CS3000: Algorithms \& Data Jonathan Ullman

Lecture 5:

- Dynamic Programming:

Fibonacci Numbers, Interval Scheduling
Jan 22, 2020

Dynamic Programming

- Don't think too hard about the name
- I thought dynamic programming was a good name. It was something not even a congressman could object to. So I used it as an umbrella for my activities. -Bellman
- Dynamic programming is careful recursion
- Break the problem up into small pieces
- Recursively solve the smaller pieces
- Key Challenge: identifying the pieces

Warmup: Fibonacci Numbers

Fibonacci Numbers

- $0,1,1,2,3,5,8,13,21,34,55, \ldots$
- $F(n)=F(n-1)+F(n-2)$
- $F(n) \rightarrow \phi^{n} \approx 1.62^{n}$
- $\phi=\left(\frac{1+\sqrt{5}}{2}\right)$ is the golden ratio

Fibonacci Numbers: Take I

```
FibI(n):
    If (n = 0): return 0
    ElseIf (n = 1): return 1
    Else: return FibI(n-1) + FibI(n-2)
```

- How many recursive calls does FibI (n) make?

Fibonacci Numbers: Take II

```
M}\leftarrow\mathrm{ empty array, M[0]}\leftarrow0,M[1]\leftarrow
FibII(n):
    If (M[n] is not empty): return M[n]
    ElseIf (M[n] is empty):
    M[n] \leftarrow FibII (n-1) + FibII (n-2)
    return M[n]
```

- How many recursive calls does FibII (n) make?

Fibonacci Numbers: Take III

```
FibIII(n):
    M[0] \leftarrow 0, M[1] \leftarrow 1
    For i = 2,\ldots,n:
        M[i] \leftarrowM[i-1] + M[i-2]
    return M[n]
```

- What is the running time of FibIII (n) ?

Fibonacci Numbers

- $0,1,1,2,3,5,8,13,21,34,55, \ldots$
- $F(n)=F(n-1)+F(n-2)$
- Solving the recurrence recursively takes $\approx 1.62^{n}$ time
- Problem: Recompute the same values $F(i)$ many times
- Two ways to improve the running time
- Remember values you've already computed ("top down")
- Iterate over all values $F(i)$ ("bottom up")
- Fact: Can solve even faster using Karatsuba's algorithm!

Dynamic Programming: Interval Scheduling

Interval Scheduling

- How can we optimally schedule a resource?
- This classroom, a computing cluster, ...
- Input: n intervals (s_{i}, f_{i}) each with value v_{i}
- Assume intervals are sorted so $f_{1}<f_{2}<\cdots<f_{n}$
- Output: a compatible schedule S maximizing the total value of all intervals
- A schedule is a subset of intervals $S \subseteq\{1, \ldots, n\}$
- A schedule S is compatible if no $i, j \in S$ overlap
- The total value of S is $\sum_{i \in S} v_{i}$

Interval Scheduling

Index

5

$$
v_{5}=2
$$

$$
\longmapsto v_{6}=1
$$

Possible Algorithms

- Choose intervals in decreasing order of v_{i}

Possible Algorithms

- Choose intervals in increasing order of s_{i}

Possible Algorithms

- Choose intervals in increasing order of $f_{i}-s_{i}$

A Recursive Formulation

- Let O be the optimal schedule
- Bold Statement: O either contains the last interval or it does not.

Index

A Recursive Formulation

- Let O be the optimal schedule
- Case 1: Final interval is not in O (i.e. $6 \notin O$)

Index

A Recursive Formulation

- Let O be the optimal schedule
- Case 2: Final interval is in O (i.e. $6 \in O$)

Index

A Recursive Formulation

- Let O_{i} be the optimal schedule using only the intervals $\{1, \ldots, i\}$
- Case 1: Final interval is not in $O(i \notin O)$
- Then O must be the optimal solution for $\{1, \ldots, i-1\}$
- Case 2: Final interval is in $O(i \in O)$
- Assume intervals are sorted so that $f_{1}<f_{2}<\cdots<f_{n}$
- Let $p(i)$ be the largest j such that $f_{j}<s_{i}$
- Then O must be $i+$ the optimal solution for $\{1, \ldots, p(i)\}$

A Recursive Formulation

- Let $O P T(i)$ be the value of the optimal schedule using only the intervals $\{1, \ldots, i\}$
- Case 1: Final interval is not in $O(i \notin O)$
- Then O must be the optimal solution for $\{1, \ldots, i-1\}$
- Case 2: Final interval is in $O(i \in O)$
- Assume intervals are sorted so that $f_{1}<f_{2}<\cdots<f_{n}$
- Let $p(i)$ be the largest j such that $f_{j}<s_{i}$
- Then O must be $i+$ the optimal solution for $\{1, \ldots, p(i)\}$
- OPT $(i)=\max \left\{O P T(i-1), v_{n}+O P T(p(i))\right\}$
- OPT $(0)=0, O P T(1)=v_{1}$

Interval Scheduling: Take I

```
// All inputs are global vars
FindOPT(n):
    if (n = 0): return 0
    elseif (n = 1): return v
    else:
        return max{FindOPT(n-1), vn + FindOPT(p(n))}
```

- What is the running time of FindOPT (n) ?

Interval Scheduling: Take II

```
// All inputs are global vars
M }\leftarrow\mathrm{ empty array, M[0] }\leftarrow0, M[1]\leftarrow\mp@subsup{v}{1}{
FindOPT(n):
    if (M[n] is not empty): return M[n]
    else:
        M[n] \leftarrow max{FindOPT(n-1), vn + FindOPT(p(n))}
        return M[n]
```

- What is the running time of FindOPT (n) ?

Interval Scheduling: Take II

Index

5
6

$$
\begin{gathered}
v_{5}=2 \\
v_{6}=1
\end{gathered}
$$

M[0]	M[1]	M[2]	M[3]	M[4]	M[5]	M[6]

Now You Try

Interval Scheduling: Take III

```
// All inputs are global vars
FindOPT (n) :
    \(\mathrm{M}[0] \leftarrow 0, \quad \mathrm{M}[1] \leftarrow \mathrm{v}_{1}\)
    for (i \(=2, \ldots, n\) ):
        \(M[i] \leftarrow \max \left\{F i n d O P T(n-1), v_{n}+F i n d O P T(p(n))\right\}\)
    return \(M[n]\)
```

- What is the running time of FindOPT (n) ?

Finding the Optimal Schedule

- Let $O P T(i)$ be the value of the optimal schedule using only the intervals $\{1, \ldots, i\}$
- Case 1: Final interval is not in $O(i \notin O)$
- Case 2: Final interval is in $O(i \in O)$
- $O P T(i)=\max \left\{O P T(i-1), v_{n}+O P T(p(i))\right\}$

Interval Scheduling: Take II

Index

5
6

$$
\begin{gathered}
v_{5}=2 \\
v_{6}=1
\end{gathered}
$$

M[0]	M[1]	M[2]	M[3]	M[4]	M[5]	M[6]

Interval Scheduling: Take III

```
// All inputs are global vars
FindSched(M,n) :
    if (n = 0): return \emptyset
    elseif (n = 1): return {1}
    elseif (vn + M[p(n)] > M[n-1]):
        return {n} + FindSched(M,p(n))
    else:
        return FindSched (M,n-1)
```

- What is the running time of FindSched (n) ?

Dynamic Programming Recap

- Express the optimal solution as a recurrence
- Identify a small number of subproblems
- Relate the optimal solution on subproblems
- Efficiently solve for the value of the optimum
- Simple implementation is exponential time
- Top-Down: store solution to subproblems
- Bottom-Up: iterate through subproblems in order
- Find the solution using the table of values

