CS3000: Algorithms & Data Jonathan Ullman

Midtern Info

Lecture 8:

• Dynamic Programming: RNA Folding, Practice

Feb 3, 2020

Dynamic Programming Examples Dynamic Programming Examples Choose a subset Interval Scheduling One variable reconnece Partition the line into intervals Segnented Least Squares Choose a subset Choose a subset Choose the bit prece of Edit Distance / Alignments the alignment Choose a subset Choose the bit prece of Choose the bit prece of Choose a subset Choose a subset Choose a subset Choose the bit prece of RNA Folding Parr up items Two variable recurrence

DNA

- DNA is a string of four bases **{A,C,G,T}**
- Two complementary strands of DNA stick together and form a **double helix**
 - A—T and C—G are complementary pairs

- RNA is a string of four bases {A,C,G,U}
- A single RNA strand sticks to itself and folds into complex structures
 - A-U and C-G are complementary pairs

• RNA strand will try to **minimize energy** (form the most bonds) subject to **constraints**

- RNA is a string of bases $b_1, \dots, b_n \in \{A, C, G, U\}$
- The structure is given by a set of **bonds** S consisting of pairs (i, j) with i < j
 - (Complements) Only A U or C G can be paired
 - (Matching) No base b_i is in two pairs in S
 - (No Sharp Turns) If $(i, j) \in S$, then i < j 4
 - (Non-Crossing) If $(i, j), (k, \ell) \in S$ then it cannot be the case that $i < k < j < \ell$

- Input: RNA sequence $b_1, ..., b_n \in \{A, C, G, U\}$
- **Output:** A set of pairs $S \subseteq \{1, ..., n\} \times \{1, ..., n\}$
 - Goal: maximize the size of S
 - (Complements) Only A U or C G can be paired
 - (Matching) No base b_i is in two pairs in S
 - (No Sharp Turns) If $(i, j) \in S$, then i < j 4
 - (Non-Crossing) If $(i, j), (k, \ell) \in S$ then it cannot be the case that $i < k < j < \ell$

Dynamic Programming

- Let O be the optimal set of pairs for $b_1 \cdots b_n$
- Case 1: O does not include any pair involving n O is the optimal solution using by --, by-i
- Case 2: 0 has n pair with some t < n 4 in 0 0 is $(t,n) + the optimal solution using <math>b_{1,2--,3}b_{t-1}$ t the optimal solution using $b_{t+1,3--,3}b_{n-1}$

Dynamic Programming

- Let $O_{i,j}$ be the optimal set of pairs for $b_i \cdots b_j$
- Case 1: $O_{i,j}$ does not include any pair involving j

• Case 2: $O_{i,j}$ has j pair with some t < j - 4 in O

Dynamic Programming $1 \le i \le n$ $i \le 1 \le n$

(2) subproblems

bonds

- Let OPT(i, j) be the opt. **number** of primes for $b_i \cdots b_j$
- Case 1: j pairs with nothing OPT(i,j) = OPT(i,j-i)
- Case 2: j pairs with t < j 4OPT(i,j) = 1 + OPT(i, t-i) + OPT(t+1, j-1)

Dynamic Programming max {A,B} t

- Let OPT(i, j) be the opt. **number** of pairs for $b_i \cdots b_j$
- Case 1: j pairs with nothing
- Case 2: j pairs with t < j 4

1:9	ACCGGU	ACCGG-UA 1:7	
Filling the Table	CCGGUA	CCGGUAG ²⁻⁸	
Sequence: <u>ACCGGUAGU</u>	CGGUA G	CGOUAGU 3:9	
Recurrence:	GGUAGU	ACCGGUAG 1:8	
$OPT(i, i) = \max \left\{ OPT(i, i - 1) \right\}$	max $\{OPT(i, t)\}$	5:7 : (i,7) = 0 - 1) + 0PT(t + 1, i - 1)}	

 $OPT(i,j) = \max\left\{OPT(i,j-1), \max_{\text{allowable }t} \{OPT(i,t-1) + OPT(t+1,j-1)\}\right\}$

	6	7	8	j = 9
4	0	0	0	Ø
3	0	0	1	1
2	0	$\left(\begin{array}{c} 0\\ \end{array}\right)$	1	1
i = 1	$\begin{pmatrix} 1 \end{pmatrix}$	1	1	2

CCGGUAGU 2:9

RNA Folding Summary

• Compute the **optimal RNA folding** in time $O(n^3)$ and space $O(n^2)$

• Dynamic Programming:

- Decide on an optimal pair $b_t b_n$
- Remaining RNA is two non-overlapping pieces
- Adding variables: one subproblem for each interval
- Non-crossing is critical
 - Think about how the dynamic programming algorithm changes if we remove each of the conditions

Midterm I Review

Midterm I Topics

- Fundamentals:
 - Induction
 - Asymptotics
 - Recurrences

```
    Divide and Conquer
```

Dynamic Programming

Last years midtern will be online. ('heat Sheets: One 8×11 page Dable sided Typed or handwriten Use the HU templace os Npt fort

Topics: Induction

- Proof by Induction:
 - Mathematical formulas, e.g. $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
 - Spot the bug
 - Solutions to recurrences
 - Correctness of divide-and-conquer algorithms
- Good way to study:
- Lehman-Leighton-Meyer, Mathematics for CS 3 an the website
 Review divide-and-conquertient

Practice Question: Induction

• Suppose you have an unlimited supply of 3 and 7 cent coins, prove by induction that you can make any amount $n \ge 12$.

Topics: Asymptotics

- Asymptotic Notation
 - $o, O, \omega, \Omega, \Theta$
 - Relationships between common function types
- Good way to study:
 - Kleinberg-Tardos Chapter 2

Jeff Erretson Book (Also linked online)

Topics: Asymptotics

Notation	means	Think	E.g.
f(n)=O(n)	$ \begin{aligned} \exists c > 0, n_0 > 0, \forall n \ge n_0: \\ 0 \le f(n) \le cg(n) \end{aligned} $	At most "≤"	100n ² = O(n ³)
f(n)=Ω(g(n))	$ \exists c > 0, n_0 > 0, \forall n \ge n_0: \\ 0 \le cg(n) \le f(n) $	At least "≥"	2 ⁿ = Ω(n ¹⁰⁰)
f(n)=Θ(g(n))	f(n) = O(g(n)) and $f(n) = \Omega(g(n))$	Equals "="	$\log(n!) = \Theta(n \log n)$
f(n)=o(g(n))	$\begin{aligned} \forall c > 0, \exists n_0 > 0, \forall n \ge n_0: \\ 0 \le f(n) < cg(n) \end{aligned}$	Less than "<"	n ² = o(2 ⁿ)
f(n)=@(g(n))	$\begin{aligned} \forall c > 0, \exists n_0 > 0, \forall n \ge n_0: \\ 0 \le cg(n) < f(n) \end{aligned}$	Greater than ">"	n² = ω(log n)

Topics: Asymptotics

- Constant factors can be ignored
 - $\forall C > 0$ Cn = O(n)
- Smaller exponents are Big-Oh of larger exponents
 - $\forall a > b \quad n^b = O(n^a)$
- Any logarithm is Big-Oh of any polynomial
 - $\forall a, \varepsilon > 0 \quad \log_2^a n = O(n^{\varepsilon})$
- Any polynomial is Big-Oh of any exponential
 - $\forall a > 0, b > 1$ $n^a = O(b^n)$
- Lower order terms can be dropped
 - $n^2 + n^{3/2} + n = O(n^2)$

Practice Question: Asymptotics

- Put these functions in order so that $f_i = O(f_{i+1})$
 - $n^{\log_2 7}$ $n^{2.82}$ $n^{2.82}$

 Λ^2

 n^{3}

- 8^{log₂ n}
- $2^{3 \log_2 \log_2 n}$
- $2^{(\log_2 n)^2}$
- $\sum_{i=1}^{n} i$
- $n^2 \log_2 n$

Practice Question: Asymptotics

• Suppose $f_1 = O(g)$ and $f_2 = O(g)$. Prove that $f_1 + f_2 = O(g)$.

Topics: Recurrences $T(n) = T(\frac{2n}{10}) + T(\frac{2n}{10}) + n$

- Recurrences
 - Representing running time by a recurrence

"Drawing the recursion tree

- Solving common recurrences -
- Master Theorem
- Good way to study:
 - Erickson book
 - Kleinberg-Tardos divide-and-conquer chapter

$$T(n) = T(\frac{n}{2}) + T(\frac{n}{2}) + n$$

$$= 2 \cdot T(\frac{n}{2}) + n$$

Practice Question: Recurrences

```
F(n):
T(n) = n^2 + 3T(\frac{n}{3}) For i = 1, ..., n^2: Print "Hi"
                      For i = 1, ..., 3: F(n/3)
```

• Write a recurrence for the running time of this algorithm. Write the asymptotic running time given by the recurrence.

Topics: Recurrences T(n) = (n loglogn)

• Consder the recurrence $T(n) = \sqrt{n} \cdot T(\sqrt{n}) + n$ with T(1) = 1. Solve using a recursion tree.

$$T(2^{n}) = 2^{n/2} T(2^{n/2}) + \log(2^{n})$$

Topics: Divide-and-Conquer

- Divide-and-Conquer
 - Writing pseudocode
 - Proving correctness by induction
 - Analyzing running time via recurrences
- Examples we've studied:
 - Mergesort, Binary Search, Karatsuba's, Selection Good discussion of pseudocode
- Good way to study:
 - Example problems from Kleinberg-Tardos or Erickson
 - Practice, practice, practice!

Topics: Dynamic Programming

- Dynamic Programming
 - Identify sub-problems
 - Write a recurrence, $OPT(n) = \max\{v_n + OPT(n-6), OPT(n-1)\}$
 - Fill the dynamic programming table
 - Find the optimal solution
 - Analyze running time
- Good way to study:
 - Example problems from Kleinberg-Tardos or Erickson
 - Practice, practice, practice!

Practice Question

Design an O(n)-time algorithm that takes an array A[1:n] and returns a sorted array containing the smallest √n elements of A

Practice Question

• Consider the following sorting algorithm

```
A[1:n] is a global array
SillySort(1,n):
    if (n <= 2): put A in order
    else:
       SillySort(1,2n/3)
       SillySort(n/3,n)
       SillySort(1,2n/3)
```

- Prove that it is correct
- Analyze its running time

Dynamic Programming Practice

Chocolate Bar Splitting

- Input: A chocolate bar with $n \times m$ pieces
- Output: The minimum number of cuts needed to divide the block into perfect squares

Chocolate Bar Splitting

Vankin's Mile

• Input: An $n \times n$ board of numbers

• Rules:

- Place a chip on the board
- Keep moving the tile **down** or **right** until you fall off
- Score = sum of the numbers your chip visited
- **Output:** The best possible strategy