, ..., n}x{1,...,n}

* Goal: maximize the size of §

e (Complements) Only A — U or C — (G can be paired
* (Matching) No base b; is in two pairsin S

* (No Sharp Turns) If (i,j) € S,theni <j — 4

* (Non-Crossing) If (i,j), (k,£) € S then it cannot be the
casethati <k <j<?

Dynamic Programming

* Let O be the optimal set of pairs for b -+ b,
* Case 1: O does not include any pair involving n

* Case 2: 0 has n pair withsomet <n—4in0
O AN ({)v\—) —+ —\'LQ_ or*(’:r"\&.] SVLJ"'[T'IO/\ u)-'v\oa b‘)"'.)\o{“]

+ -H\Q. O?‘bno»l So\J“‘rOn LAN\-g]O-L-HJ.--> \3,,_[

g ot\\r\v./* %
. OVJ(M € : / ~ \O
1 2 t-1 t t+1

Dynamic Programming

* Let 0; ; be the optimal set of pairs for b; - b;

e Case 1: Ol-,j does not include any pair involving j

* Case 2: 0; has j pair withsomet <j —4in0

Dynamic Programming
lzeien Y SN
(D sMogrdolers bond.s
* Let OPT(i, j) be the opt. number of gairs for b; -+ b;

* Case 1: j pairs with nothing

* Case 2: j pairswitht < j —4
orT(i,) = L+ orT(i, -0+ oPT (41,)=

_ _ max TA,B8%
Dynamic Programming _ _ <pu3

_t

* Let OPT(i, j) be the opt. number of pairs for b; --- b;
* Case 1: j pairs with nothing
* Case 2: j pairswitht <j —4

Recurrence:
OPT(i,) L
= max{OPT(i,j — 1), max{OPT(i,t — 1) + OPT(t + 1,j — 1)}}

Maximum over all t such that
ISt<j—4
Base Cases: * b, bj are compatible bases

OPT(i,j) = 0ifi > j — 4

AcCC GGW ACCGG-UA 1FF

(U
Fllllng the//-[aj_\-b—le\ CCG—G—U_A CCC)-C"(A'I\C/‘ 2-%

Sequence: ACCGGUAGU C GGUA (- Coe UG UC >

2-9 ‘
GUA GU 1=
Recurrence: ACC,CJ—G—MG«
57 CF
OPT(i,j) = max{OPT(i,j — 1), max (OPT(i,t — 1)+ OPT(t +1,j — 1)}

EN o
n0~1— L

A

1
. GO

RNA Folding Summary

« Compute the optimal RNA folding in time 0 (n°)
and space 0(n?)

* Dynamic Programming:
* Decide on an optimal pair b; — b,
* Remaining RNA is two non-overlapping pieces
* Adding variables: one subproblem for each interval

* Non-crossing is critical

* Think about how the dynamic programming algorithm
changes if we remove each of the conditions

Midterm | Review

. . La3+ s prdterm Al e Onlﬂ\e,
Midterm | Topics F o

C\/\ga{' S\r\ee%S;
(9/\4_ gxll VA%Z
* Fundamentals: Doy o dedl
* Induction
* Asymptotics TSPM o handuortien

* Recurrences

l

» Divide and Conquer Ut e HU Lempete
* Dynamic Programming % \\r* fork

Topics: Induction

* Proof by Induction:

.] 1
* Mathematical formulas, e.g. Y)i- i = n(n;)

* Spot the bug
 Solutions to recurrences
e Correctness of divide-and-conquer algorithms

Ll £o W

* Good way to study: Ao ks

* Lehman-Leighton-Meyer, Mathematics for CS
* Review divide-and-conquer in Kleinberg-Tardos

~a_

Practice Question: Induction

e Suppose you have an unlimited supply of 3 and 7 cent coins,
prove by induction that you can make any amountn = 12.

Topics: Asymptotics

* Asymptotic Notation
°0,0,w,,0
 Relationships between common function types

* Good way to study:
* Kleinberg-Tardos Chapter 2

AQ.Q %r\"c\c son BOO\& (A\Bo \.n\:zax Oﬂ\N\

Topics: Asymptotics

Notation

Topics: Asymptotics

* Constant factors can be ignored
e VC>0 Cn=0(mn)

* Smaller exponents are Big-Oh of larger exponents
eVa>b nP=0n%

* Any logarithm is Big-Oh of any polynomial
Va,e >0 logy n=0(Mn)

* Any polynomial is Big-Oh of any exponential
Va>0b>1 n?=0(b")

* Lower order terms can be dropped
e n? 4+ 132 + n=0(0n?

Practice Question: Asymptotics

* Put these functions in order so that f; = O(f;+1)

° nlng 7 VLZ'%L }/\:Zv{ oK
. glogzn

2 >
o 73logzlog; n YL Al

° 2(10g2 n)Z
n »
i=11

* n?log, n

Practice Question: Asymptotics

* Suppose f; = 0(g) and f, = 0(g).
Prove that f; + f, = 0(g).

Topics: Recurrences
T T8+ T(3)

* Recurrences
* Representing running time by a recurrence
* Solving common recurrences \
* Master Theorem Dmuw\s He recuniontree

* Good way to study:
* Erickson book
» Kleinberg-Tardos divide-and-conquer chapter

Practice Question: Recurrences

g F(n) :
Tl w* + 3T(%) For i = 1,..,n%: Print “Hi”
For i =1,.,3: F(n/3)

* Write a recurrence for the running time of this algorithm.
Write the asymptotic running time given by the recurrence.

Topics: Recurrences
T = (a loakog“s

 Consder the recurrence T(n) =+n-T(Wn) +n
with T(1) = 1. Solve using a recursion tree.

TlaN= 2" 1™ 4 oa(27)

Topics: Divide-and-Conquer

* Divide-and-Conquer
* Writing pseudocode
* Proving correctness by induction
* Analyzing running time via recurrences

* Examples we’ve studied:
* Mergesort, Binary Search, Karatsuba’s, Selection

Good dutcvss™” x

* Good way to study: prevdocede

e Example problems from Kleinberg-Tardos or

* Practice, practice, practice!

Topics: Dynamic Programming

* Dynamic Programming
* ldentify sub-problems
* Write a recurrence, OPT(n) = max{v, + OPT(n — 6),0PT(n — 1)}
* Fill the dynamic programming table
* Find the optimal solution
* Analyze running time

* Good way to study:
* Example problems from Kleinberg-Tardos or Erickson
* Practice, practice, practice!

Practice Question

* Design an O (n)-time algorithm that takes an array
A|1:n] and returns a sorted array containing the
smallest v/n elements of 4

Practice Question

* Consider the following sorting algorithm

A[l:n] is a global array
SillySort(1l,n):
if (n <= 2): put A in order
else:
SillySort(1l,2n/3)
SillySort(n/3,n)
SillySort(1l,2n/3)

* Prove that it is correct
* Analyze its running time

Dynamic Programming Practice

Chocolate Bar Splitting

* Input: A chocolate bar with n X m pieces

* Output: The minimum number of cuts needed to
divide the block into perfect squares

Chocolate Bar Splitting

Vankin’s Mile

* Input: An n X n board of numbers

* Rules: score =10
* Place a chip on the board
* Keep moving the tile down or right until you fall off
* Score = sum of the numbers your chip visited

* Output: The best possible strategy

