
CS3000:	Algorithms	&	Data
Jonathan	Ullman

Lecture	14:	
• Network	Flow:	flows,	cuts,	duality
• Ford-Fulkerson
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Flow	Networks



Flow	Networks
• Directed	graph	! = #, %
• Two	special	nodes:	source	& and	sink	'
• Edge	capacities	( )
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Flows
• An	s-t	flow is	a	function	* ) such	that

• For	every	) ∈ %,	0 ≤ * ) ≤ ( ) (capacity)
• For	every	. ∈ %,	∑ * )�

1	34	56	7 = ∑ * )�
1	685	69	7 (conservation)

• The	value of	a	flow	is	.:; * = 	∑ * )�
1	685	69	<
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Maximum	Flow	Problem
• Given	! = (#, %, &, ', {(())}),	find	an	s-t	flow	of	max.	value
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Cuts
• An	s-t	cut is	a	partition	(A, B) of	# with	& ∈ A and	' ∈ B

• The	capacity of	a	cut	(A, B) is	(:C A, B = ∑ ( )�
1	685	69	D
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Minimum	Cut	problem
• Given	! = (#, %, &, ', {(())}),	find	an	s-t	cut	of	min.	capacity
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Flows	vs.	Cuts
• Fact:	If	* is	any	s-t	flow	and	(A, B) is	any	s-t	cut,	then	the	
net	flow	across	(A, B) is	equal	to	the	amount	leaving	s	

E * )
�
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− E * )
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Weak	MaxFlow-MinCut	Duality

• For	any	s-t	flow	* and	any	s-t	cut	(A, B) .:; * ≤ (:C A, B

• If	* is	a	flow,	(A, B) is	a	cut,	and	.:;(*) = (:C(A, B),	then	
* is	a	max	flow	and	(A, B) is	a	min	cut

val f 2 fle I fce
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Augmenting	Paths
• Given	a	network	!	 = 	 (#, %, &, ', ( ) ) and	a	flow	*,	an	
augmenting	path	G is	an	& → ' path	such	that	*()) < (())
for	every	edge	) ∈ G
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Greedy	Max	Flow
• Start	with	* ) = 0 for	all	edges	) ∈ %
• Find	an	augmenting	path G
• Repeat	until	you	get	stuck
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Does	Greedy	Work?
• Greedy	gets	stuck	before	finding	a	max	flow
• How	can	we	get	from	our	solution	to	the	max	flow?

s

1

2

t

10

10

20 0

0 20

20

20

20

30 s

1

2

t

10

10

20 10

10 20

10

20

20

30

greedy optimal

NBA diff btw two flows

The difference b to the Tuo flows
is an almost path that

to
useS L 2 in reverse

10

10



Residual	Graphs
• Original	edge:		)	 = J, . ∈ 	%.

• Flow *()),	capacity	(())

• Residual	edge
• Allows	“undoing”	flow
• ) = J, . and )K = ., J .
• Residual	capacity

• Residual	graph !L = #, %L
• Edges	with	positive	residual	capacity.
• %*	 = 	 ) ∶ 	* ) < 	( ) 	∪ 	 )O ∶ 	( ) > 	0 .
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Augmenting	Paths	in	Residual	Graphs
• Let	!L be	a	residual	graph
• Let	G be	an	augmenting	path	in	the	residual	graph
• Fact: *’	 = 	Augment(!L, G) is	a	valid	flow

Augment(Gf, P)
b ¬ the minimum capacity of an edge in P
for e Î P

if e Î E: f(e) ¬ f(e) + b
else:      f(e) ¬ f(e) - b

return f



Ford-Fulkerson	Algorithm
• Start	with	* ) = 0 for	all	edges	) ∈ %
• Find	an	augmenting	path G in	the	residual	graph
• Repeat	until	you	get	stuck
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Ford-Fulkerson	Algorithm

Augment(Gf, P)
b ¬ the minimum capacity of an edge in P
for e Î P

if e Î E: f(e) ¬ f(e) + b
else:      f(e) ¬ f(e) - b

return f

FordFulkerson(G,s,t,{c(e)})
for e Î E: f(e) ¬ 0
Gf is the residual graph

while (there is an s-t path P in Gf)
f ¬ Augment(Gf,P)
update Gf

return f

Finding apathtakes
G 6 0 men by BFS

1 0 mtn toaugment
11 0 mtn to updatetheresidual graph



Ford-Fulkerson	Demo
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Ford-Fulkerson	Demo
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Ford-Fulkerson	Demo
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Ford-Fulkerson	Demo
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What	do	we	want	to	prove?



Running	Time	of	Ford-Fulkerson
• For	integer	capacities,≤ .:; *∗ augmentation	steps

• Can	perform	each	augmentation	step	in	[ \ time
• find	augmenting	path	in	[ \
• augment	the	flow	along	path	in	[ ]
• update	the	residual	graph	along	the	path	in	[ ]

• For	integer	capacities,	FF	runs	in	[ \ ⋅ .:; *∗ time
• [ \] time	if	all	capacities	are	(1 = 1
• [ \]`abc time	for	any	integer	capacities	≤ `abc
• Problematic	when	capacities	are	large—more	on	this	later!

Assume for now



Correctness of	Ford-Fulkerson
• Theorem: * is	a	maximum	s-t	flow	if	and	only	if	there	is	no	
augmenting	s-t	path	in	!L

• Strong	MaxFlow-MinCut Duality:	The	value	of	the	max	s-t	
flow	equals	the	capacity	of	the	min	s-t	cut	

• We’ll	prove	that	the	following	are	equivalent	for	all	*
1. There	exists	a	cut	(A, B) such	that	.:; * = (:C(A, B)
2. Flow	* is	a	maximum	flow
3. There	is	no	augmenting	path	in	!L

ve y G
dua de



Optimality	of	Ford-Fulkerson
• Theorem:	the	following	are	equivalent	for	all	*

1. There	exists	a	cut	(A, B) such	that	.:; * = (:C(A, B)
2. Flow	* is	a	maximum	flow
3. There	is	no	augmenting	path	in	!L



Optimality	of	Ford-Fulkerson
• (3	→ 1) If	there	is	no	augmenting	path	in	!L,	then	there	is	a	
cut	(A, B) such	that	.:;(*) = (:C(A, B)
• Let	A be	the	set	of	nodes	reachable	from	& in	!L
• Let	B be	all	other	nodes

Note SEA c B because there is no augmentingpath



Optimality	of	Ford-Fulkerson
• (3	→ 1) If	there	is	no	augmenting	path	in	!L,	then	there	is	a	
cut	(A, B) such	that	.:;(*) = (:C(A, B)
• Let	A be	the	set	of	nodes	reachable	from	& in	!L
• Let	B be	all	other	nodes
• Key	observation:	no	edges	in	!L go	from	A to	B

• If	) is	A → B,	then * ) = ( )
• If	) is	B → A,	then	* ) = 0

original network
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Summary
• The	Ford-Fulkerson	Algorithm	solves	maximum	s-t	flow

• Running	time	[ \ ⋅ .:; *∗ in	networks	with	integer	capacities

• Strong	MaxFlow-MinCut Duality:	max	flow	=	min	cut
• The	value	of	the	maximum	s-t	flow	equals	the	capacity	of	the	
minimum	s-t	cut	

• If	*∗ is	a	maximum	s-t	flow,	then	the	set	of	nodes	reachable	from	s	
in	!L∗ gives	a	minimum	cut

• Given	a	max-flow,	can	find	a	min-cut	in	time	[ ] +\
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Ask	the	Audience
• Is	this	a	maximum	flow?

• Is	there	an	integer	maximum	flow?
• Does	every	graph	with	integer	capacities have	an	integer	
maximum	flow?
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Summary
• The	Ford-Fulkerson	Algorithm	solves	maximum	s-t	flow	

• Running	time	[ \ ⋅ .:; *∗ in	networks	with	integer	capacities

• Strong	MaxFlow-MinCut Duality:	max	flow	=	min	cut
• The	value	of	the	maximum	s-t	flow	equals	the	capacity	of	the	
minimum	s-t	cut	

• If	*∗ is	a	maximum	s-t	flow,	then	the	set	of	nodes	reachable	from	s	
in	!L∗ gives	a	minimum	cut

• Given	a	max-flow,	can	find	a	min-cut	in	time	[ ] +\

• Every	graph	with	integer	capacities	has	an	integer	
maximum	flow
• Ford-Fulkerson	will	return	an	integer	maximum	flow


