

CS3000: Algorithms & Data Jonathan Ullman

Lecture 16:

• Applications of Network Flow

March 23, 2020

Midterm II

• Logistics:

- Wednesday April 1st
- Administratered through Gradescope
- Exam will be available from 2:50pm until ____
- You have 90 minutes from the time you start

• Academic Honesty:

- You will have to take an honor pledge
- Do not discuss the exam with **anyone** for 24 hours
- Please be a good citizen

Midterm II

- Format:
 - Same as Midterm I, but condensed for Gradescope
- Topics (graph algos):
 - Key graph definitions and concepts
 - Adjacency list / matrix representations
 - DFS + topological sort 4
 - Shortest paths: BFS, Dijkstra, Bellman-Ford
 - Network flow: concepts, Ford-Fulkerson, choosing paths
 - Does not include this week

• Minimum | Spanning | Tree

Applications of Network Flow

If I have seen further than others, it is by standing upon the shoulders of giants.

Isaac Newton

www.thequotes.in

Applications of Network Flow

- Algorithms for maximum flow can be used to solve:
 - Bipartite Matching
 - Disjoint Paths
 - Survey Design
 - Matrix Rounding
 - Auction Design
 - Fair Division

...

- Project Selection
- Baseball Elimination
- Airline Scheduling

If a problem can be solved in polynomial time, then it can be written as an application of max flow.

Reduction

• **Definition:** a **reduction** is an efficient algorithm that solves problem A using calls to function that solves problem B.

Mechanics of Reductions

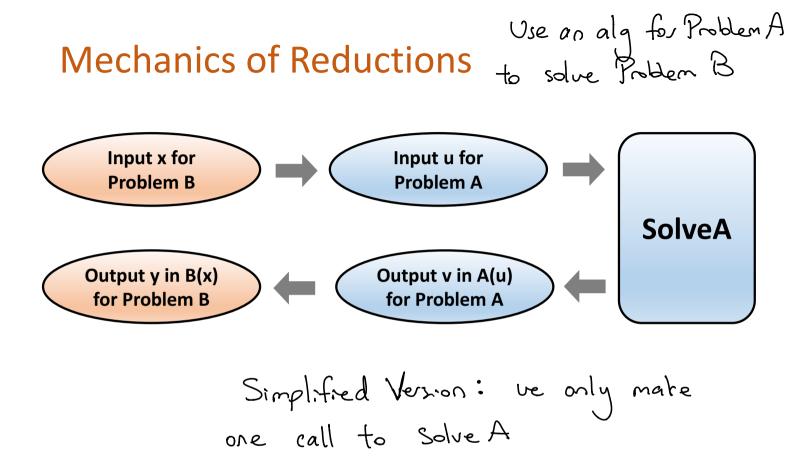
- What exactly is a **problem**?
 - A set of legal inputs X (e.g. a list of numbers A[1] A[1])

(e.g. A m sorted order)

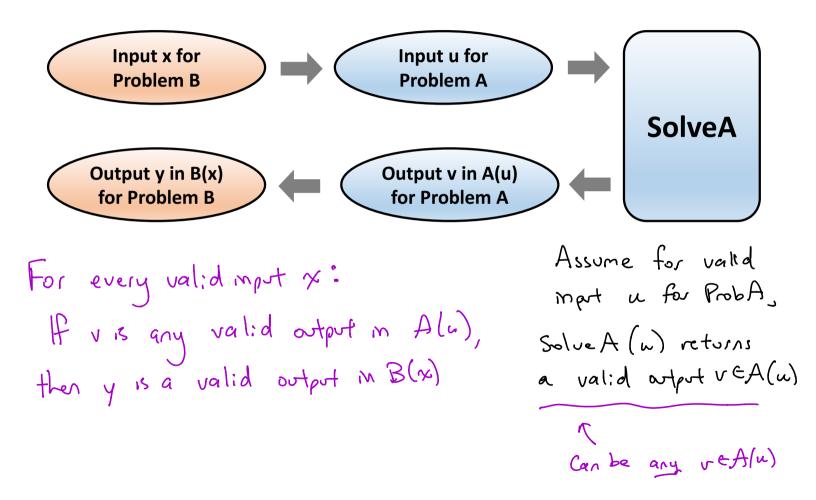
• A set A(x) of legal outputs for each $x \in X$

• **Example:** integer maximum flow

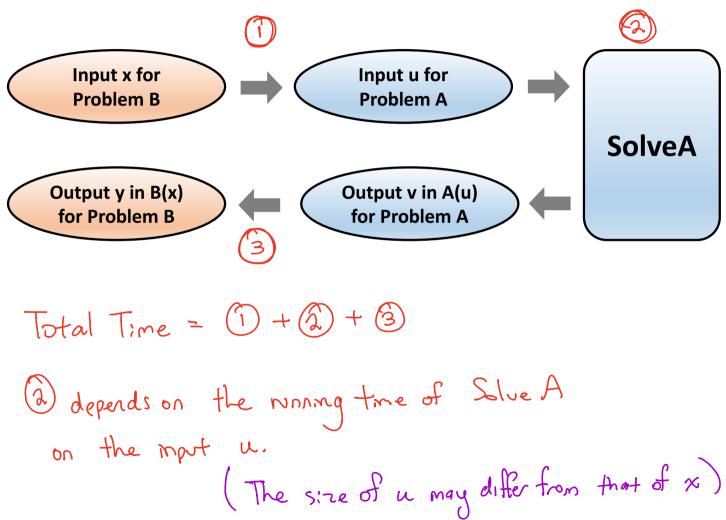
Inputs: G = (V, E, §cle)3, s, t) where c(e) is an integer for every eFE. Outputs: A maximum flow §f(e)3 for G where f(e) is an integer for every eFE.



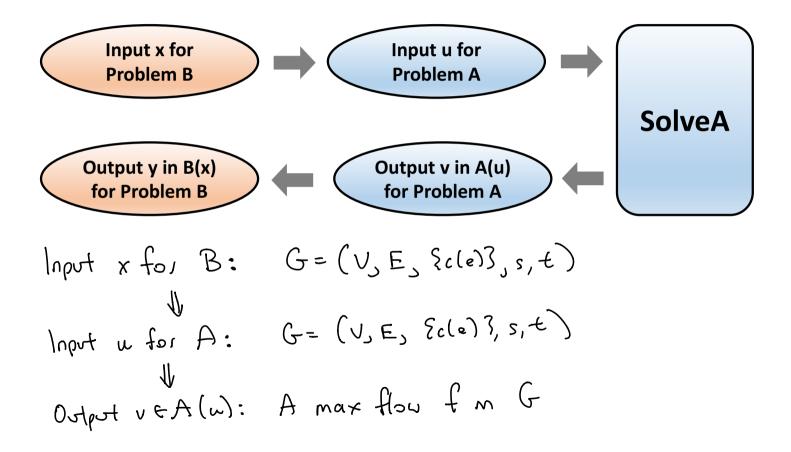
When is a Reduction Correct?



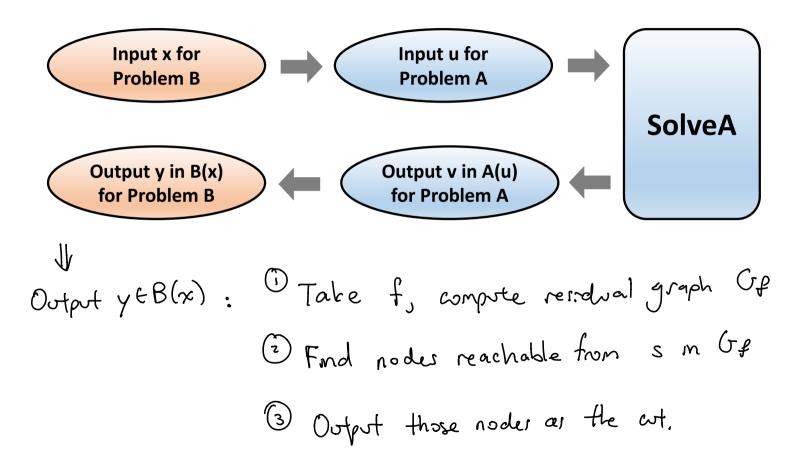
What is the Running Time?

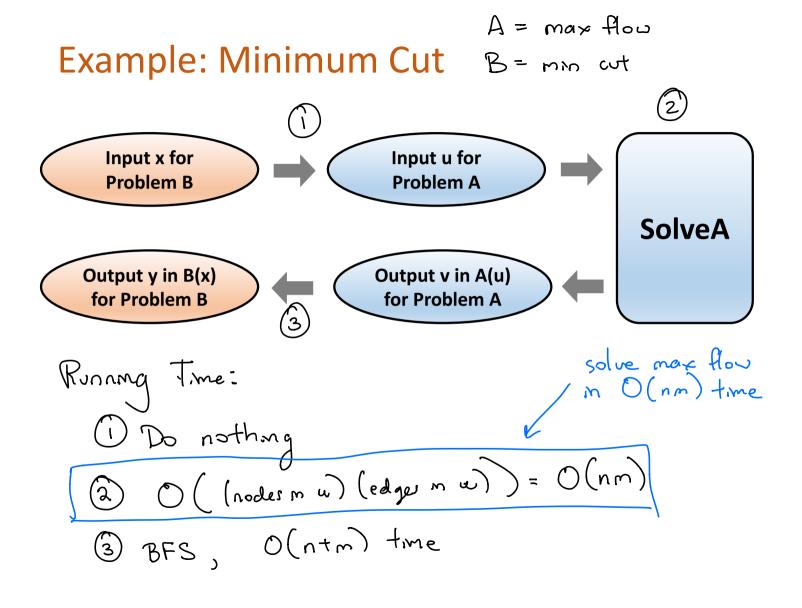


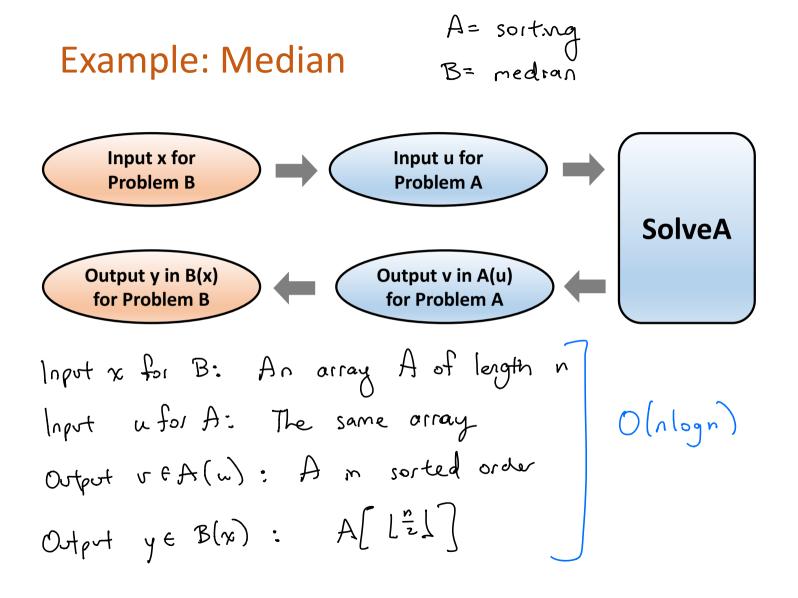
A = max flow Example: Minimum Cut B = min out



A = max flow Example: Minimum Cut B = min cut







Bipartite Matching

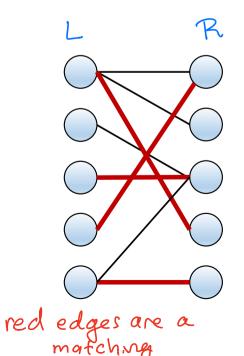
Ve=(u,v)&E

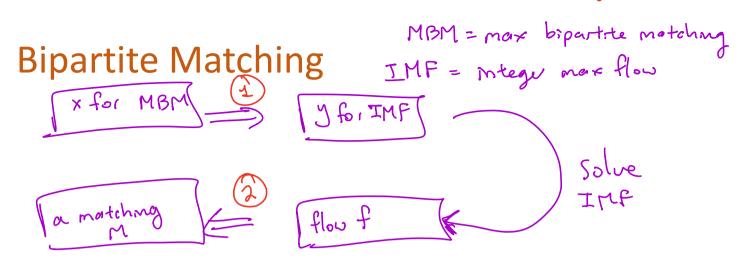
utly vEP or vice versa

- Input: bipartite graph G = (V, E) with $V = L \cup R$
- Output: a maximum cardinality matching
 - A matching M ⊆ E is a set of edges such that every node v is an endpoint of at most one edge in M
 - Cardinality = |M|

Models any problem where one type of object is assigned to another type:

- doctors to hospitals
- jobs to processors
- advertisements to websites

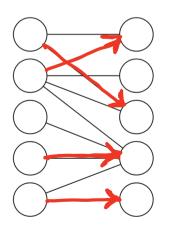


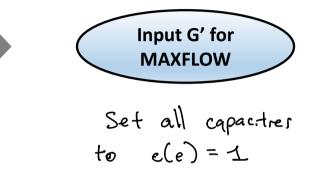


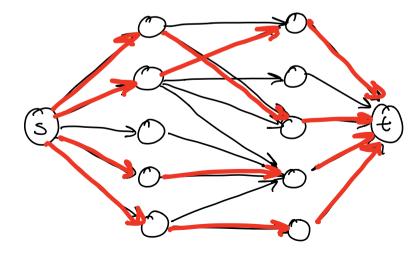
• There is a reduction that uses integer maximum s-t flow to solve maximum bipartite matching.

Step 1: Transform the Input

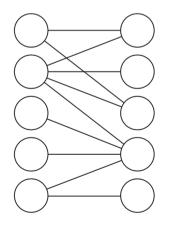
A matching gives a set of non-overlapping gipes from L to R

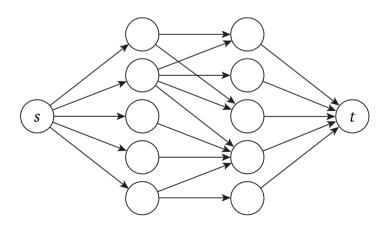




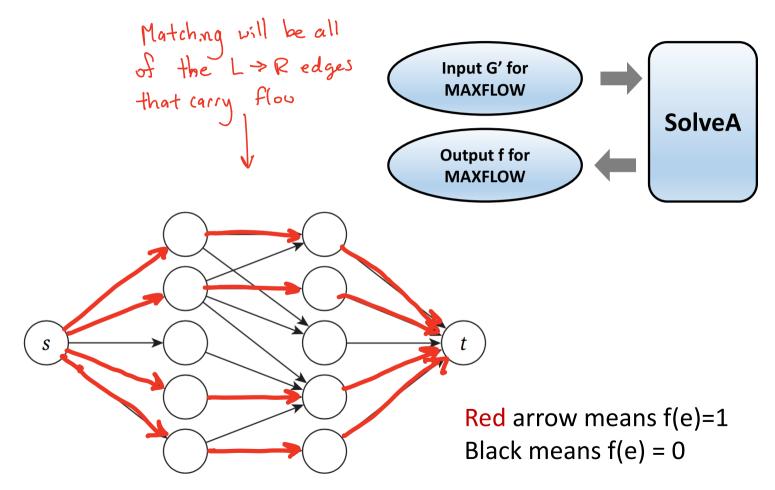


Step 1: Transform the Input

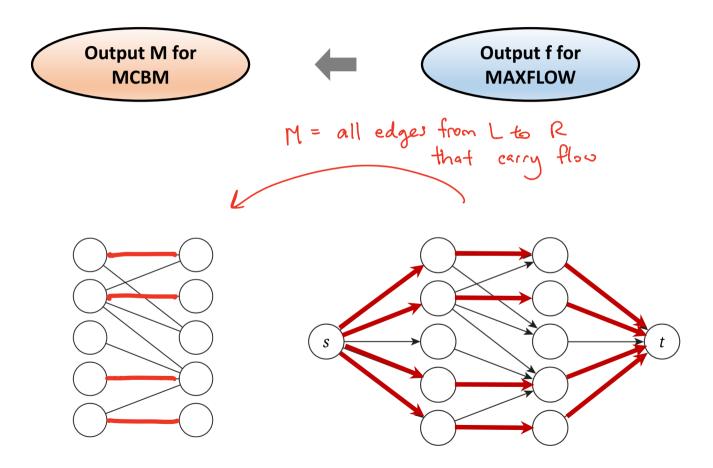




Step 2: Receive the Output



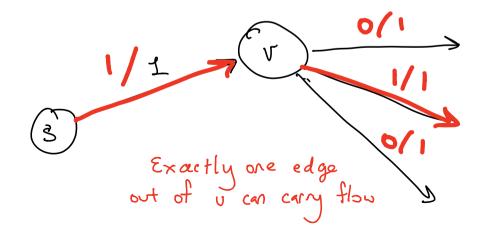
Step 3: Transform the Output



Reduction Recap

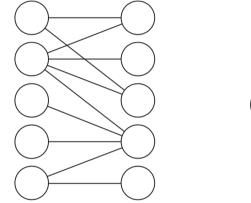
- Step 1: Transform the Input
 - Given G = (L,R,E), produce G' = (V,E,{c(e)},s,t) by...
 - ... orienting edges e from L to R
 - ... adding a node s with edges from s to every node in L
 - ... adding a node t with edges from every not in R to t
 - ... seting all capacities to 1
- Step 2: Receive the Output
 - Find an integer maximum s-t flow f in G'
- Step 3: Transform the Output
 - Given an integer s-t flow f(e)...
 - Let M be the set of edges e going from L to R that have f(e)=1

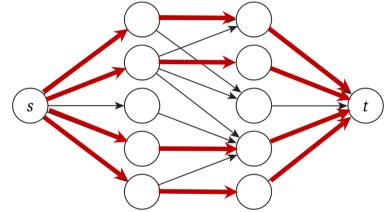
- Need to show:
 - (1) This algorithm returns a matching
 - (2) This matching is a maximum cardinality matching



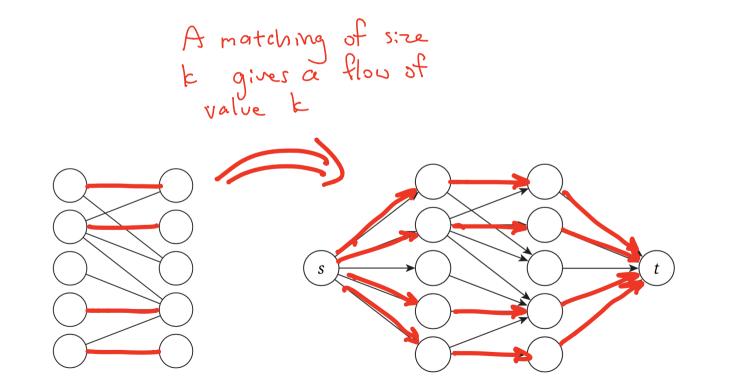
- Need to show:
 - (1) This algorithm returns a matching
 - (2) This matching is a maximum cardinality matching

• This algorithm returns a matching

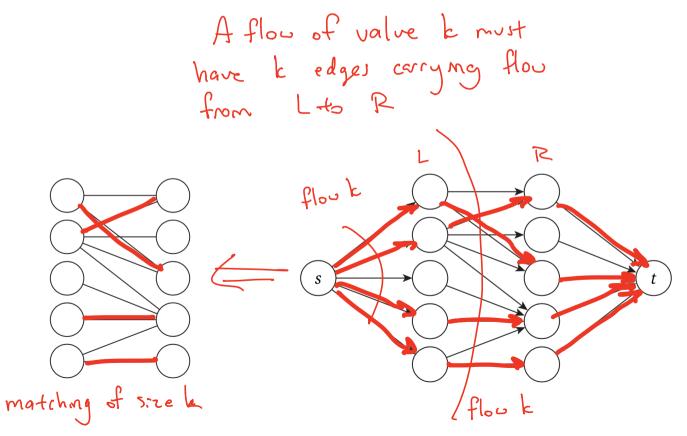




 Claim: G has a matching of cardinality at least k if and only if G' has an s-t flow of value at least k



 Claim: G has a matching of cardinality at least k if and only if G' has an s-t flow of value at least k



Running Time

- Need to analyze the time for:
 - (1) Producing G' given G
 - (2) Finding a maximum flow in G'
 - (3) Producing M given G'

Solving maximum s-t flow in a graph with n+2 nodes and m+n edges and c(e) = 1 in time T

Intege

Solving maximum bipartite matching in a graph with n nodes and m edges in time T + O(m+n)

- Can solve max bipartite matching in time O(nm) using Ford-Fulkerson
 - Improvement for maximum flow gives improvement for maximum bipartite matching

Hall's Theorem:
G has a perfect matching
iff there does not exist a
set of nodes SEL
such that
$$|\Gamma(S)| \leq |S|$$

 $\Gamma(S)$ is the
set of all neighbors
of node MS