CS3000: Algorithms & Data
Jonathan Ullman

Lecture 13:
Minimum Spanning Trees

Mar 9, 2020

Midterm I

* In Class Wednesday March 25th
* Working on a backup plan

 Exactly the same format/rules as Midterm |

* Topics: Graph Algorithms
Key definitions, properties
Representing graphs

DFS and topological sort
Shortest Paths: BFS, Dijkstra, Bellman-Ford
Minimum spanning trees
Network flow

} this week

Minimum Spanning Trees

Network Design

* Build a cheap, well connected network

* We are given
e asetof nodesV = {vy,...,v,}
e aset of potential edges E € VXV

* Want to build a network to connect these locations
* Every v;, v; must be well connected
* Must be as cheap as possible

* Many variants of network design
e Recall the bus routes problem from HW2

Minimum Spanning Trees (MST)

* Input: a weighted graph ¢ = (V, E, {w,})
* Undirected, connected, weights may be negative
* All edge weights are distinct (makes life simpler)

* Output: a minimum weight spanning tree T

* Aspanning tree of G is a subset of T € FE of the edges
such that (I/,T) forms a tree

* Weight of atree T is the sum of the edge weights
 We'll use T™ to denote “the” minimum spanning tree

Minimum Spanning Trees (MST)

Minimum Spanning Trees (MST)

MST Algorithms

* There are at least four reasonable MST algorithms

* Borlivka’s Algorithm: start with T = @, in each round
add cheapest edge out of each connected component

* Prim’s Algorithm: start with some s, at each step add
cheapest edge that grows the connected component

* Kruskal’s Algorithm: start with T = @, consider edges in
ascending order, adding edges unless they create a cycle

* Reverse-Kruskal: start with T = E, consider edges in
descending order, deleting edges unless it disconnects

Cycles and Cuts

* Cycle: a set of edges (v, v,), (Vy, V3), ..., (Ui, V1)

{4, 5, 8}
(5,6), (5,7), (3,4), (3,5), (7,8)

Cycles and Cuts

e Fact: a cycle and a cutset intersect in an even
number of edges

Cycles and Cuts

* Fact: removing an edge from a cycle doesn’t
disconnect any nodes

Properties of MSTs

* Cut Property: Let S be a cut. Let e be the minimum
weight edge cut by S. Then the MST T™ contains e

 We call such an e a safe edge

* Cycle Property: Let C be a cycle. Let f be the
maximum weight edge in C. Then the MST T™ does
not contain f.

* We call such an f a useless edge

Proof of Cut Property

* Cut Property: Let S be a cut. Let e be the minimum
weight edge cut by S. Then the MST T™ contains e

Proof of Cycle Property

* Cycle Property: Let C be a cycle. Let f be the max
weight edge in C. The MST T™ does not contain f.

Ask the Audience

* Assume G has distinct edge weights

* True/False? If e is the edge with the smallest
weight, then e is always in the MST T

* True/False? If f is the edge with the largest
weight, then f is never in the MST T"*

The “Only” MST Algorithm

* GenericMST:
s letT =0
* Repeat until T is connected:
* Find one or more safe edgesnotinT
 Add safeedgesto T

* Theorem: GenericMST outputs an MST

Boruvka’s Algorithm

* Boruvka:
s letT =0
* Repeat until T is connected:
* Let Cy, ..., Ci be the connected components of (V/,T)

* Letey, ..., e, be the safe edge for the cuts Cy, ..., C;p,
* Addeq,...,etoT

* Correctness: every edge we add is safe

Boruvka’s Algorithm Label Connected Components

Boruvka’s Algorithm Add safe Edges

Boruvka’s Algorithm Label Connected Components

Boruvka’s Algorithm Add safe Edges

Boruvka’s Algorithm Done!

Boruvka’s Algorithm (Running Time)

* Boruvka
s letT =0
* Repeat until T is connected:
* Let Cy, ..., Ci be the connected components of (V/,T)

* Letey, ..., e, be the safe edge for the cuts Cy, ..., C;p,
* Addeq,...,etoT

* Running time
* How long to find safe edges?
 How many times through the main loop?

Boruvka’s Algorithm (Running Time)

FindSafeEdges (G, T) :
find connected components C(y,...,Cj
let L[v] be the component of node v
Let S[i] be the safe edge of (;
for each edge (u,v) in E:
If L[u] # L[v]:
If w(u,v) < w(S[L[u]l]):
S[L[u]] = (u,v)
If w(u,v) < w(S[L[Vv]]):
S[L[v]] = (u,v)
Return {S[1l],..,S[k]}

Boruvka’s Algorithm (Running Time)

* Claim: every iteration of the main loop halves the
number of connected components.

Boruvka’s Algorithm (Running Time)

* Boruvka
s letT =0
* Repeat until T is connected:
* Let Cy, ..., Ci be the connected components of (V/,T)

* Letey, ..., e, be the safe edge for the cuts Cy, ..., C;p,
* Addeq,...,etoT

* Running Time:
* How long to find safe edges?
 How many times through the main loop?

Prim’s Algorithm

* Prim Informal
e letT =0
* Let s be some arbitrary node and S = {s}

* RepeatuntilS =V

* Find the cheapest edge e = (u,v) cutby S. Addeto T and
addvtoS

* Correctness: every edge we add is safe

Prim’s Algorithm

16 j>18

Prim’s Algorithm

Prim(G=(V,E))
let Q be a priority queue storing V
value[v] <« oo, last[v] <1l
value[s] < 0 for some arbitrary s
while (Q # 0) :
u < ExtractMin (Q)
for each edge (u,v) in E:
if v € Q and w(u,v) < value|[v]:
DecreaseKey (v,w(u,v))
last[v] < u

T = {(1,1ast[1]),..,(n,last[n])} (excluding s)
return T

Kruskal’s Algorithm

* Kruskal’s Informal
e letT =0
* For each edge e in ascending order of weight:

* If adding e would decrease the number of connected
componentsaddeto T

* Correctness: every edge we add is safe

Kruskal’s Algorithm

18

8 5
10
12 30
4 26

Implementing Kruskal’s Algorithm

* Union-Find: group items into components so that
we can efficiently perform two operations:

* Find(u): lookup which component contains u
* Union(u,v): merge connected components of u,v

* Can implement Union-Find so that
* Find takes O(1) time
* Any k Union operations takes O (k log k) time

Kruskal’s Algorithm (Running Time)

* Kruskal’s Informal
e letT =0
* For each edge e in ascending order of weight:

* If adding e would decrease the number of connected
componentsaddeto T

* Time to sort:
* Time to test edges:
* Time to add edges:

Comparison
* Can compute MST in time O(mlogm)

* Boruvka’s Algorithm:
* Only algorithm worth implementing
* Low overhead, can be easily parallelized
 Each iteration takes O(m), very few iterations in practice

* Prim’s/Kruskal’s Algorithms:
e Reveal useful structure of MSTs
* Templates for other algorithms

