
CS3000:	Algorithms	&	Data
Jonathan	Ullman

Lecture	13:	
• Minimum	Spanning	Trees

Mar	9,	2020



Midterm	II

• In	Class	Wednesday	March	25th
• Working	on	a	backup	plan

• Exactly	the	same	format/rules	as	Midterm	I
• Topics:	Graph	Algorithms
• Key	definitions,	properties
• Representing	graphs
• DFS	and	topological	sort
• Shortest	Paths:	BFS,	Dijkstra,	Bellman-Ford
• Minimum	spanning	trees
• Network	flow } this	week



Minimum	Spanning	Trees



Network	Design

• Build	a	cheap,	well	connected	network
• We	are	given
• a	set	of	nodes 𝑉 = 𝑣$,… , 𝑣'
• a	set	of	potential	edges 𝐸 ⊆ 𝑉×𝑉

• Want	to	build	a	network	to	connect	these	locations
• Every	𝑣+, 𝑣, must	be	well	connected
• Must	be	as	cheap as	possible

• Many	variants	of	network	design
• Recall	the	bus	routes	problem	from	HW2



Minimum	Spanning	Trees	(MST)

• Input: a	weighted	graph	𝐺 = 𝑉, 𝐸, 𝑤/
• Undirected, connected,	weights	may	be	negative
• All	edge	weights	are	distinct (makes	life	simpler)

• Output: a	minimum	weight	spanning	tree	𝑇
• A	spanning	tree of	𝐺 is	a	subset	of	𝑇 ⊆ 𝐸 of	the	edges	
such	that	 𝑉, 𝑇 forms	a	tree
• Weight of	a	tree	𝑇 is	the	sum	of	the	edge	weights
• We’ll	use	𝑇∗ to	denote	“the” minimum	spanning	tree



Minimum	Spanning	Trees	(MST)

6 12
5

14

3

8

10

15

9

7



Minimum	Spanning	Trees	(MST)

6 12
5

14

3

8

10

15

9

7



MST	Algorithms

• There	are	at	least	four	reasonable	MST	algorithms
• Borůvka’s Algorithm: start	with	𝑇 = ∅,	in	each	round	
add	cheapest	edge	out	of	each	connected	component

• Prim’s	Algorithm: start	with	some	𝑠,	at	each	step	add	
cheapest	edge	that	grows	the	connected	component

• Kruskal’s Algorithm: start	with	𝑇 = ∅,	consider	edges	in	
ascending	order,	adding	edges	unless	they	create	a	cycle

• Reverse-Kruskal: start	with	𝑇 = 𝐸,	consider	edges	in	
descending	order,	deleting	edges	unless	it	disconnects



Cycles	and	Cuts

• Cycle: a	set	of	edges	 𝑣$, 𝑣4 , 𝑣4, 𝑣5 , … , 𝑣6, 𝑣$

Cycle	C		=		(1,2),(2,3),(3,4),(4,5),(5,6),(6,1)

1
3

8

2

6

7

4

5

• Cut:	a	partition	of	the	nodes	into	𝑆, 𝑆̅

1
3

8

2

6

7

4

5

Cut	S							 =		{4,	5,	8}
Cutset =		(5,6),	(5,7),	(3,4),	(3,5),	(7,8)

S



Cycles	and	Cuts

• Fact:	a	cycle	and	a	cutset intersect	in	an	even	
number	of	edges



Cycles	and	Cuts

• Fact:	removing	an	edge	from	a	cycle	doesn’t	
disconnect	any	nodes



Properties	of	MSTs

• Cut	Property:	Let	𝑆 be	a	cut.		Let	𝑒 be	the	minimum	
weight	edge	cut	by	𝑆.		Then	the	MST	𝑇∗ contains	𝑒
• We	call	such	an	𝑒 a	safe	edge

• Cycle	Property: Let	𝐶 be	a	cycle.		Let	𝑓 be	the	
maximum	weight	edge	in	𝐶.		Then	the	MST	𝑇∗ does	
not	contain	𝑓.
• We	call	such	an	𝑓 a	useless	edge



Proof	of	Cut	Property

• Cut	Property:	Let	𝑆 be	a	cut.		Let	𝑒 be	the	minimum	
weight	edge	cut	by	𝑆.		Then	the	MST	𝑇∗ contains 𝑒

𝑓

𝑇∗
𝑒

𝑆



Proof	of	Cycle	Property

• Cycle	Property: Let	𝐶 be	a	cycle.		Let	𝑓 be	the	max	
weight	edge	in	𝐶.		The	MST	𝑇∗ does not	contain	𝑓.

𝑓

𝑇∗
𝑒

𝑆



Ask	the	Audience

• Assume	𝐺 has	distinct	edge	weights
• True/False?		If	𝑒 is	the	edge	with	the	smallest	
weight,	then	𝑒 is	always	in	the	MST	𝑇∗

• True/False?		If	𝑓 is	the	edge	with	the	largest		
weight,	then	𝑓 is	never	in	the	MST	𝑇∗



The	“Only”	MST	Algorithm

• GenericMST:
• Let	𝑇 = ∅
• Repeat	until	𝑇 is	connected:
• Find	one	or	more	safe	edges	not	in	𝑇
• Add	safe	edges	to	𝑇

• Theorem:	GenericMST outputs	an	MST	



Borůvka’s Algorithm

• Borůvka:
• Let	𝑇 = ∅
• Repeat	until	𝑇 is	connected:

• Let	𝐶$, … , 𝐶6 be	the	connected	components	of	 𝑉, 𝑇
• Let	𝑒$, … , 𝑒6 be	the	safe	edge	for	the	cuts	𝐶$, … , 𝐶<
• Add	𝑒$, … , 𝑒6 to	𝑇

• Correctness:	every	edge	we	add	is	safe



Borůvka’s Algorithm

1

2 6

3 5

4

7

8

6 12
5

14

3

8

10

15

9

7

Label	Connected	Components



Borůvka’s Algorithm

1

2 6

3 5

4

7

8

6 12
5

14

3

8

10

15

9

7

Add	Safe	Edges



Borůvka’s Algorithm

1

1 1

2 1

2

1

1

6 12
5

14

3

8

10

15

9

7

Label	Connected	Components



Borůvka’s Algorithm

1

1 1

2 1

2

1

1

6 12
5

14

3

8

10

15

9

7

Add	Safe	Edges



Borůvka’s Algorithm

1

1 1

1 1

1

1

1

6 12
5

14

3

8

10

15

9

7

Done!



Borůvka’s Algorithm	(Running	Time)

• Borůvka
• Let	𝑇 = ∅
• Repeat	until	𝑇 is	connected:

• Let	𝐶$, … , 𝐶6 be	the	connected	components	of	 𝑉, 𝑇
• Let	𝑒$, … , 𝑒6 be	the	safe	edge	for	the	cuts	𝐶$, … , 𝐶<
• Add	𝑒$, … , 𝑒6 to	𝑇

• Running	time
• How	long	to	find	safe	edges?
• How	many	times	through	the	main	loop?



Borůvka’s Algorithm	(Running	Time)

FindSafeEdges(G,T):
find connected components 𝑪𝟏,… , 𝑪𝒌
let L[v] be the component of node 𝒗
Let S[i] be the safe edge of 𝑪𝒊
for each edge (u,v) in E:

If L[u] ≠ L[v]:
If w(u,v) < w(S[L[u]]):

S[L[u]] = (u,v)
If w(u,v) < w(S[L[v]]):

S[L[v]] = (u,v)
Return {S[1],…,S[k]}



Borůvka’s Algorithm	(Running	Time)

• Claim:	every	iteration	of	the	main	loop	halves	the	
number	of	connected	components.



Borůvka’s Algorithm	(Running	Time)

• Borůvka
• Let	𝑇 = ∅
• Repeat	until	𝑇 is	connected:

• Let	𝐶$, … , 𝐶6 be	the	connected	components	of	 𝑉, 𝑇
• Let	𝑒$, … , 𝑒6 be	the	safe	edge	for	the	cuts	𝐶$, … , 𝐶<
• Add	𝑒$, … , 𝑒6 to	𝑇

• Running	Time:
• How	long	to	find	safe	edges?
• How	many	times	through	the	main	loop?



Prim’s	Algorithm

• Prim	Informal
• Let	𝑇 = ∅
• Let	𝑠 be	some	arbitrary	node	and	𝑆 = 𝑠
• Repeat	until	𝑆 = 𝑉

• Find	the	cheapest	edge	𝑒 = 𝑢, 𝑣 cut	by	𝑆.		Add	𝑒 to	𝑇 and	
add	𝑣 to	𝑆

• Correctness:	every	edge	we	add	is	safe



Prim’s	Algorithm



Prim’s	Algorithm

Prim(G=(V,E))
let Q be a priority queue storing V

value[v] ← ∞, last[v] ←⊥
value[s] ← 𝟎 for some arbitrary 𝒔

while (Q ≠ ∅):
u ← ExtractMin(Q) 
for each edge (u,v) in E:

if v ∈ Q and w(u,v) < value[v]:
DecreaseKey(v,w(u,v))
last[v] ← u

T = {(1,last[1]),…,(n,last[n])} (excluding s)
return T



Kruskal’s Algorithm

• Kruskal’s	Informal
• Let	𝑇 = ∅
• For	each	edge	e	in	ascending	order	of	weight:
• If	adding	𝑒 would	decrease	the	number	of	connected	
components	add	𝑒 to	𝑇

• Correctness:	every	edge	we	add	is	safe



Kruskal’s Algorithm



Implementing	Kruskal’s Algorithm

• Union-Find:	group	items	into	components	so	that	
we	can	efficiently	perform	two	operations:
• Find(u):	lookup	which	component	contains	u
• Union(u,v): merge	connected	components	of	u,v

• Can	implement	Union-Find so	that
• Find	takes	𝑂 1 time
• Any	𝑘 Union	operations	takes	𝑂 𝑘 log 𝑘 time



Kruskal’s Algorithm	(Running	Time)

• Kruskal’s	Informal
• Let	𝑇 = ∅
• For	each	edge	e	in	ascending	order	of	weight:
• If	adding	𝑒 would	decrease	the	number	of	connected	
components	add	𝑒 to	𝑇

• Time	to	sort:
• Time	to	test	edges:
• Time	to	add	edges:



Comparison

• Can	compute	MST	in	time	𝑶 𝒎𝐥𝐨𝐠𝒎

• Boruvka’s	Algorithm:
• Only	algorithm	worth	implementing
• Low	overhead,	can	be	easily	parallelized
• Each	iteration	takes	𝑂 𝑚 ,	very	few	iterations	in	practice

• Prim’s/Kruskal’s Algorithms:
• Reveal	useful	structure	of	MSTs
• Templates	for	other	algorithms


