
CS3000:	Algorithms	&	Data
Jonathan	Ullman

Lecture	3:	
• Divide	and	Conquer:	Karatsuba
• Solving	Recurrences

Jan	13,	2020



The	“Master	Theorem”

• Recipe	for	recurrences	of	the	form:
• 𝑇 𝑛 = 𝒂 ⋅ 𝑇 𝑛 𝒃⁄ + 𝐶𝑛𝒅

• Three	cases:
• 𝒂

𝒃𝒅
> 1 :		𝑇 𝑛 = Θ 𝑛./0𝒃 𝒂

• 𝒂
𝒃𝒅

= 1 :		𝑇 𝑛 = Θ 𝑛𝒅 log 𝑛

• 𝒂
𝒃𝒅

< 1 :		𝑇 𝑛 = Θ 𝑛𝒅



Ask	the	Audience!

• Use	the	Master	Theorem	to	Solve:

• 𝑇 𝑛 = 16 ⋅ 𝑇 6
7
+ 𝐶𝑛8

• 𝑇 𝑛 = 21 ⋅ 𝑇 6
:
+ 𝐶𝑛8

• 𝑇 𝑛 = 2 ⋅ 𝑇 6
8
+ 𝐶

• 𝑇 𝑛 = 1 ⋅ 𝑇 6
8
+ 𝐶



Divide	and	Conquer:
Selection	(Median)



Selection

11 3 42 28 17 8 2 15

• Given	an	array	of	numbers	𝐴[1: 𝑛],	how	quickly	can	
I	find	the:
• Smallest	number?
• Second	smallest?
• 𝑘-th smallest?

𝑨



Selection

11 3 42 28 17 8 2 15

2 3 8 11 15 17 28 42

• Fact:	can	select	the	𝑘-th	smallest	in	𝑂(𝑛𝑘) time
• Fact: can	select	the	𝑘-th	smallest	in	𝑂 𝑛 log 𝑛 time
• Sort	the	list,	then	return	𝐴[𝑘]

• Today:	select	the	𝑘-th	smallest	in	𝑂 𝑛 time

𝑨

sort



Warmup

• You	have	25	horses	and	want	to	find	the	3	fastest
• You	have	a	racetrack	where	you	can	race	5	at	a	time
• In:	 1, 5, 6, 18, 22 Out:	 6 ≻ 5 ≻ 18 ≻ 22 ≻ 1

• Problem: find	the	3	fastest	with	only	seven	races



Median	Algorithm:	Take	I

17 3 42 11 28 8 2 15 13 𝑨

11 3 5 13 2 8 17 28 42

Select(A[1:n],k):
If(n = 1): return A[1]

Choose a pivot p = A[1]
Partition around the pivot, let p = A[r]

If(k = r): return A[r]
ElseIf(k < r): return Select(A[1:r-1],k)
ElseIf(k > r): return Select(A[r+1:n],k-r) 



Median	Algorithm:	Take	I

1 2 3 4 5 6 7 8 9 𝑨



Median	Algorithm:	Take	II

• Problem:	we	need	to	find	a	good	pivot	element



Median	of	Medians

MOM(A[1:n]):
Let 𝒎 ← 𝒏 𝟓⁄
For i = 1,…,m:
Meds[i] = median{A[5i-4],A[5i-3],…,A[5i]}
Let p ← Select(Meds[1:m], 𝒎 𝟐⁄ )



Median	of	Medians

• Claim:	For	every	𝑨 here	are	at	least	3𝑛 10⁄ items	
that	are	smaller	than	𝐌𝐎𝐌(𝑨) and	at	least	3𝑛/10
items	that	are	larger.



Median	Algorithm:	Take	II

17 3 42 11 28 8 2 15 13 𝑨

11 3 5 13 2 8 17 28 42

MOMSelect(A[1:n],k):
If(n ≤ 25): return median{A}

Let p = MOM(A)
Partition around the pivot, let p = A[r]

If(k = r): return A[r]
ElseIf(k < r): return MOMSelect(A[1:r-1],k)
ElseIf(k > r): return MOMSelect(A[r+1:n],k-r) 



Running	Time	Analysis



Recursion	Tree 𝑇 𝑛 = 𝑇 R6
ST

+ 𝑇 6
:
+ 𝐶𝑛

	𝑇 1 = 𝐶



• Claim:	𝑇(𝑛) 	= 	𝑂(𝑛)

Proof	by	Induction 𝑇 𝑛 = 𝑇 R6
ST

+ 𝑇 6
:
+ 𝐶𝑛

	𝑇 1 = 𝐶



Ask	the	Audience

• If	we	change	MOM	so	that	it	uses	n/3	blocks	of	size	
3,	would	Select	still	run	in	O(n)	time?



• Find	the	𝑘-th	largest	element	in	𝑂 𝑛 time
• Selection	is	strictly	easier	than	sorting!

• Divide-and-conquer	approach
• Find	a	pivot	element	that	splits	the	list	roughly	in	half
• Key	Fact:median-of-medians-of-five	is	a	good	pivot

• Can	sort	in	𝑂 𝑛 log 𝑛 time	using	same	technique
• Algorithm	is	called	Quicksort

• Analyze	running	time	via	recurrence
• Master	Theorem	does	not	apply

• Fun	Fact:	a	random	pivot	is	also	a	good	pivot!

Selection	Wrapup



Divide	and	Conquer:
Binary	Search



Binary	Search

2 3 8 11 15 17 28 42 𝐴

Is	28	in	this	list?



Binary	Search
StartSearch(A,t):
// A[1:n] sorted in ascending order
Return Search(A,1,n,t)

Search(A,ℓ,r,t):
If(ℓ > r): return FALSE

m ← ℓ + 𝒓Xℓ
𝟐

If(A[m] = t): return m
ElseIf(A[m] > t): return Search(A,ℓ,m-1,t)
Else: return Search(A,m+1,r,t)



Running	Time	Analysis 𝑇 𝑛 = 𝑇 𝑛 2⁄ + 𝐶
	𝑇 1 = 𝐶



• Search	a	sorted	array	in	time	𝑂(log 𝑛)
• Divide-and-conquer	approach
• Find	the	middle	of	the	list,	recursively	search	half	the	list
• Key	Fact: eliminate	half	the	list	each	time

• Prove	correctness	via	induction
• Analyze	running	time	via	recurrence
• 𝑇 𝑛 = 𝑇 𝑛 2⁄ + 𝐶

Binary	Search Wrapup


