CS 3000: Algorithms & Data Jonathan Ullman

Lecture 19:

- Data Compression
- Greedy Algorithms: Huffman Codes

Apr 5, 2018

Data Compression

- How do we store strings of text compactly?
- A binary code is a mapping from $\Sigma \rightarrow \{0,1\}^*$
 - Simplest code: assign numbers 1,2, ..., $|\Sigma|$ to each symbol, map to binary numbers of $\lceil \log_2 |\Sigma| \rceil$ bits

• Morse Code:

$$A \bullet J \bullet - - S \bullet \bullet \bullet$$
 $B - \bullet \bullet \bullet$
 $K - \bullet T C - \bullet - \bullet$
 $L \bullet - \bullet \bullet$
 $U \bullet - D - \bullet \bullet$
 $M - V \bullet \bullet - D - \bullet \bullet$
 $M - V \bullet \bullet - E \bullet$
 $N - \bullet$
 $W \bullet - F \bullet - \bullet - \bullet$
 $O - - - X - \bullet - G - - \bullet - \bullet$
 $P \bullet - - \bullet$
 $Y - \bullet - - H \bullet \bullet \bullet - \bullet$
 $Q - - \bullet - Z$
 $Z - - \bullet \bullet - \bullet$

Data Compression

• Letters have uneven frequencies!

• Want to use short encodings for frequent letters, long encodings for infrequent leters

	а	b	С	d	avg. len.
Frequency	1/2	1/4	1/8	1.8	
Encoding 1	00	01	10	11	2.0
Encoding 2	0	10	110	111	1.75

Data Compression

- What properties would a good code have?
 - Easy to encode a string
 Encode(KTS) = • - • •
 - The encoding is short on average ≤ 4 bits per letter (30 symbols max!)
 - Easy to decode a string?
 Decode(- - • •) =

Prefix Free Codes

- Cannot decode if there are ambiguities
 - e.g. enc("E") is a prefix of enc("S")
- Prefix-Free Code:
 - A binary enc: $\Sigma \rightarrow \{0,1\}^*$ such that for every $x \neq y \in \Sigma$, enc(x) is not a prefix of enc(y)
 - Any fixed-length code is prefix-free

Prefix Free Codes

• Can represent a prefix-free code as a tree

- Encode by going up the tree (or using a table)
 - d a b \rightarrow 0 0 1 1 0 0 1 1
- Decode by going down the tree

• (An algorithm to find) an **optimal** prefix-free code

- optimal = $\min_{\text{prefix-free }T} \operatorname{len}(T) = \sum_{i \in \Sigma} f_i \cdot \operatorname{len}_T(i)$
 - Note, optimality depends on what you're compressing
 - H is the 8th most frequent letter in English (6.094%) but the 20th most frquent in Italian (0.636%)

	а	b	С	d
Frequency	1/2	1/4	1/8	1/8
Encoding	0	10	110	111

- First Try: split letters into two sets of roughly equal frequency and recurse
 - Balanced binary trees should have low depth

а	b	С	d	е
.32	.25	.20	.18	.05

• First Try: split letters into two sets of roughly equal frequency and recurse

• Huffman's Algorithm: pair up the two letters with the lowest frequency and recurse

а	b	С	d	е
.32	.25	.20	.18	.05

- Huffman's Algorithm: pair up the two letters with the lowest frequency and recurse
- Theorem: Huffman's Algorithm produces a prefixfree code of optimal length
 - We'll prove the theorem using an exchange argument

- Theorem: Huffman's Alg produces an optimal prefix-free code
- (1) In an optimal prefix-free code (a tree), every internal node has exactly two children

- Theorem: Huffman's Alg produces an optimal prefix-free code
- (2) If x, y have the lowest frequency, then there is an optimal code where x, y are siblings and are at the bottom of the tree

- Theorem: Huffman's Alg produces an optimal prefix-free code
- Proof by Induction on the Number of Letters in Σ :
 - Base case ($|\Sigma| = 2$): rather obvious

- Theorem: Huffman's Alg produces an optimal prefix-free code
- Proof by Induction on the Number of Letters in Σ :
 - Inductive Hypothesis:

- Theorem: Huffman's Alg produces an optimal prefix-free code
- Proof by Induction on the Number of Letters in Σ :
 - Inductive Hypothesis:

- Without loss of generality, frequencies are f_1, \ldots, f_k , the two lowest are f_1, f_2
- Merge 1,2 into a new letter k + 1 with $f_{k+1} = f_1 + f_2$

- Theorem: Huffman's Alg produces an optimal prefix-free code
- Proof by Induction on the Number of Letters in Σ :
 - Inductive Hypothesis:

- Without loss of generality, frequencies are f_1, \ldots, f_k , the two lowest are f_1, f_2
- Merge 1,2 into a new letter k + 1 with $f_{k+1} = f_1 + f_2$
- By induction, if T' is the Huffman code for f_3, \ldots, f_{k+1} , then T' is optimal
- Need to prove that T is optimal for f_1, \ldots, f_k

- Theorem: Huffman's Alg produces an optimal prefix-free code
- If T' is optimal for f_3, \ldots, f_{k+1} then T is optimal for f_1, \ldots, f_k

An Experiment

- Take the Dickens novel A Tale of Two Cities
 - File size is 799,940 bytes
- Build a Huffman code and compress

char	frequency	code	char	frequency	code	char	frequency	code
Chai	nequency	couc	'I'	41005	1011	'R'	37187	0101
'A'	48165	1110	·T?	710	1111011010	·C?	27575	1000
'B '	8414	101000	J	/10	1111011010	3	51515	1000
	10006	101000	'K'	4782	11110111	'T'	54024	000
•°C	13896	00100	ч,	22030	10101	'T T'	16726	01001
'D'	28041	0011	L	22030	10101	U	10720	01001
	20011	011	'M'	15298	01000	'V'	5199	1111010
' E'	74809	011	INT?	42280	1100	• • • • •	1/112	00101
'F'	13559	111111	IN	42300	1100	vv	14115	00101
	10500	111111	'O'	46499	1101	'X'	724	1111011011
G'	12530	111110	'D '	0057	101001	v ,	12177	111100
'H'	38961	1001	Г	9951	101001	1	121//	111100
	50701	1001	'O'	667	1111011001	"Z'	215	1111011000

• File size is now 439,688 bytes

	Raw	Huffman
Size	799,940	439,688

- Huffman's Algorithm: pair up the two letters with the lowest frequency and recurse
- Theorem: Huffman's Algorithm produces a prefixfree code of optimal length
- In what sense is this code really optimal? (Bonus material... will not test you on this)

Length of Huffman Codes

- What can we say about Huffman code length?
 - Suppose $f_i = 2^{-\ell_i}$ for every $i \in \Sigma$
 - Then, $len_T(i) = \ell_i$ for the optimal Huffman code
 - Proof:

Length of Huffman Codes

- What can we say about Huffman code length?
 - Suppose $f_i = 2^{-\ell_i}$ for every $i \in \Sigma$
 - Then, $len_T(i) = \ell_i$ for the optimal Huffman code

•
$$\operatorname{len}(T) = \sum_{i \in \Sigma} f_i \cdot \log_2(1/f_i)$$

Entropy

• Given a set of frequencies (aka a probability distribution) the entropy is

$$H(f) = \sum_{i} f_i \cdot \log_2\left(\frac{1}{f_i}\right)$$

• Entropy is a "measure of randomness"

Entropy

 Given a set of frequencies (aka a probability distribution) the entropy is

$$H(f) = \sum_{i} f_i \cdot \log_2\left(\frac{1}{f_i}\right)$$

- Entropy is a "measure of randomness"
- Entropy was introduced by Shannon in 1948 and is the foundational concept in:
 - Data compression
 - Error correction (communicating over noisy channels)
 - Security (passwords and cryptography)

Entropy of Passwords

- Your password is a specific string, so $f_{pwd} = 1.0$
- To talk about security of passwords, we have to model them as random
 - Random 16 letter string: $H = 16 \cdot \log_2 26 \approx 75.2$
 - Random IMDb movie: $H = \log_2 1764727 \approx 20.7$
 - Your favorite IMDb movie: $H \ll 20.7$
- Entropy measures how difficult passwords are to guess "on average"

Entropy of Passwords

TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Entropy and Compression

 Given a set of frequencies (probability distribution) the entropy is

$$H(f) = \sum_{i} f_i \cdot \log_2\left(\frac{1}{f_i}\right)$$

- Suppose that we generate string *S* by choosing *n* random letters independently with frequencies *f*
- Any compression scheme requires at least H(f) bits-per-letter to store S (as $n \to \infty$)
 - Huffman codes are truly optimal!

But Wait!

- Take the Dickens novel A Tale of Two Cities
 - File size is 799,940 bytes
- Build a Huffman code and compress

char	frequency	code		char	frequency	code		char	frequency	code
Cilai	nequency	Couc	ſ	ʻI'	41005	1011]	'R'	37187	0101
('A'	48165	1110		۰Ţ,	710	1111011010		·S'	37575	1000
'B'	8414	101000		J (TZ)	710	1111011010		ст. 1	57575	1000
'C'	13896	00100		'K'	4782	11110111		• T ″	54024	000
	29041	00100		'Ľ'	22030	10101		'U'	16726	01001
D	28041	0011		'M'	15298	01000		'V'	5199	1111010
'E'	74809	011		(NT)	10290	1100		(XX 7)	14112	00101
'F'	13559	111111		IN	42380	1100		vv	14115	00101
·C?	12520	111110		'O'	46499	1101		'X'	724	1111011011
G	12550	111110		'P'	9957	101001		'Y'	12177	111100
•H'	38961	1001		' O'	667	1111011001		ʻZ'	215	1111011000

- File size is now 439,688 bytes
- But we can do better!

	Raw	Huffman	gzip	bzip2
Size	799,940	439,688	301,295	220,156

What do the frequencies represent?

- Real data (e.g. natural language, music, images) have patterns between letters
 - U becomes a lot more common after a Q
- Possible approach: model pairs of letters
 - Build a Huffman code for pairs-of-letters
 - Improves compression ratio, but the tree gets bigger
 - Can only model certain types of patterns
- Zip is based on an algorithm called LZW that tries to identify patterns based on the data

Entropy and Compression

 Given a set of frequencies (probability distribution) the entropy is

$$H(f) = \sum_{i} f_i \cdot \log_2\left(\frac{1}{f_i}\right)$$

- Suppose that we generate string *S* by choosing *n* random letters independently with frequencies *f*
- Any compression scheme requires at least H(f) bits-per-letter to store S
 - Huffman codes are truly optimal if and only if there is no relationship between different letters!