CS3000: Algorithms \& Data Jonathan Ullman

Lecture 13:

- Minimum Spanning Trees

Mar 9, 2020

Midterm II

- In Class Wednesday March 25 ${ }^{\text {th }}$
- Working on a backup plan
- Exactly the same format/rules as Midterm I
- Topics: Graph Algorithms
- Key definitions, properties
- Representing graphs
- DFS and topological sort
- Shortest Paths: BFS, Dijkstra, Bellman-Ford
- Minimum spanning trees
- Network flow
this week

Minimum Spanning Trees

Network Design

- Build a cheap, well connected network
- We are given
- a set of nodes $V=\left\{v_{1}, \ldots, v_{n}\right\}$
- a set of potential edges $E \subseteq V \times V$
- Want to build a network to connect these locations
- Every v_{i}, v_{j} must be well connected
- Must be as cheap as possible
- Many variants of network design
- Recall the bus routes problem from HW2

Minimum Spanning Trees (MST)

- Input: a weighted graph $G=\left(V, E,\left\{w_{e}\right\}\right)$
- Undirected, connected, weights may be negative
- All edge weights are distinct (makes life simpler)
- Output: a minimum weight spanning tree T
- A spanning tree of G is a subset of $T \subseteq E$ of the edges such that (V, T) forms a tree
- Weight of a tree T is the sum of the edge weights
- We'll use T^{*} to denote "the" minimum spanning tree

Minimum Spanning Trees (MST)

Minimum Spanning Trees (MST)

MST Algorithms

- There are at least four reasonable MST algorithms
- Borůvka's Algorithm: start with $T=\emptyset$, in each round add cheapest edge out of each connected component
- Prim's Algorithm: start with some s, at each step add cheapest edge that grows the connected component
- Kruskal's Algorithm: start with $T=\emptyset$, consider edges in ascending order, adding edges unless they create a cycle
- Reverse-Kruskal: start with $T=E$, consider edges in descending order, deleting edges unless it disconnects

Cycles and Cuts

- Cycle: a set of edges $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{k}, v_{1}\right)$

Cycle C = (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)
- Cut: a partition of the nodes into S, \bar{S}

$$
\begin{array}{ll}
\text { Cut S } & =\{4,5,8\} \\
\text { Cutset } & =(5,6),(5,7),(3,4),(3,5),(7,8)
\end{array}
$$

Cycles and Cuts

- Fact: a cycle and a cutset intersect in an even number of edges

Cycles and Cuts

- Fact: removing an edge from a cycle doesn't disconnect any nodes

Properties of MSTs

- Cut Property: Let S be a cut. Let e be the minimum weight edge cut by S. Then the MST T^{*} contains e
- We call such an e a safe edge
- Cycle Property: Let C be a cycle. Let f be the maximum weight edge in C. Then the MST T^{*} does not contain f.
- We call such an f a useless edge

Proof of Cut Property

- Cut Property: Let S be a cut. Let e be the minimum weight edge cut by S. Then the MST T^{*} contains e

Proof of Cycle Property

- Cycle Property: Let C be a cycle. Let f be the max weight edge in C. The MST T^{*} does not contain f.

Ask the Audience

- Assume G has distinct edge weights
- True/False? If e is the edge with the smallest weight, then e is always in the MST T^{*}
- True/False? If f is the edge with the largest weight, then f is never in the MST T^{*}

The "Only" MST Algorithm

- GenericMST:
- Let $T=\emptyset$
- Repeat until T is connected:
- Find one or more safe edges not in T
- Add safe edges to T
- Theorem: GenericMST outputs an MST

Borůvka’s Algorithm

- Borůvka:
- Let $T=\emptyset$
- Repeat until T is connected:
- Let C_{1}, \ldots, C_{k} be the connected components of (V, T)
- Let e_{1}, \ldots, e_{k} be the safe edge for the cuts C_{1}, \ldots, C_{m}
- Add e_{1}, \ldots, e_{k} to T
- Correctness: every edge we add is safe

Borůvka's Algorithm Label Connected Components

Borůvka's Algorithm Add Safe Edges

Borůvka's Algorithm

Label Connected Components

Borůvka's Algorithm Add Safe Edges

Borůvka's Algorithm Done!

Borůvka's Algorithm (Running Time)

- Borůvka
- Let $T=\emptyset$
- Repeat until T is connected:
- Let C_{1}, \ldots, C_{k} be the connected components of (V, T)
- Let e_{1}, \ldots, e_{k} be the safe edge for the cuts C_{1}, \ldots, C_{m}
- Add e_{1}, \ldots, e_{k} to T
- Running time
- How long to find safe edges?
- How many times through the main loop?

Borůvka's Algorithm (Running Time)

FindSafeEdges (G,T):

find connected components C_{1}, \ldots, C_{k}
let $L[v]$ be the component of node v
Let $S[i]$ be the safe edge of C_{i}
for each edge (u, v) in E :

If $\mathrm{L}[\mathrm{u}] \neq \mathrm{L}[\mathrm{v}]:$

If $w(u, v)<w(S[L[u]]):$
$S[L[u]]=(u, v)$
If $w(u, v)<w(S[L[v]]):$
$S[L[v]]=(u, v)$
Return $\{\mathrm{S}[1], \ldots, \mathrm{S}[\mathrm{k}]\}$

Borůvka's Algorithm (Running Time)

- Claim: every iteration of the main loop halves the number of connected components.

Borůvka's Algorithm (Running Time)

- Borůvka
- Let $T=\emptyset$
- Repeat until T is connected:
- Let C_{1}, \ldots, C_{k} be the connected components of (V, T)
- Let e_{1}, \ldots, e_{k} be the safe edge for the cuts C_{1}, \ldots, C_{m}
- Add e_{1}, \ldots, e_{k} to T
- Running Time:
- How long to find safe edges?
- How many times through the main loop?

Prim's Algorithm

- Prim Informal

- Let $T=\emptyset$
- Let s be some arbitrary node and $S=\{s\}$
- Repeat until $S=V$
- Find the cheapest edge $e=(u, v)$ cut by S. Add e to T and add v to S
- Correctness: every edge we add is safe

Prim's Algorithm

Prim's Algorithm

$\operatorname{Prim}(G=(V, E))$

let Q be a priority queue storing V
value [v] $\leftarrow \infty$, last[v] $\leftarrow \perp$
value[s] $\leftarrow 0$ for some arbitrary s
while $(Q \neq \emptyset)$:
$u \leftarrow$ ExtractMin (Q)
for each edge (u, v) in E : if $v \in Q$ and $w(u, v)<$ value[v]: DecreaseKey (v,w(u,v)) last[v] $\leftarrow u$
$T=\{(1$, last[1]),..,$(n, l a s t[n])\}$ (excluding $s)$ return T

Kruskal's Algorithm

- Kruskal's Informal
- Let $T=\emptyset$
- For each edge e in ascending order of weight:
- If adding e would decrease the number of connected components add e to T
- Correctness: every edge we add is safe

Kruskal's Algorithm

Implementing Kruskal's Algorithm

- Union-Find: group items into components so that we can efficiently perform two operations:
- Find(u): lookup which component contains u
- Union($u, v)$: merge connected components of u, v
- Can implement Union-Find so that
- Find takes O (1) time
- Any k Union operations takes $O(k \log k)$ time

Kruskal's Algorithm (Running Time)

- Kruskal's Informal
- Let $T=\emptyset$
- For each edge e in ascending order of weight:
- If adding e would decrease the number of connected components add e to T
- Time to sort:
- Time to test edges:
- Time to add edges:

Comparison

- Can compute MST in time $\mathbf{O}(\boldsymbol{m} \log m)$
- Boruvka's Algorithm:
- Only algorithm worth implementing
- Low overhead, can be easily parallelized
- Each iteration takes $O(m)$, very few iterations in practice
- Prim's/Kruskal's Algorithms:
- Reveal useful structure of MSTs
- Templates for other algorithms

