
CS	3000:	Algorithms	&	Data
Jonathan	Ullman

Lecture	19:	
• Data	Compression
• Greedy	Algorithms:	Huffman	Codes

Apr	5,	2018

Data	Compression

• How	do	we	store	strings	of	text	compactly?

• A	binary	code is	a	mapping	from	Σ → 0,1 ∗

• Simplest	code:	assign	numbers	1,2, … , Σ to	each	
symbol,	map	to	binary	numbers	of	⌈log- Σ ⌉ bits

• Morse	Code:

Data	Compression

• Letters	have	uneven	frequencies!
• Want	to	use	short	encodings	for	frequent	letters,	long	
encodings	for	infrequent	leters

a b c d avg. len.

Frequency 1/2 1/4 1/8 1.8

Encoding	1 00 01 10 11 2.0

Encoding	2 0 10 110 111 1.75

Data	Compression

• What	properties	would	a	good	code	have?

• Easy	to	encode	a	string

• The	encoding	is	short	on	average

• Easy	to	decode	a	string?

Encode(KTS)	=	– ● – – ● ● ●

Decode(– ● – – ● ● ●)	=

≤ 4 bits	per	letter	(30	symbols	max!)

Prefix	Free	Codes

• Cannot	decode	if	there	are	ambiguities
• e.g.	enc(“𝐸”) is	a	prefix	of	enc(“𝑆”)

• Prefix-Free	Code:
• A	binary	enc: 	Σ → 0,1 ∗ such	that																																				
for	every	𝑥 ≠ 𝑦 ∈ Σ,	enc 𝑥 is	not	a	prefix	of	enc 𝑦

• Any	fixed-length	code	is	prefix-free

Prefix	Free	Codes

• Can	represent	a	prefix-free																																										
code	as	a	tree

• Encode by	going	up	the	tree	(or	using	a	table)
• d	a	b	→ 0	0	1	1	0	0	1	1

• Decode	by	going	down	the	tree
• 0	1	1	0	0	0	1	0	0	1	0	1	0	1	0	1	1

Huffman	Codes

• (An	algorithm	to	find)	an	optimal prefix-free	code

• optimal =	 min
BCDEFGHECDD	I

	len 𝑇 = ∑ 𝑓N�
N∈P ⋅ lenI 𝑖

• Note,	optimality	depends	on	what	you’re	compressing
• H	is	the	8th most	frequent	letter	in	English	(6.094%)	but	the	20th
most	frquent	in	Italian	(0.636%)

a b c d

Frequency 1/2 1/4 1/8 1/8

Encoding 0 10 110 111

Huffman	Codes

• First	Try:	split	letters	into	two	sets	of	roughly	equal	
frequency	and	recurse
• Balanced	binary	trees	should	have	low	depth

a b c d e

.32 .25 .20 .18 .05

Huffman	Codes

• First	Try:	split	letters	into	two	sets	of	roughly	equal	
frequency	and	recurse

first	try
len	=	2.25

optimal
len	=	2.23

a b c d e

.32 .25 .20 .18 .05

Huffman	Codes

• Huffman’s	Algorithm:	pair	up	the	two	letters	with	
the	lowest	frequency	and	recurse

a b c d e

.32 .25 .20 .18 .05

Huffman	Codes

• Huffman’s	Algorithm:	pair	up	the	two	letters	with	
the	lowest	frequency	and	recurse

• Theorem:	Huffman’s	Algorithm	produces	a	prefix-
free	code	of	optimal	length
• We’ll	prove	the	theorem	using	an	exchange	argument

Huffman	Codes

• Theorem:	Huffman’s	Alg	produces	an	optimal	prefix-free	code
• (1)	In	an	optimal	prefix-free	code	(a	tree),	every	internal	node	
has	exactly	two children

Huffman	Codes

• Theorem:	Huffman’s	Alg	produces	an	optimal	prefix-free	code
• (2)	If	𝑥, 𝑦 have	the	lowest	frequency,	then	there	is	an	optimal	
code	where	𝑥, 𝑦 are	siblings	and	are	at	the	bottom	of	the	tree

Huffman	Codes

• Theorem:	Huffman’s	Alg	produces	an	optimal	prefix-free	code

• Proof	by	Induction	on	the	Number	of	Letters	in	Σ:
• Base	case	(Σ = 2):	rather	obvious

Huffman	Codes

• Theorem:	Huffman’s	Alg	produces	an	optimal	prefix-free	code

• Proof	by	Induction	on	the	Number	of	Letters	in	Σ:
• Inductive	Hypothesis:	

Huffman	Codes

• Theorem:	Huffman’s	Alg	produces	an	optimal	prefix-free	code

• Proof	by	Induction	on	the	Number	of	Letters	in	Σ:
• Inductive	Hypothesis:	

• Without	loss	of	generality,	frequencies	are	𝑓S, … , 𝑓T,	the	
two	lowest	are	𝑓S, 𝑓-
• Merge	1,2 into	a	new	letter	𝑘 + 1 with	𝑓TWS = 𝑓S + 𝑓-

Huffman	Codes

• Theorem:	Huffman’s	Alg	produces	an	optimal	prefix-free	code

• Proof	by	Induction	on	the	Number	of	Letters	in	Σ:
• Inductive	Hypothesis:	

• Without	loss	of	generality,	frequencies	are	𝑓S, … , 𝑓T,	the	
two	lowest	are	𝑓S, 𝑓-
• Merge	1,2 into	a	new	letter	𝑘 + 1 with	𝑓TWS = 𝑓S + 𝑓-

• By	induction,	if	𝑇X is	the	Huffman	code	for	𝑓Y, … , 𝑓TWS,	
then	𝑇X is	optimal
• Need	to	prove	that	𝑇 is	optimal	for	𝑓S, … , 𝑓T

Huffman	Codes

• Theorem:	Huffman’s	Alg	produces	an	optimal	prefix-free	code
• If	𝑇′ is	optimal	for	𝑓Y, … , 𝑓TWS then	𝑇 is	optimal	for	𝑓S, … , 𝑓T

An	Experiment

• Take	the	Dickens	novel	A	Tale	of	Two	Cities
• File	size	is	799,940	bytes

• Build	a	Huffman	code	and	compress

• File	size	is	now	439,688	bytes

Raw Huffman

Size 799,940 439,688

Huffman	Codes

• Huffman’s	Algorithm:	pair	up	the	two	letters	with	
the	lowest	frequency	and	recurse

• Theorem:	Huffman’s	Algorithm	produces	a	prefix-
free	code	of	optimal	length

• In	what	sense	is	this	code	really	optimal?																					
(Bonus	material… will	not	test	you	on	this)

Length	of	Huffman	Codes

• What	can	we	say	about	Huffman	code	length?
• Suppose	𝑓N = 2Hℓ\ for	every	𝑖 ∈ Σ
• Then,	lenI 𝑖 = ℓN for	the	optimal	Huffman	code

• Proof:	

Length	of	Huffman	Codes

• What	can	we	say	about	Huffman	code	length?
• Suppose	𝑓N = 2Hℓ\ for	every	𝑖 ∈ Σ
• Then,	lenI 𝑖 = ℓN for	the	optimal	Huffman	code

• len 𝑇 = ∑ 𝑓N ⋅ log- S
]\^

�
N∈P

Entropy

• Given	a	set	of	frequencies	(aka	a	probability	
distribution)	the	entropy is

• Entropy	is	a	“measure	of	randomness”

𝐻 𝑓 =`𝑓N ⋅ log- 1
𝑓N^

�

N

Entropy

• Given	a	set	of	frequencies	(aka	a	probability	
distribution)	the	entropy is

• Entropy	is	a	“measure	of	randomness”
• Entropy	was	introduced	by	Shannon	in	1948	and	is	
the	foundational	concept	in:
• Data	compression
• Error	correction	(communicating	over	noisy	channels)
• Security	(passwords	and	cryptography)

𝐻 𝑓 =`𝑓N ⋅ log- 1
𝑓N^

�

N

Entropy	of	Passwords

• Your	password	is	a	specific	string,	so	𝑓abc = 1.0

• To	talk	about	security	of	passwords,	we	have	to	
model	them	as	random
• Random	16	letter	string:	𝐻 = 	16 ⋅ log- 26 ≈ 75.2
• Random	IMDb	movie:	𝐻 =	 log- 1764727 ≈ 20.7
• Your	favorite	IMDb	movie:	𝐻 ≪ 20.7

• Entropy	measures	how	difficult	passwords	are	to	
guess	“on	average”

Entropy	of	Passwords

Entropy	and	Compression

• Given	a	set	of	frequencies	(probability	distribution)	
the	entropy is

• Suppose	that	we	generate	string	𝑆 by	choosing	𝑛
random	letters	independently	with	frequencies	𝑓
• Any	compression	scheme	requires	at	least	𝐻 𝑓
bits-per-letter to	store	𝑆 (as	𝑛 → ∞)
• Huffman	codes	are	truly	optimal!

𝐻 𝑓 =`𝑓N ⋅ log- 1
𝑓N^

�

N

But	Wait!

• Take	the	Dickens	novel	A	Tale	of	Two	Cities
• File	size	is	799,940	bytes

• Build	a	Huffman	code	and	compress

• File	size	is	now	439,688	bytes
• But	we	can	do	better!

Raw Huffman gzip bzip2

Size 799,940 439,688 301,295 220,156

What	do	the	frequencies	represent?

• Real	data	(e.g.	natural	language,	music,	images)	
have	patterns	between	letters
• U	becomes	a	lot	more	common	after	a	Q

• Possible	approach:	model	pairs	of	letters
• Build	a	Huffman	code	for	pairs-of-letters
• Improves	compression	ratio,	but	the	tree	gets	bigger
• Can	only	model	certain	types	of	patterns

• Zip	is	based	on	an	algorithm	called	LZW	that	tries	to	
identify	patterns	based	on	the	data

Entropy	and	Compression

• Given	a	set	of	frequencies	(probability	distribution)	
the	entropy is

• Suppose	that	we	generate	string	𝑆 by	choosing	𝑛
random	letters	independently	with	frequencies	𝑓
• Any	compression	scheme	requires	at	least	𝐻 𝑓
bits-per-letter	to	store	𝑆
• Huffman	codes	are	truly	optimal	if	and	only	if	there								
is	no	relationship	between	different	letters!

𝐻 𝑓 =`𝑓N ⋅ log- 1
𝑓N^

�

N

