CS3000: Algorithms \& Data Jonathan Ullman

Lecture 17:
More Applications of Network Flow

March 25, 2020

Image Segmentation

Image Segmentation

- Separate image into foreground and background
- We have some idea of:
- whether pixel i is in the foreground or background
- whether pair (i, j) are likely to go together

Image Segmentation

- Input:
- an undirected graph $G=(V, E) ; V=$ "pixels", $E=$ "pairs"
- likelihoods $a_{i}, b_{i} \geq 0$ for every $i \in V$
- separation penalty $p_{i j} \geq 0$ for every $(i, j) \in E$
- Output:
- a partition of V into (A, B) that maximizes

$$
q(A, B)=\sum_{i \in A} a_{i}+\sum_{j \in B} b_{j}-\sum_{\substack{(i, j) \in E \\ \operatorname{btw} A \text { and } B}} p_{i j}
$$

Reduction to MinCut

- Differences between SEG and MINCUT:
- SEG asks us to maximize, MINCUT asks us to minimize

$$
\max _{A, B} \sum_{i \in A} a_{i}+\sum_{j \in B} b_{j}-\sum_{\substack{(i, j) \in E \\ \mathrm{btw} A \text { and } B}} p_{i j} \leadsto \min _{A, B} \sum_{i \in A} b_{i}+\sum_{j \in B} a_{j}+\sum_{\substack{(i, j) \in E \\ \mathrm{btw} A \text { and } B}} p_{i j}
$$

Reduction to MinCut

- Differences between SEG and MINCUT:
- SEG allows any partition, MINCUT requires $s \in A, t \in B$

Reduction to MinCut

- Differences between SEG and MINCUT:
- SEG has edges between A and B, MINCUT considers edges from A to B

$$
\min _{A, B} \sum_{i \in A} b_{i}+\sum_{j \in B} a_{j}+\sum_{\begin{array}{c}
(i, j) \in E \\
\text { btw } A \text { and } B
\end{array}} p_{i j}
$$

Reduction to MinCut

- Differences between SEG and MINCUT:
- SEG has terms for each node in A, B, MINCUT only has terms for edges from A to B

$$
\min _{A, B} \sum_{i \in A} b_{i}+\sum_{j \in B} a_{j}+\sum_{\begin{array}{c}
(i, j) \in E \\
\text { btw } A \text { and } B
\end{array}} p_{i j}
$$

Reduction to MinCut

- How should the reduction work?
- capacity of the cut should correspond to the function we're trying to minimize

$$
\min _{A, B} \sum_{i \in A} b_{i}+\sum_{j \in B} a_{j}+\sum_{\substack{(i, j) \in E \\ \text { from } A \text { to } B}} p_{i j}
$$

Step 1: Transform the Input

Step 2: Receive the Output

Step 3: Transform the Output

Reduction to MinCut

- correctness?
- running time?

Densest Subgraph

Image Segmentation

- Want to identify communities in a network
- "Community": a set of nodes that have a lot of connections inside and few outside

Densest Subgraph

- Input:
- an undirected graph $G=(V, E)$
- Output:
- a subset of nodes $A \subseteq V$ that maximizes $\frac{2|E(A, A)|}{|A|}$

Reduction to MinCut

- Different objectives
- maximize $\frac{2|E(A, A)|}{|A|}$ vs. minimize $|E(A, B)|$
- Suppose $\frac{2|E(A, A)|}{|A|} \geq \delta$ and see what that implies

$$
\begin{aligned}
& \Leftrightarrow 2|E(A, A)| \geq \delta|A| \\
& \Leftrightarrow \Sigma_{v \in A} \operatorname{deg}(v)-|E(A, B)| \geq \delta|A| \\
& \Leftrightarrow \Sigma_{v \in V} \operatorname{deg}(v)-\Sigma_{v \in B} \operatorname{deg}(v)-|E(A, B)| \geq \delta|A| \\
& \Leftrightarrow 2|E|-\Sigma_{v \in B} \operatorname{deg}(v)-|E(A, B)| \geq \delta|A| \\
& \Leftrightarrow \Sigma_{v \in B} \operatorname{deg}(v)+\delta|A|+|E(A, B)| \leq 2|E| \\
& \Leftrightarrow \Sigma_{v \in B} \operatorname{deg}(v)+\Sigma_{v \in A} \delta+\Sigma_{e \text { from } A \text { to } B} 1 \leq 2|E|
\end{aligned}
$$

Reduction to MinCut

$$
\Sigma_{v \in B} \operatorname{deg}(v)+\Sigma_{v \in A} \delta+\Sigma_{e} \text { from } A \text { to } B 1 \leq 2|E|
$$

