CS3000: Algorithms \& Data Jonathan Ullman

Lecture 5:

- Dynamic Programming:

Fibonacci Numbers, Interval Scheduling
Jan 22, 2020

Dynamic Programming

- Don't think too hard about the name
- I thought dynamic programming was a good name. It was something not even a congressman could object to. So I used it as an umbrella for my activities. -Bellman
- Dynamic programming is careful recursion
- Break the problem up into small pieces
- Recursively solve the smaller pieces
- Key Challenge: identifying the pieces

Warmup: Fibonacci Numbers

Fibonacci Numbers

- $0,1,1,2,3,5,8,13,21,34,55, \ldots$
- $F(n)=F(n-1)+F(n-2)$
- $F(n) \rightarrow \phi^{n} \approx 1.62^{n}$
- $\phi=\left(\frac{1+\sqrt{5}}{2}\right)$ is the golden ratio

Fibonacci Numbers: Take I

Fibl (n):
If $(n=0)$: return 0
ElseIf ($n=1$): return 1
Else: return FibI (n-1) + FibI (n-2)

- How many recursive calls does FibI (n) make?

$$
\begin{array}{ll}
C(n): \not{ }^{*} \cap \text { calls made by Fib }(n) \\
C(n)=C(n-1)+C(n-2) & F(n) \\
C(n)=F(n)=1.62^{n} & F(n-2)
\end{array}
$$

Fibonacci Numbers: Take II
"Memorization" "Top-Doun Dy rom, Rrogremang

```
M & empty array,M[0]}\leftarrow0, M[1] \leftarrow1
FibII(n): FibII(0) F.bI(1)
    If (M[n] is not empty): return M[n]
    ElseIf (M[n] is empty):
        M[n] \leftarrowFibII(n-1) + FibII (n-2)
        return M[n]
```

- How many recursive calls does FibII (n) make?
- We fill n-1 new elements of M
- Each par of recusing calls fills ore elf
\Rightarrow At most $2(n-1)$ calls

$$
O(n)
$$

Fibonacci Numbers: Take III
\square
\square
\square
2
3

$$
\begin{aligned}
& \text { FibIII }(n): \\
& M[0] \leftarrow 0, M[1] \leftarrow 1 \\
& \text { For } i=2, \ldots, n: \\
& M[i] \leftarrow M[i-1]+M[i-2] \\
& \text { return } M[n]
\end{aligned}
$$

- What is the running time of FibIII (n) ?
"Bottom-Up Dynamic Programming

Fibonacci Numbers

- $0,1,1,2,3,5,8,13,21,34,55, \ldots$
- $F(n)=F(n-1)+F(n-2)$
- Solving the recurrence recursively takes $\approx 1.62^{n}$ time
- Problem: Recompute the same values $F(i)$ many times
- Two ways to improve the running time
- Remember values you've already computed ("top down")
- Iterate over all values $F(i)$ ("bottom up")
- Fact: Can solve even faster using Karatsuba's algorithm!

Dynamic Programming: Interval Scheduling

Interval Scheduling

- How can we optimally schedule a resource?
- This classroom, a computing cluster, ...
- Input: n intervals (s_{i}, f_{i}) each with value $v_{i}>0$
- Assume intervals are sorted so $f_{1}<f_{2}<\cdots<f_{n}$
- Output: a compatible schedule S maximizing the total value of all intervals
- A schedule is a subset of intervals $S \subseteq\{1, \ldots, n\}$
- A schedule S is compatible if no $i, j \in S$ overlap
- The total value of S is $\sum_{i \in S} v_{i}$

Interval Scheduling

$$
\text { value }(\{1,3,5\})=2+4+2=8
$$

Index
(1) $\longmapsto \quad v_{1}=2 ;$

2
(3)

6

Possible Algorithms

- Choose intervals in decreasing order of v_{i}

Possible Algorithms

- Choose intervals in increasing order of s_{i}

Possible Algorithms

- Choose intervals in increasing order of $f_{i}-s_{i}$

A Recursive Formulation

- Let O be the optimal schedule
- Bold Statement: O either contains the last interval or it does not.

Index

A Recursive Formulation

- Let O be the optimal schedule
- Case 1: Final interval is not in O (i.e. $6 \notin O$)

The O must be the optmal schedule for $\{1,2,3,4,5\}$

A Recursive Formulation

- Let O be the optimal schedule
- Case 2: Final interval is in O (ie. $6 \in O$)

O must be $\{6\}+[$ the optimal schedule for $\{1,2,3\}]$

A Recursive Formulation

- Let O_{i} be the optimal schedule using only the intervals $\{1, \ldots, i\}$
- Case 1: Final interval is not in $O(i \notin O) \quad\left[O_{i}=O_{i-1}\right]$
- Then O must be the optimal solution for $\{1, \ldots, i-1\}$
- Case 2: Final interval is in $O(i \in O)$
- Assume intervals are sorted so that $f_{1}<f_{2}<\cdots<f_{n}$
- Let $p(i)$ be the largest j such that $f_{j}<s_{i}\left[O_{i}=\{i\}+O_{p(i)}\right]$
- Then O must be $i+$ the optimal solution for $\{1, \ldots, p(i)\}$

Any of $\{1,2, \ldots, p(i)\}$ are concat ible with i

$$
\begin{aligned}
& \text { If value }\left(O_{i-1}\right)>v_{i}+\text { value }\left(O_{p}(i)\right) \\
& \text { then } O_{i}=O_{i-1} \\
& \text { If } v_{i}+\operatorname{valve}\left(O_{p(i)}\right)>\text { value }\left(O_{i-1}\right) \\
& \text { then } O_{i}=\{i\}+O_{p(i)}
\end{aligned}
$$

A Recursive Formulation

- Let $O P T(i)$ be the value of the optimal schedule using only the intervals $\{1, \ldots, i\}$
- Case 1: Final interval is not in $O(i \notin O)$
- Then O must be the optimal solution for $\{1, \ldots, i-1\}$
- Case 2: Final interval is in $O(i \in O)$
- Assume intervals are sorted so that $f_{1}<f_{2}<\cdots<f_{n}$
- Let $p(i)$ be the largest j such that $f_{j}<s_{i}$
- Then O must be $i+$ the optimal solution for $\{1, \ldots, p(i)\}$
- OPT $(i)=\max \left\{O P T(i-1), v_{i}+O P T(p(i))\right\}$
- $O P T(0)=0, O P T(1)=v_{1}$

Interval Scheduling: Take I

```
// All inputs are global vars
FindOPT(n) :
    if (n = 0): return 0
    elseif (n = 1): return v
    else:
        return max{FindOPT(n-1), von + FindOPT(p(n))}
```

- What is the running time of FindOPT (n) ?

$$
\text { Can be exponentral } m n \text {. }
$$

Interval Scheduling: Take II ("Top Dour")
$M[i]$ stores $\operatorname{OPT}(i)$

```
// All inputs are global vars
M empty array, M[0]\leftarrow0, M[1] \leftarrow vi
FindOPT(n):
    if (M[n] is not empty): return M[n]
    else:
        M[n]}\leftarrow\operatorname{max{FindOPT(n-1), v
        return M[n]
```

- What is the running time of FindOPT (n) ?
$O(n) \quad(2$ recursive calls / array elf)

$$
x\left(\begin{array}{cc}
n-1 & \text { array ells }
\end{array}\right)
$$

Interval Scheduling: Take III

// All inputs are global vars
FindOPT (n) :
$\mathrm{M}[0] \leftarrow 0, \mathrm{M}[1] \leftarrow \mathrm{v}_{1}$
for ($\mathrm{i}=2, \ldots, \mathrm{n}$):
 return M[n]

- What is the running time of FindOPT (n) ?
$O(n)$ time

Interval Scheduling: Take III

Index

3
4
5
6

$$
M[2]=\max \left\{M[1], v_{2}+M[0]\right\}
$$

$$
\begin{aligned}
M[3] & =\max \left\{M[2], v_{3}+M[1]\right\} \\
& =\max \{4,4+2\}=6
\end{aligned}
$$

value of the optimal schedule

$$
=\max \{2,4+0\}=4
$$

$$
\begin{aligned}
M[6] & =\max \left\{M[5], v_{6}+M[3]\right\} \\
& =\max \{(8,1+63
\end{aligned}
$$

Now You Try

Finding the Optimal Schedule

- Let $O P T(i)$ be the value of the optimal schedule using only the intervals $\{1, \ldots, i\}$
- Case 1: Final interval is not in $O(i \notin O) \Leftrightarrow \operatorname{OPT}(i)=\operatorname{opt}((-1)$
- Case 2: Final interval is in $O(i \in O) \Leftrightarrow \operatorname{Opt}(i)=v_{i}+\operatorname{Opt}(p(i))$

Be careful: Both could be true (if there are multiple orts

- OPT $(i)=\max \left\{O P T(i-1), v_{i i}+O P T(p(i))\right\}$

If the n "the "max If the is "the" max
then $O_{i}=O_{i-1} \quad$ then $O_{i}=\{i\}+O_{p(i)}$

Interval Scheduling: Take II

Index

5
6

$$
v_{6}=1
$$

M[0]	M[1]	M[2]	M[3]	M[4]	M[5]	M[6]

Interval Scheduling: Take III

```
// All inputs are global vars
FindSched(M,n) :
    if (n = 0): return \emptyset
    elseif (n = 1): return {1}
    elseif (vn}+M[p(n)] > M[n-1])
        return {n} + FindSched(M,p(n))
    else:
        return FindSched(M,n-1)
```

- What is the running time of FindSched (n) ?

Dynamic Programming Recap

- Express the optimal solution as a recurrence
- Identify a small number of subproblems
- Relate the optimal solution on subproblems
- Efficiently solve for the value of the optimum
- Simple implementation is exponential time
- Top-Down: store solution to subproblems
- Bottom-Up: iterate through subproblems in order
- Find the solution using the table of values

