
CS3000:	Algorithms	&	Data
Jonathan	Ullman

Lecture	5:	
• Dynamic	Programming:																																						

Fibonacci	Numbers,	Interval	Scheduling

Jan	22,	2020



Dynamic	Programming

• Don’t	think	too	hard	about	the	name
• I	thought	dynamic	programming	was	a	good	name.		It	
was	something	not	even	a	congressman	could	object	to.		
So	I	used	it	as	an	umbrella	for	my	activities. -Bellman

• Dynamic	programming	is	careful	recursion
• Break	the	problem	up	into	small	pieces
• Recursively	solve	the	smaller	pieces
• Key	Challenge:	identifying	the	pieces



Warmup:	Fibonacci	Numbers



Fibonacci	Numbers

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,…
• 𝐹 𝑛 = 𝐹 𝑛 − 1 + 𝐹 𝑛 − 2

• 𝐹 𝑛 → 𝜙1 ≈ 1.621

• 𝜙 = 56 7�

9
is	the	golden	ratio



Fibonacci	Numbers:	Take	I

• How	many	recursive	calls	does	FibI(n)make?

FibI(n):
If (n = 0): return 0
ElseIf (n = 1): return 1
Else: return FibI(n-1) + FibI(n-2)



Fibonacci	Numbers:	Take	II

• How	many	recursive	calls	does	FibII(n)make?

M ← empty array, M[0]	←	0, M[1]	←	1
FibII(n):
If (M[n] is not empty): return M[n]
ElseIf (M[n] is empty): 
M[n] ← FibII(n-1) + FibII(n-2) 
return M[n]



Fibonacci	Numbers:	Take	III

• What	is	the	running	time	of	FibIII(n)?

FibIII(n):
M[0] ← 0, M[1] ← 1
For i = 2,…,n:
M[i]← M[i-1] + M[i-2]

return M[n] 



Fibonacci	Numbers

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,…
• 𝐹 𝑛 = 𝐹 𝑛 − 1 + 𝐹 𝑛 − 2

• Solving	the	recurrence	recursively	takes	≈ 1.621 time
• Problem:	Recompute	the	same	values	𝐹 𝑖 many	times

• Two	ways	to	improve	the	running	time
• Remember	values	you’ve	already	computed	(“top	down”)
• Iterate	over	all	values	𝐹 𝑖 (“bottom	up”)

• Fact: Can	solve	even	faster	using	Karatsuba’s	algorithm!



Dynamic	Programming:	
Interval	Scheduling



Interval	Scheduling

• How	can	we	optimally	schedule	a	resource?
• This	classroom,	a	computing	cluster,	…

• Input:	𝑛 intervals	 𝑠>, 𝑓> each	with	value	𝑣>
• Assume	intervals	are	sorted	so	𝑓5 < 𝑓9 < ⋯ < 𝑓1

• Output:	a	compatible	schedule	𝑆 maximizing	the	
total	value	of	all	intervals
• A	schedule is	a	subset	of	intervals	𝑆 ⊆ {1,… , 𝑛}
• A	schedule	𝑆 is compatible if	no	𝑖, 𝑗 ∈ 𝑆 overlap
• The	total	value of	𝑆 is	∑ 𝑣>�

>∈J



Interval	Scheduling



Possible	Algorithms

• Choose	intervals	in	decreasing	order	of	𝑣>



Possible	Algorithms

• Choose	intervals	in	increasing	order	of	𝑠>



Possible	Algorithms

• Choose	intervals	in	increasing	order	of	𝑓> − 𝑠>



A	Recursive	Formulation

• Let	𝑂 be	the	optimal	schedule
• Bold	Statement:	𝑂 either	contains	the	last	
interval	or	it	does	not.



A	Recursive	Formulation

• Let	𝑂 be	the	optimal	schedule
• Case	1: Final	interval	is	not	in	𝑂 (i.e.	6 ∉ 𝑂)



A	Recursive	Formulation

• Let	𝑂 be	the	optimal	schedule
• Case	2:	Final interval	is	in	𝑂 (i.e.	6 ∈ 𝑂)



A	Recursive	Formulation

• Let	𝑂> be	the	optimal	schedule using	only	the	
intervals	 1,… , 𝑖
• Case	1:	Final interval	is	not	in	𝑂 (𝑖 ∉ 𝑂)

• Then	𝑂 must	be	the	optimal	solution	for	 1,… , 𝑖 − 1
• Case	2:	Final	interval	is	in	𝑂 (𝑖 ∈ 𝑂)

• Assume	intervals	are	sorted	so	that	𝑓5 < 𝑓9 < ⋯ < 𝑓1
• Let	𝑝 𝑖 be	the	largest	𝑗 such	that	𝑓N < 𝑠>
• Then	𝑂 must	be	𝑖 +	the	optimal	solution	for	 1,… , 𝑝 𝑖



A	Recursive	Formulation

• Let	𝑂𝑃𝑇(𝑖) be	the	value	of	the	optimal	schedule
using	only	the	intervals	 1,… , 𝑖
• Case	1:	Final interval	is	not	in	𝑂 (𝑖 ∉ 𝑂)

• Then	𝑂 must	be	the	optimal	solution	for	 1,… , 𝑖 − 1
• Case	2:	Final	interval	is	in	𝑂 (𝑖 ∈ 𝑂)

• Assume	intervals	are	sorted	so	that	𝑓5 < 𝑓9 < ⋯ < 𝑓1
• Let	𝑝 𝑖 be	the	largest	𝑗 such	that	𝑓N < 𝑠>
• Then	𝑂 must	be	𝑖 +	the	optimal	solution	for	 1,… , 𝑝 𝑖

• 𝑂𝑃𝑇 𝑖 = max 𝑂𝑃𝑇 𝑖 − 1 , 𝑣1 + 𝑂𝑃𝑇 𝑝 𝑖
• 𝑂𝑃𝑇 0 = 0, 𝑂𝑃𝑇 1 = 𝑣5



Interval	Scheduling:	Take	I

• What	is	the	running	time	of	FindOPT(n)?

// All inputs are global vars
FindOPT(n):
if (n = 0): return 0
elseif (n = 1): return v1
else:
return max{FindOPT(n-1), vn + FindOPT(p(n))}



Interval	Scheduling:	Take	II

• What	is	the	running	time	of	FindOPT(n)?

// All inputs are global vars
M ← empty array, M[0]	←	0, M[1]	←	v1
FindOPT(n):
if (M[n] is not empty): return M[n]
else:
M[n] ← max{FindOPT(n-1), vn + FindOPT(p(n))}
return M[n]



Interval	Scheduling:	Take	II

M[0] M[1] M[2] M[3] M[4] M[5] M[6]



Now	You	Try
𝑣5 = 4

𝑣V = 12

𝑣9 = 2

𝑣7 = 8

𝑣W = 5

𝑣X = 1

1

2

3

4

5

6

𝑝 1 = 0

𝑝 2 = 1

𝑝 3 = 0

𝑝 4 = 2

𝑝 5 = 2

𝑝 6 = 3

M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]

0 4

𝑣Y = 107 𝑝 7 = 1



Interval	Scheduling:	Take	III

• What	is	the	running	time	of	FindOPT(n)?

// All inputs are global vars
FindOPT(n):
M[0]	←	0, M[1]	←	v1
for (i = 2,…,n):
M[i] ← max{FindOPT(n-1), vn + FindOPT(p(n))}

return M[n]



Finding	the	Optimal	Schedule

• Let	𝑂𝑃𝑇(𝑖) be	the	value	of	the	optimal	schedule
using	only	the	intervals	 1,… , 𝑖
• Case	1:	Final interval	is	not	in	𝑂 (𝑖 ∉ 𝑂)
• Case	2:	Final	interval	is	in	𝑂 (𝑖 ∈ 𝑂)

• 𝑂𝑃𝑇 𝑖 = max 𝑂𝑃𝑇 𝑖 − 1 , 𝑣1 + 𝑂𝑃𝑇 𝑝 𝑖



Interval	Scheduling:	Take	II

M[0] M[1] M[2] M[3] M[4] M[5] M[6]



Interval	Scheduling:	Take	III

• What	is	the	running	time	of	FindSched(n)?

// All inputs are global vars
FindSched(M,n):
if (n = 0): return ∅
elseif (n = 1): return {1}
elseif (vn + M[p(n)] > M[n-1]):
return {n} + FindSched(M,p(n))

else:
return FindSched(M,n-1)



Dynamic	Programming	Recap

• Express	the	optimal	solution	as	a	recurrence
• Identify	a	small	number	of	subproblems
• Relate	the	optimal	solution	on	subproblems

• Efficiently	solve	for	the	value of	the	optimum
• Simple	implementation	is	exponential	time
• Top-Down:	store	solution	to	subproblems
• Bottom-Up:	iterate	through	subproblems	in	order

• Find	the	solution using	the	table	of	values


