CS3000: Algorithms & Data Jonathan Ullman

Lecture 5:

 Dynamic Programming: Fibonacci Numbers, Interval Scheduling

Jan 22, 2020

Dynamic Programming

- Don't think too hard about the name
 - I thought dynamic programming was a good name. It was something not even a congressman could object to. So I used it as an umbrella for my activities. -Bellman
- Dynamic programming is careful recursion
 - Break the problem up into small pieces
 - Recursively solve the smaller pieces
 - Key Challenge: identifying the pieces

Warmup: Fibonacci Numbers

Fibonacci Numbers

- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
- F(n) = F(n-1) + F(n-2)
- $F(n) \rightarrow \phi^n \approx 1.62^n$
- $\phi = \left(\frac{1+\sqrt{5}}{2}\right)$ is the golden ratio

gume		1.mui	
Tho m			1
erqu		p ^m	
8 faa		1 ²	
ere Tipo		stic	
to mele		E	
Ŧ ĩ nõo	Sec. al	tera	
mete.		and the second second second second	1
ātīno		7 Quide	
1-94		8	
f rurfu		Quit	
EFF		12	
rerur		Seft	
puw uni		= 1	
r uirmi		Sept	
w1797.		Et , Octuin	-
o.uideh		A CONTRACTOR OF A CONTRACTOR	0
177		77 110111	1
2 - 4		83	12.1.1
2900	17	. 8 . 2	100
pm'zfr	7	1++	1111
nû erê	12	xî	1
काम्म	. 3	CEE	
peo#	Ŧ	, ru	the w
imebu	a	1277	
EIft	11-1		- In
ce dfine +	E	Į	100
fo of a			

Fibonacci Numbers: Take I

```
FibI(n):
    If (n = 0): return 0
    ElseIf (n = 1): return 1
    Else: return FibI(n-1) + FibI(n-2)
```

• How many recursive calls does FibI(n) make?

Fibonacci Numbers: Take II

```
\begin{array}{ll} M \ \leftarrow \ empty \ array, \ M[0] \leftarrow 0, \ M[1] \leftarrow 1 \\ FibII(n): & \\ If (M[n] \ is \ not \ empty): \ return \ M[n] \\ ElseIf (M[n] \ is \ empty): & \\ M[n] \ \leftarrow \ FibII(n-1) \ + \ FibII(n-2) \\ return \ M[n] \end{array}
```

• How many recursive calls does **FibII(n)** make?

Fibonacci Numbers: Take III

```
FibIII(n):
    M[0] ← 0, M[1] ← 1
    For i = 2,...,n:
        M[i] ← M[i-1] + M[i-2]
        return M[n]
```

• What is the running time of **FibIII**(n)?

Fibonacci Numbers

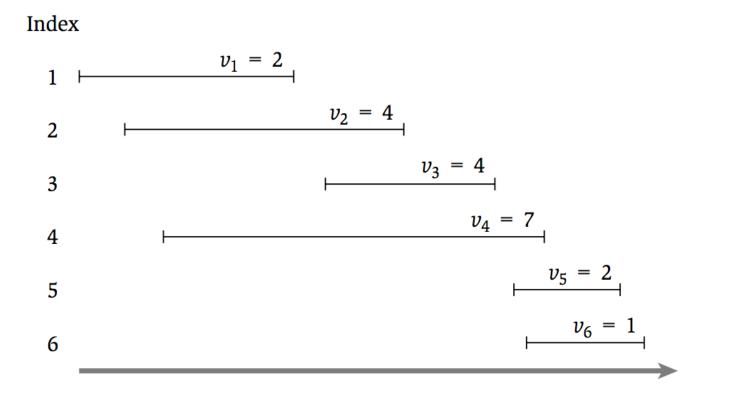
- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
- F(n) = F(n-1) + F(n-2)
- Solving the recurrence recursively takes $\approx 1.62^n$ time
 - Problem: Recompute the same values F(i) many times
- Two ways to improve the running time
 - Remember values you've already computed ("top down")
 - Iterate over all values F(i) ("bottom up")
- Fact: Can solve even faster using Karatsuba's algorithm!

Dynamic Programming: Interval Scheduling

Interval Scheduling

- How can we optimally schedule a resource?
 - This classroom, a computing cluster, ...
- Input: *n* intervals (s_i, f_i) each with value v_i
 - Assume intervals are sorted so $f_1 < f_2 < \cdots < f_n$
- Output: a compatible schedule S maximizing the total value of all intervals
 - A schedule is a subset of intervals $S \subseteq \{1, ..., n\}$
 - A schedule S is compatible if no $i, j \in S$ overlap
 - The **total value** of *S* is $\sum_{i \in S} v_i$

Interval Scheduling



Possible Algorithms

• Choose intervals in decreasing order of v_i

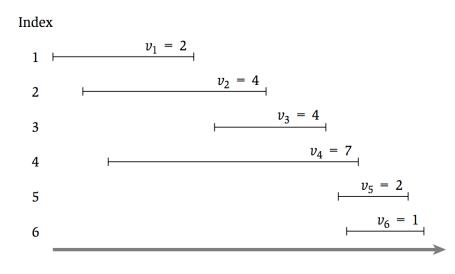
Possible Algorithms

• Choose intervals in increasing order of s_i

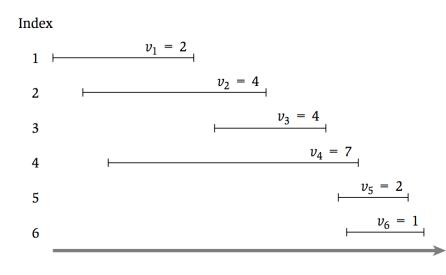
Possible Algorithms

• Choose intervals in increasing order of $f_i - s_i$

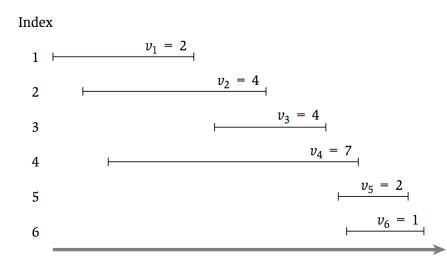
- Let *O* be the **optimal** schedule
- **Bold Statement:** *O* either contains the last interval or it does not.



- Let *O* be the **optimal** schedule
- Case 1: Final interval is not in O (i.e. $6 \notin O$)



- Let *O* be the **optimal** schedule
- Case 2: Final interval is in O (i.e. $6 \in O$)



- Let O_i be the **optimal schedule** using only the intervals $\{1, ..., i\}$
- Case 1: Final interval is not in O ($i \notin O$)
 - Then O must be the optimal solution for $\{1, ..., i 1\}$
- Case 2: Final interval is in O ($i \in O$)
 - Assume intervals are sorted so that $f_1 < f_2 < \cdots < f_n$
 - Let p(i) be the largest j such that $f_j < s_i$
 - Then O must be i + the optimal solution for $\{1, ..., p(i)\}$

- Let *OPT*(*i*) be the **value of the optimal schedule** using only the intervals {1, ..., *i*}
- Case 1: Final interval is not in O ($i \notin O$)
 - Then O must be the optimal solution for $\{1, ..., i 1\}$
- Case 2: Final interval is in O ($i \in O$)
 - Assume intervals are sorted so that $f_1 < f_2 < \cdots < f_n$
 - Let p(i) be the largest j such that $f_j < s_i$
 - Then O must be i + the optimal solution for $\{1, ..., p(i)\}$
- $OPT(i) = \max\{OPT(i-1), v_n + OPT(p(i))\}$
- $OPT(0) = 0, OPT(1) = v_1$

Interval Scheduling: Take I

```
// All inputs are global vars
FindOPT(n):
    if (n = 0): return 0
    elseif (n = 1): return v<sub>1</sub>
    else:
        return max{FindOPT(n-1), v<sub>n</sub> + FindOPT(p(n))}
```

• What is the running time of **FindOPT (n)**?

Interval Scheduling: Take II

```
// All inputs are global vars

M \leftarrow empty array, M[0] \leftarrow 0, M[1] \leftarrow v_1

FindOPT(n):

if (M[n] is not empty): return M[n]

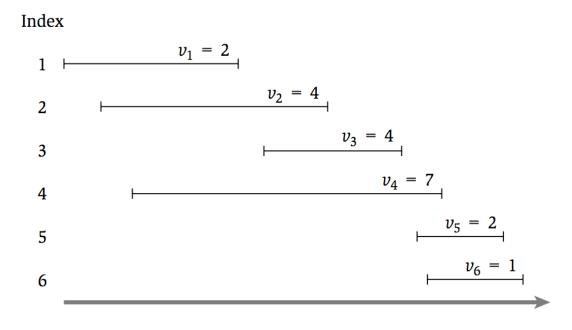
else:

M[n] \leftarrow max{FindOPT(n-1), v_n + FindOPT(p(n))}

return M[n]
```

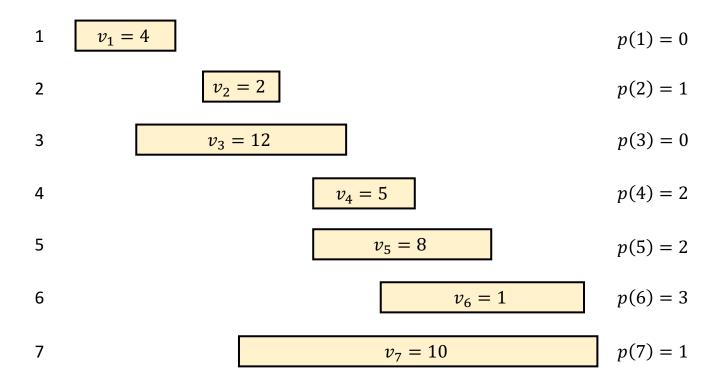
• What is the running time of **FindOPT (n)**?

Interval Scheduling: Take II



M[0]	M[1]	M[2]	M[3]	M[4]	M[5]	M[6]

Now You Try



M[0]	M[1]	M[2]	M[3]	M[4]	M[5]	M[6]	M[7]
0	4						

Interval Scheduling: Take III

```
// All inputs are global vars

FindOPT(n):

M[0] \leftarrow 0, M[1] \leftarrow v_1

for (i = 2,...,n):

M[i] \leftarrow max{FindOPT(n-1), v_n + FindOPT(p(n))}

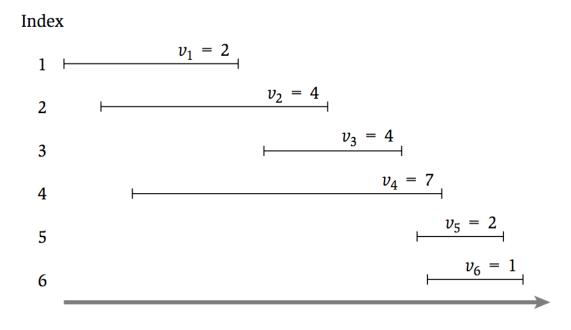
return M[n]
```

• What is the running time of **FindOPT (n)**?

Finding the Optimal Schedule

- Let *OPT*(*i*) be the **value of the optimal schedule** using only the intervals {1, ..., *i*}
- Case 1: Final interval is not in O ($i \notin O$)
- Case 2: Final interval is in O ($i \in O$)
- $OPT(i) = \max\{OPT(i-1), v_n + OPT(p(i))\}$

Interval Scheduling: Take II



M[0]	M[1]	M[2]	M[3]	M[4]	M[5]	M[6]

Interval Scheduling: Take III

```
// All inputs are global vars
FindSched(M,n):
    if (n = 0): return Ø
    elseif (n = 1): return {1}
    elseif (v<sub>n</sub> + M[p(n)] > M[n-1]):
        return {n} + FindSched(M,p(n))
    else:
        return FindSched(M,n-1)
```

• What is the running time of **FindSched(n)**?

Dynamic Programming Recap

- Express the optimal solution as a **recurrence**
 - Identify a small number of subproblems
 - Relate the optimal solution on subproblems
- Efficiently solve for the **value** of the optimum
 - Simple implementation is exponential time
 - Top-Down: store solution to subproblems
 - Bottom-Up: iterate through subproblems in order
- Find the **solution** using the table of **values**