
CS3000:	Algorithms	&	Data
Jonathan	Ullman

Lecture	8:	
• Dynamic	Programming:	RNA	Folding,	Practice

Feb	3,	2020












































































Midterm
Info






































































































































Dynamic Programming Examples

Choose a subset
Interval Scheduling One variable recurrence

Partition the line into intervals

Segmented Least Squares

Choose a subset
Knapsack Two arable recurrence

Choose the last piece of
Edit Distance Alignments theatrgnnert

Choose a subset
Concert Scheduling one variable recurrence

RNA Folding
Parr up items
Two variable recurrence



RNA	Folding














































































DNA

• DNA	is	a	string	of	four	bases	{A,C,G,T}
• Two	complementary	strands	of	DNA	stick	together	
and	form	a	double	helix
• A—T and	C—G are	complementary	pairs














































































RNA	Folding

• RNA	is	a	string	of	four	bases	{A,C,G,U}
• A	single	RNA	strand	sticks	to	itself	and	folds	into	
complex	structures
• A—U and	C—G are	complementary	pairs














































































RNA	Folding

• RNA	strand	will	try	to	minimize	energy (form	the	
most	bonds)	subject	to	constraints












































































O 0 O O O O
I 2 5 6

no crossing

o o 0 00 O

he pours too close together



RNA	Folding

• RNA	is	a	string	of	bases	!",… , !% ∈ ', (, ), *
• The	structure	is	given	by	a	set	of	bonds	+ consisting	
of	pairs	 ,, - with	, < -

• (Complements)	Only	/ − 1 or	2 − 3 can	be	paired

• (Matching)	No	base	45 is	in	two	pairs	in	+

• (No	Sharp	Turns)	If	 ,, - ∈ +,	then	, < - − 4

• (Non-Crossing)	If	 ,, - , 7, ℓ ∈ + then	it	cannot	be	the	
case	that	, < 7 < - < ℓ










































































 of in



RNA	Folding

• Input:	RNA	sequence	!",… , !% ∈ /, 2, 3, 1
• Output:	A	set	of	pairs	+ ⊆ 1,… , ; × 1,… , ;
• Goal:	maximize	the	size	of	+

• (Complements)	Only	/ − 1 or	2 − 3 can	be	paired

• (Matching)	No	base	45 is	in	two	pairs	in	+

• (No	Sharp	Turns)	If	 ,, - ∈ +,	then	, < - − 4

• (Non-Crossing)	If	 ,, - , 7, ℓ ∈ + then	it	cannot	be	the	
case	that	, < 7 < - < ℓ














































































Dynamic	Programming

• Let	= be	the	optimal	set	of	pairs	for	4> ⋯4@
• Case	1: = does	not	include	any	pair	involving	;

• Case	2:	= has	; pair	with	some	A < ; − 4 in	=












































































O is the optimal solutionusing by ibn i

0 is It n t the optimal soliton using bi be
t the optimal solution using beet bn I

optimal here 3
AM A

optimal
n

f
n

here



Dynamic	Programming

• Let	=5,B be	the	optimal	set	of	pairs	for	45 ⋯4B
• Case	1: =5,B does	not	include	any	pair	involving	-

• Case	2:	=5,B has	- pair	with	some	A < - − 4 in	=














































































Dynamic	Programming

• Let	OPT ,, - be	the	opt.	number of	pairs	for	45 ⋯4B
• Case	1: - pairs	with	nothing

• Case	2:	- pairs	with	A < - − 4












































































Kien itycj.cnL subproblem bonds
mom

OPT i j OPT i j 1

OPT i j It 0PT i t 1 OPT t 11 j l



Dynamic	Programming

• Let	OPT ,, - be	the	opt.	number of	pairs	for	45 ⋯4B
• Case	1: - pairs	with	nothing
• Case	2:	- pairs	with	A < - − 4

Recurrence:
OPT ,, -
= max OPT ,, - − 1 ,max OPT ,, A − 1 + OPT A + 1, - − 1

Base	Cases:
OPT ,, - = 0 if	, ≥ - − 4

Maximum	over	all	A such	that
• , ≤ A < - − 4
• 4N, 4B are	compatible	bases












































































Max EA B

hyrax
At

felt



Filling	the	Table

Recurrence:
OPT ,, - = max OPT ,, - − 1 , maxOPPQROSPT	N OPT ,, A − 1 + OPT A + 1, - − 1

6 7 8 j	=	9

4 0 0 0

3 0 0

2 0

i	=	1

Sequence:	/22331/31












































































9 ACCGGU ACCGGUA it

2 CCGGUA CCGGUAG 2 8

CGGUAG CGGUAGU 3 9

2 8 GGUAGU ACCGGUAG 8

3 7 4 7

CCGGUAGU
2 9

O

L L

I I

1 I 2



RNA	Folding	Summary

• Compute	the	optimal	RNA	folding in	time	= ;V
and	space	= ;W

• Dynamic	Programming:
• Decide	on	an	optimal	pair	4N − 4@
• Remaining	RNA	is	two	non-overlapping	pieces
• Adding	variables: one	subproblem	for	each	interval

• Non-crossing is	critical
• Think	about	how	the	dynamic	programming	algorithm	
changes	if	we	remove	each	of	the	conditions














































































Midterm	I	Review














































































Midterm	I	Topics

• Fundamentals:
• Induction
• Asymptotics
• Recurrences

• Stable	Matching
• Divide	and	Conquer
• Dynamic	Programming












































































Last year's midterm will be online

Cheatheets
One 8 11 page
Double sided

Typed or handunteer

mammoths
use
the

Hu tempore
or Hpt fort



Topics:	Induction

• Proof	by	Induction:
• Mathematical	formulas,	e.g.	∑ ,@

5Y> = @ @Z>
W

• Spot	the	bug
• Solutions	to	recurrences
• Correctness	of	divide-and-conquer	algorithms

• Good	way	to	study:
• Lehman-Leighton-Meyer,	Mathematics	for	CS
• Review	divide-and-conquer	in	Kleinberg-Tardos












































































Link to the
on the website



Practice	Question:	Induction

• Suppose	you	have	an	unlimited	supply	of	3	and	7	cent	coins,	
prove	by	induction	that	you	can	make	any	amount	; ≥ 12.














































































Topics:	Asymptotics

• Asymptotic	Notation
• \, =, ], Ω, Θ
• Relationships	between	common	function	types

• Good	way	to	study:
• Kleinberg-Tardos Chapter	2












































































Jeff Erickson Book Also linked online



Notation …	means	… Think… E.g.

f(n)=O(n) ∃a > 0, ;c > 0, ∀; ≥ ;c:
0 ≤ f ; ≤ ag(;)

At	most	
“≤”

100n2 =	O(n3)

f(n)=W(g(n)) ∃a > 0, ;c > 0, ∀; ≥ ;c:
0 ≤ ag ; ≤ f(;)

At	least	
“≥”

2n =	W(n100)

f(n)=Q(g(n)) f ; = = g ; 	and	
f ; = j(g ; )

Equals
“=”

log(n!)	=	Q(n	log	n)

f(n)=o(g(n)) ∀a > 0, ∃;c > 0, ∀; ≥ ;c:
0 ≤ f ; < ag(;)

Less	than
“<”

n2 =	o(2n)

f(n)=w(g(n)) ∀a > 0, ∃;c > 0, ∀; ≥ ;c:
0 ≤ ag ; < f(;)

Greater	than
“>”

n2 =	w(log	n)

Topics:	Asymptotics













































































• Constant	factors	can	be	ignored
• ∀2 > 0				2; = = ;

• Smaller	exponents	are	Big-Oh	of	larger	exponents
• ∀k > 4				;l = = ;m

• Any	logarithm	is	Big-Oh	of	any	polynomial	
• ∀k, n > 0			 logWm 	; = = ;r

• Any	polynomial	is	Big-Oh	of	any	exponential
• ∀	k > 0, 4 > 1			;m = = 4@

• Lower	order	terms	can	be	dropped
• ;W + ;V/W + ; = = ;W

Topics:	Asymptotics













































































Practice	Question:	Asymptotics

• Put	these	functions	in	order	so	that	f5 = = f5Z>
• ;PQtu v
• 8PQtu @
• 2V PQtu PQtu @
• 2 PQtu @ u

• ∑ ,@
5Y>

• ;W logW ;












































































2.882 2.804
n n

Z 3
n n



Practice	Question:	Asymptotics

• Suppose	f> = = g and	fW = = g .																																								
Prove	that	f> + fW = = g .














































































Topics:	Recurrences

• Recurrences
• Representing	running	time	by	a	recurrence
• Solving	common	recurrences
• Master	Theorem

• Good	way	to	study:
• Erickson	book
• Kleinberg-Tardos divide-and-conquer	chapter	












































































1 n 1 Fo t TLE in

Drawing the recursion tree

1 n TIE T E in

g TIE tn



Practice	Question:	Recurrences

• Write	a	recurrence	for	the	running	time	of	this	algorithm.		
Write	the	asymptotic	running	time	given	by	the	recurrence.

F(n):
For i = 1,…,n2: Print “Hi”
For i = 1,…,3: F(n/3)












































































1In n2t3T



Topics:	Recurrences

• Consder	the	recurrence	x ; = ;� ⋅ x ;� + ;
with	x 1 = 1.		Solve	using	a	recursion	tree.












































































TIM 0 n loglogn

T 27 2 T 2 log127



Topics:	Divide-and-Conquer

• Divide-and-Conquer
• Writing	pseudocode
• Proving	correctness	by	induction
• Analyzing	running	time	via	recurrences

• Examples	we’ve	studied:	
• Mergesort,	Binary	Search,	Karatsuba’s,	Selection

• Good	way	to	study:
• Example	problems	from	Kleinberg-Tardos or	Erickson
• Practice,	practice,	practice!












































































Good discussion
of

pseudocode

0



Topics:	Dynamic	Programming

• Dynamic	Programming
• Identify	sub-problems
• Write	a	recurrence,	={x ; = max |@ + ={x ; − 6 , ={x(; − 1)
• Fill	the	dynamic	programming	table
• Find	the	optimal	solution
• Analyze	running	time

• Good	way	to	study:
• Example	problems	from	Kleinberg-Tardos or	Erickson
• Practice,	practice,	practice!














































































Practice	Question

• Design	an	=(;)-time	algorithm	that	takes	an	array	
/[1: ;] and	returns	a	sorted	array	containing	the	
smallest	 ;� elements	of	/














































































Practice	Question

• Consider	the	following	sorting	algorithm

• Prove	that	it	is	correct
• Analyze	its	running	time

A[1:n] is a global array
SillySort(1,n):
if (n <= 2): put A in order
else:
SillySort(1,2n/3)
SillySort(n/3,n)
SillySort(1,2n/3)














































































Dynamic	Programming	Practice














































































Chocolate	Bar	Splitting

• Input:	A	chocolate	bar	with	;	×	� pieces
• Output:	The	minimum	number	of	cuts	needed	to	
divide	the	block	into	perfect	squares












ki



Chocolate	Bar	Splitting



Vankin’s	Mile

• Input:	An	;	×	; board	of	numbers

• Rules:
• Place	a	chip	on	the	board
• Keep	moving	the	tile	down or	right until	you	fall	off
• Score	=	sum	of	the	numbers	your	chip	visited

• Output:	The	best	possible	strategy

O
O
OO
O
6

score 10


