CS3000: Algorithms \& Data Jonathan Ullman

Lecture 17:
More Applications of Network Flow

March 25, 2020

Image Segmentation

$$
\text { Set of pixels }[n] \times[\mathrm{m}]
$$

- Separate image into foreground and background
- We have some idea of:
\rightarrow • whether pixel i is in the foreground or background
\longrightarrow • whether pair (i, j) are likely to go together
middle
pixel more
libel to fore round

Image Segmentation
Assume all values in the graph were given externally

- Input: $0=9-9$
$\delta=0-p$
$i=g-8$
$i=d$
- an undirected graph $G=(V, E) ; V=$ "pixels", $E=$ "pairs"
- likelihoods $a_{i}, b_{i} \geq 0$ for every $i \in V \quad a \simeq$ likelihood of forgrowrd
- separation penalty $p_{i j} \geq 0$ for every $(i, j) \in E$
- Output:
- a partition of V into (A, B) that maximizes

Reduction to MinCut, Short for longe Segmentation

- Differences between SEG and MINCUT:
- SEG asks us to maximize, MINCUT asks us to minimize

Reduction to MinCut

- Differences between SEG and MINCUT:
- SEG allows any partition, MINCUT requires $s \in A, t \in B$

(5)
$s \in A$
(s)

Solution: Add "dummy nodes" s and t to the graph

Reduction to MinCut

- Differences between SEG and MINCUT:
- SEG has edges between A and B, MINCUT considers edges from A to B

$$
\min _{A, B} \sum_{i \in A} b_{i}+\sum_{j \in B} a_{j}+\sum_{\substack{(i, j) \in E \\ \text { btw } A \text { and } B}} p_{i j}
$$

Solution:-
Replace undirected edge (iii) ul $i \rightarrow j$ and $j \rightarrow i$ both with capacity pis
 directions

Reduction to MinCut

- Differences between SEG and MINCUT:
- SEG has terms for each node in A, B, MINCUT only has terms for edges from A to B

Solution: Use "dummy" edges from s and t
 capacity: $P_{x y}+P_{x z}$

Reduction to MinCut

- How should the reduction work?
- capacity of the cut should correspond to the function we're trying to minimize

$$
\min _{A, B} \sum_{i \in A} b_{i}+\sum_{j \in B} a_{j}+\sum_{\substack{(i, j) \in E \\ \text { from } A \text { to } B}} p_{i j}
$$

(1) Replace max with min
(2) Replace undirected edges w/ pars of directed edges
(3) Add dummy nodes s, t
(4) Add dummy edges $s \xrightarrow{a_{x}} x \quad x \xrightarrow{b_{x}} t$

Step 1: Transform the Input

Input G' for MINCUT
(1) Replace max with min
$O^{(m)} \rightarrow$ (2) Replace undirected edges w/ pars of directed edges
$O^{(i)} \rightarrow$ (3) Add dummy nodes s, t
$O(n) \rightarrow$ Add dummy edges $s \xrightarrow{a_{x}} x \quad x \xrightarrow{b_{x}} t$
Total Time: $O(m+n)$

Step 2: Receive the Output
$\{u, u, v, x\}$ were the ongmal graph

(A, B) is a mmmum s, t at in G^{\prime}

Running Time:
Solve mincut on a graph with $n+2$ nodes and $2 m+2 n$ edges $\longrightarrow O(m n)$ time

Step 3: Transform the Output

Output (A,B) for MINCUT

Return partition

$$
\begin{aligned}
& A=\{u, v\} \\
& B=\{w, x\}
\end{aligned}
$$

Time: $O(n)$

Reduction to MinCut

- correctness?
- Every partition (A, B) of the argal modes corresponds to an $s, t \operatorname{cut}(A \cup\{s, B \cup\{t\})$
- For every s, t on $(A \cup\{s\}, B \cup\{t\})$ the capacity is \square $\sum_{i \in A} b_{i}+\sum_{i \in B} a_{i}+\sum_{\substack{(i, j) \\ i \in A}} P_{i \in B}$
- running time?

$$
\text { ? } 1
$$

$$
i \in A \quad j \in B
$$

Total Time:
$O(m n)$ minimize

Bottleneck is solving minimum cut

Matagersegremeriten Densest Subgraph

- Want to identify communities in a network
- "Community": a set of nodes that have a lot of connections inside and few outside
 $100,000,000$ nodes

1000 edger arrive

Densest Subgraph

- Input:
- an undirected graph $G=(V, E)$
- Output:

$$
\frac{2 \cdot{ }^{\#} \text { of edges mside } A}{\text { }_{\text {of }} \text { nodes in A }}
$$

- a subset of nodes $A \subseteq V$ that maximizes $\frac{2|E(A, A)|}{|A|}$
- $E\left(A_{0} A\right)=$ set of edges u/ both erdporntsin A
- $E(A, B)=$ set of edges 4 one endpontom A, one B
(i) DS uses ar undirected graph
(2) DS lets us choose any set A
< MINCUT uses a divactedy Mincer lets choose si out
(1)

(2)

Add "dummy" nodes $s_{u} t$

Same transformations as $S E G$

Need to transform the objective function:

$$
\frac{D S}{|A|}
$$

Calm: If I can ask yes loo Reduction to MinCut \rightarrow questions "Is the DS duce

- Different objectives than 8?" then I can find the densest subgraph.
- maximize $\frac{2|E(A, A)|}{|A|}$ vs. minimize $|E(A, B)|$
- Suppose $\frac{2|E(A, A)|}{|A|} \geq \delta$ and see what that implies

$$
\begin{aligned}
& \Leftrightarrow 2|E(A, A)| \geq \delta|A| \\
& \Leftrightarrow \Sigma_{v \in A} \operatorname{deg}(v)-|E(A, B)| \geq \delta|A| \\
& \Leftrightarrow \Sigma_{v \in V} \operatorname{deg}(v)-\Sigma_{v \in B} \operatorname{deg}(v)-|E(A, B)| \geq \delta|A| \\
& \Leftrightarrow 2|E|-\Sigma_{v \in B} \operatorname{deg}(v)-|E(A, B)| \geq \delta|A| \\
& \Leftrightarrow \Sigma_{v \in B} \operatorname{deg}(v)+\delta|A|+|E(A, B)| \leq 2|E| \\
& \Leftrightarrow \Sigma_{v \in B} \operatorname{deg}(v)+\Sigma_{v \in A} \delta+\Sigma_{e} \text { from } A \text { to } B \\
& 1 \leq 2|E|
\end{aligned}
$$

Clem: If I can ask yes loo
Reduction to MinCut \rightarrow questions "Is the DS duce

- Different objectives than 8?" then I can find the densest subgraph.
- maximize $\frac{2|E(A, A)|}{|A|}$ vs. minimize $|E(A, B)|$
- Suppose $\frac{2|E(A, A)|}{|A|} \geq \delta$ and see what that implies

$$
\begin{aligned}
& \Leftrightarrow 2|E(A, A)| \geq \delta|A| \\
& \sum_{u \in A} \operatorname{deg}(v) \\
& \Leftrightarrow \Sigma_{v \in A} \operatorname{deg}(v)-|E(A, B)| \geq \delta|A|=\sum_{v \in A} \operatorname{deg}(v)+\sum_{v \in B} \operatorname{deg}(v)-\sum_{v \in B} \operatorname{deg}(v) \\
& \Leftrightarrow \underline{\Sigma_{v \in V} \operatorname{deg}(v)-\Sigma_{v \in B} \operatorname{deg}(v)}-|E(A, B)| \geq \delta|A|=\sum_{v \in V} \operatorname{deg}(v)-\sum_{v \in B} \operatorname{deg}(v) \\
& \Leftrightarrow 2|E|-\Sigma_{v \in B} \operatorname{deg}(v)-|E(A, B)| \geq \delta|A| \\
& \Leftrightarrow \Sigma_{v \in B} \operatorname{deg}(v)+\delta|A|+|E(A, B)| \leq 2|E| \\
& \Leftrightarrow \Sigma_{v \in B} \operatorname{deg}(v)+\Sigma_{v \in A} \delta+\Sigma_{e} \text { from } A \text { to } B 1 \leq 2|E| \\
& \delta|A| \underset{\substack{\text { end } \\
A \rightarrow B}}{\substack{\operatorname{ten}(A, B) \mid}} \\
& =\sum_{v \in A} \delta
\end{aligned}
$$

$$
\sum_{v \in B} \operatorname{deg}(v)+\sum_{v \in A} \delta+\sum_{\substack{e \\ \text { from } A+\infty}} 1
$$

If the value is $\leq 2|E|$ then the subgraph A has

$$
\frac{2 \cdot|E(A, A)|}{|A|} \geqslant \delta
$$

Reduction to MinCut

$$
\Sigma_{v \in B} \operatorname{deg}(v)+\Sigma_{v \in A} \delta+\Sigma_{e \text { from } A \text { to } B} 1 \leq 2|E|
$$

This graph has mmecut $\leq 2|E|$ if and only if \exists a subgraph of dusitg $\geqslant \delta$

