CS 3000: Algorithms & Data
Jonathan Ullman

Lecture 19:
* Data Compression
 Greedy Algorithms: Huffman Codes

Apr 5, 2018

Data Compression

* How do we store strings of text compactly?

* A binary code is a mapping from X - {0,1}*

* Simplest code: assigh numbers 1,2, ..., |2| to each
symbol, map to binary numbers of [log,|X|] bits
Ae= Jo=== Seoee

B=eoee K== T =
C=0=0 | e=00 U oo=-

o) D=oe M == Veeoeo-
Morse Code: g, Neo W e
Fee=0 (OQmme X =00=-

G == Poe==0 Y=@==-
Heooe Qm==0= 7Z==00
X

Data Compression

* Letters have uneven frequencies!

* Want to use short encodings for frequent letters, long
encodings for infrequent leters

_—-—-
v —
0 10 110 111

Data Compression

* What properties would a good code have?

* Easy to encode a string
Encode(KTS)=—e——o 0 @

* The encoding is short on average
< 4 bits per letter (30 symbols max!)

e Easy to decode a string? Ae=- Jo=== Seee
B=eoe K== T =
Decode(—o——o ® .)= C=0=0 [0e=00 Uoe~-
D=ee M== Veeoeo-
Ee N=e We==
Foee=0 (OQmme X =00=-

G==—0 Poe==0 Y=@==-
Heeooeo Qm==0= 7 ==00

lee Re-eo

Prefix Free Codes

e Cannot decode if there are ambiguities

* e.g.enc(“E”) is a prefix of enc(“S”)

e Prefix-Free Code:

* Abinaryenc: ¥ — {0,1}" such that
for every x # y € X, enc(x) is not a prefix of enc(y)

* Any fixed-length code is prefix-free

Ae=-
B=oeooo
C=0=0
D=oee
E e
Fee=o
G==0
Heooe
KX

Seeoe
T =
Uee=
Veoo=
We==
X=00=
Y=-0==

Q==0= /==900

Re=e

Prefix Free Codes

Code:
a—1
b—011
c—010
d—001
e—000

e Can represent a prefix-free
code as a tree

* Encode by going up the tree (or using a table)
edab—-00110011

* Decode by going down the tree
*01100010010101011

Huffman Codes

* (An algorithm to find) an optimal prefix-free code

eoptimal= min len(T) =)cx fi - leny (i)
prefix—free T
* Note, optimality depends on what you’re compressing

* His the 8™ most frequent letter in English (6.094%) but the 20t
most frquent in Italian (0.636%)

v
0 10 110 111

Huffman Codes

* First Try: split letters into two sets of roughly equal
frequency and recurse

* Balanced binary trees should have low depth

2 | b | c | d | e
.32 .25 .20 .18 .05

Huffman Codes

* First Try: split letters into two sets of roughly equal
frequency and recurse

2 | b | c | d | e
.32 .25 .20 .18 .05

optimal
len=2.23

first try
len =2.25

Huffman Codes

* Huffman’s Algorithm: pair up the two letters with
the lowest frequency and recurse

2 | b | c | d | e
.32 .25 .20 .18 .05

Huffman Codes

* Huffman’s Algorithm: pair up the two letters with
the lowest frequency and recurse

* Theorem: Huffman’s Algorithm produces a prefix-
free code of optimal length

* We'll prove the theorem using an exchange argument

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* (1) In an optimal prefix-free code (a tree), every internal node
has exactly two children

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* (2) If x, y have the lowest frequency, then there is an optimal
code where x, y are siblings and are at the bottom of the tree

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* Proof by Induction on the Number of Letters in X:
* Base case (|X| = 2): rather obvious

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* Proof by Induction on the Number of Letters in X:
* Inductive Hypothesis:

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* Proof by Induction on the Number of Letters in X:
* Inductive Hypothesis:

* Without loss of generality, frequencies are f, ..., f, the
two lowest are f3, f>

* Merge 1,2 into a new letter k + 1 with f,,..1 = f1 + f5

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* Proof by Induction on the Number of Letters in X:
* Inductive Hypothesis:

Without loss of generality, frequencies are f1, ..., f%, the
two lowest are f3, f>

Merge 1,2 into a new letter k + 1 with f,.1 = f1 + />

* By induction, if T' is the Huffman code for f3, ..., frx+1,
then T' is optimal

* Need to prove that T is optimal for f4, ..., fx

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

« If T"is optimal for f5, ..., fi+1 then T is optimal for f3, ..., fx

An Experiment

* Take the Dickens novel A Tale of Two Cities
* File size is 799,940 bytes

* Build a Huffman code and compress

| char | frequency | code |
‘A 48165 1110
‘B’ 8414 | 101000
‘C 13896 | 00100
‘D’ 28041 0011
‘E’ 74809 011
‘F’ 13559 | 111111
‘G’ 12530 | 111110
‘H’ 38961 1001

| char | frequency l code |
‘T 41005 1011
T 710 | 1111011010
‘K’ 4782 11110111
‘T 22030 10101
‘M’ 15298 01000
‘N’ 42380 1100
‘o’ 46499 1101
P’ 9957 101001
‘Q 667 | 1111011001

* File size is now 439,688 bytes

| Raw [Huffman_
DA 799,940

439,688

| char | frequency | code l
‘R’ 37187 0101
‘S’ 37575 1000
‘T’ 54024 000
‘U’ 16726 01001
‘v’ 5199 1111010
‘W’ 14113 00101
‘X’ 724 | 1111011011
‘Y’ 12177 111100
VA 215 | 1111011000

Huffman Codes

* Huffman’s Algorithm: pair up the two letters with
the lowest frequency and recurse

* Theorem: Huffman’s Algorithm produces a prefix-
free code of optimal length

* In what sense is this code really optimal?
(Bonus material... will not test you on this)

Length of Huffman Codes
* What can we say about Huffman code length?
* Suppose f; = 2 i foreveryi € X

* Then, len; (i) = ¢; for the optimal Huffman code

* Proof:

Length of Huffman Codes
* What can we say about Huffman code length?

* Suppose f; = 2 i foreveryi € X
* Then, len; (i) = ¢; for the optimal Huffman code

* len(T) = Qe fi - 1082(1/fi)

Entropy

* Given a set of frequencies (aka a probability
distribution) the entropy is

H(f) =) fi-loga (1)

* Entropy is a “measure of randomness”

Entropy

* Given a set of frequencies (aka a probability
distribution) the entropy is

H(f) =) fi-loga (1)

* Entropy is a “measure of randomness”

* Entropy was introduced by Shannon in 1948 and is
the foundational concept in:
* Data compression
e Error correction (communicating over noisy channels)
* Security (passwords and cryptography)

Entropy of Passwords

* Your password is a specific string, so f,,,4 = 1.0

 To talk about security of passwords, we have to
model them as random
* Random 16 letter string: H = 16 -log, 26 = 75.2
* Random IMDb movie: H = log, 1764727 = 20.7
* Your favorite IMDb movie: H << 20.7

* Entropy measures how difficult passwords are to
guess “on average”

Entropy of Passwords

UJU_LOS?L;[‘E&JFJ‘ oo ~28 BITS OF ENTROPY | | \JAS IT TROMBONE? NG,
0 oooooopo TROUBADOR. AND ONE OF
(Now-GIBBERSH) UmN SoommEER] T O whs A ZERO?
BASE mRD ooono l_li o DTHmE' \ 5 A\
= 3omerr || e SHROL..
Tr@ub4dor 83 || i
R e A omvan
CAPS? GOMMON HESH 15 Rsrgwniwrmrm
0 SUBSTITJTOMS N‘)’ﬂE’?AL il | N
Qoo DIFRCOLTY T0 GUESS: IFFICOLTY TO REMEMRBER:
(\Oumumonmmgr:sro R"\!WON EAED\(HP\RD
IWO»QR«“LE&GM»M) ‘
~ Y4 BITS OF ENTROPY
ooaoooponogao
correct horse ba’cterg R0 (] [——
_'L'_TI;T,I»‘VA JJW 1 :jil‘f—’] ‘_*E]T oo ooOngogooaoo
C U {LT, ooo ooaag |1 10
T T || e
1000 GUESSES/SEC
FOUR RANDOM
COMMON WORDS DIFFICOLTY To GUESS: DIFFIC;LSLU"T: T0 REMEMBER:
E ALREADY
HARD MEMORIZED T

THROUGH 20 YEARS OfF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE' PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS TO GUESS,

Entropy and Compression

* Given a set of frequencies (probability distribution)
the entropy is

H(f) =) fi-loga (1)

e Suppose that we generate string S by choosing n
random letters independently with frequencies f

* Any compression scheme requires at least H(f)
bits-per-letter to store S (as n — o)
* Huffman codes are truly optimall!

But Wait!

* Take the Dickens novel A Tale of Two Cities
* File size is 799,940 bytes

* Build a Huffman code and compress

| char | frequency | code |
‘A 48165 1110
‘B’ 8414 | 101000
‘C 13896 | 00100
‘D’ 28041 0011
‘E’ 74809 011
‘F’ 13559 | 111111
‘G’ 12530 | 111110
‘H’ 38961 1001

| char | frequency l code |
‘T 41005 1011
T 710 | 1111011010
‘K’ 4782 11110111
‘T 22030 10101
‘M’ 15298 01000
‘N’ 42380 1100
‘o’ 46499 1101
P’ 9957 101001
‘Q 667 | 1111011001

* File size is now 439,688 bytes

e But we can do better!

| char | frequency | code l
‘R’ 37187 0101
‘S’ 37575 1000
‘T’ 54024 000
‘U’ 16726 01001
‘v’ 5199 1111010
‘W’ 14113 00101
‘X’ 724 | 1111011011
‘Y’ 12177 111100
VA 215 | 1111011000

| Raw [Huffman | gzip | bzip2
DA 799,940

439,688

301,295

220,156

What do the frequencies represent?

* Real data (e.g. natural language, music, images)
have patterns between letters

e U becomes a lot more common aftera Q

* Possible approach: model pairs of letters
e Build a Huffman code for pairs-of-letters
* Improves compression ratio, but the tree gets bigger
* Can only model certain types of patterns

* Zip is based on an algorithm called LZW that tries to
identify patterns based on the data

Entropy and Compression

e Given a set of frequencies (probability distribution)
the entropy is

H(f) =) fi-loga (1)

* Suppose that we generate string S by choosing n
random letters independently with frequencies f

* Any compression scheme requires at least H(f)
bits-per-letter to store S

* Huffman codes are truly optimal if and only if there
is no relationship between different letters!

