# CS3000: Algorithms \& Data Jonathan Ullman 

Lecture 13:

- Minimum Spanning Trees

Mar 9, 2020

## Midterm II

- In Class Wednesday March 25 ${ }^{\text {th }}$
- Working on a backup plan
- Exactly the same format/rules as Midterm I
- Topics: Graph Algorithms
- Key definitions, properties
- Representing graphs
- DFS and topological sort
- Shortest Paths: BFS, Dijkstra, Bellman-Ford
- Minimum spanning trees
- Network flow

Minimum Spanning Trees

## Network Design

- Build a cheap, well connected network
- We are given
- a set of nodes $V=\left\{v_{1}, \ldots, v_{n}\right\}$
- a set of potential edges $E \subseteq V \times V$
- Want to build a network to connect these locations
- Every $v_{i}, v_{j}$ must be well connected
- Must be as cheap as possible
- Many variants of network design
- Recall the bus routes problem from HW2

Minimum Spanning Trees (MST)
nodes potertral edges

- Input: a weighted graph $\left.G=\left(V,(E),\left(w_{e}\right\}\right)\right) \sim$ edge costs
- Undirected, connected, weights may be negative
- All edge weights are distinct (makes life simpler)
- Output: a minimum weight spanning tree $T \subseteq E$
- A spanning tree of $G$ is a subset of $T \subseteq E$ of the edges such that ( $V, T$ ) forms a tree
- Weight of a tree $T$ is the sum of the edge weights $\sum_{e \in T} \omega_{e}$
- We'll use $T^{*}$ to denote "the" minimum spanning tree

$$
\min _{\text {trees } T \leq E} \sum_{e \in T} \omega_{e}
$$

## Minimum Spanning Trees (MST)



Minimum Spanning Trees (MST)


## MST Algorithms

- There are at least four reasonable MST algorithms
- Borůvka's Algorithm: start with $T=\emptyset$, in each round add cheapest edge out of each connected component
- Prim's Algorithm: start with some $s$, at each step add cheapest edge that grows the connected component
- Kruskal's Algorithm: start with $T=\emptyset$, consider edges in ascending order, adding edges unless they create a cycle
- Reverse-Kruskal: start with $T=E$, consider edges in descending order, deleting edges unless it disconnects


## Cycles and Cuts

- Cycle: a set of edges $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{k}, v_{1}\right)$

Cycle C = (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)
- Cut: a partition of the nodes into $S, \bar{S}$


$$
\begin{array}{ll}
\text { Cut S } & =\{4,5,8\} \\
\text { Cutset } & =(5,6),(5,7),(3,4),(3,5),(7,8)
\end{array}
$$

## Cycles and Cuts

- Fact: a cycle and a cutset intersect in an even number of edges



## Cycles and Cuts

- Fact: removing an edge from a cycle doesn't disconnect any nodes



## Properties of MSTs



- Cut Property: Let $S$ be a cut. Let $e$ be the minimum weight edge cut by $S$. Then the MST $T^{*}$ contains $e$
- We call such an $e$ a safe edge
- Cycle Property: Let $C$ be a cycle. Let $f$ be the maximum weight edge in $C$. Then the MST $T^{*}$ does not contain $f$.
- We call such an $f$ a useless edge


Proof of Cut Property

- Cut Property: Let $S$ be a cut. Let $e$ be the minimum weight edge cut by $S$. Then the MST $T^{*}$ contains $e$

Proof by contradiction:
Assure $T^{*}$ is the MST and it doesnt contam $e$.

If we add $e$ to $T^{a}$ there must
 be a cycle $C$. $C$ contans $\geqslant 2$ edges cossmg the wi $\{e, f\}, \omega(f)>u(e)$
If we remove $f$ from $T^{*} u\{e\}$ the the total we is lower than $T^{*}$ $T u\{e\} \backslash\{f\}$ is st. ll a tree

Proof of Cycle Property

- Cycle Property: Let $C$ be a cycle. Let $f$ be the max weight edge in $C$. The MST $T^{*}$ does not contain $f$.

Proof by Contradiction:
Assume $T^{*}$ is the MST and contains $f$.
If we remove $f$, the graph $T \backslash\{f\rangle$
 has two components $S, \bar{S}$. There is sore edge $e \in C$ cat by $S$. $\omega t(e)<\omega+(f)$ Thus $T^{e} \mid\{f\} u\{e\}$ is a spanning thee o/ lover weight a

## Ask the Audience

- Assume $G$ has distinct edge weights
- True/False? If $e$ is the edge with the smallest weight, then $e$ is always in the MST $T^{*}$
- True/False? If $f$ is the edge with the largest weight, then $f$ is never in the MST $T^{*}$


## The "Only" MST Algorithm

- GenericMST:
- Let $T=\emptyset$
- Repeat until $T$ is connected:
- Find one or more safe edges not in $T$
- Add safe edges to $T$
- Theorem: GenericMST outputs an MST

$$
\text { Suppose } T \text { is not connected. Then it has multiple }
$$ connected components.

crossing the wat is a safe edge


## Borůvka's Algorithm

- Borůvka:
- Let $T=\emptyset$
- Repeat until $T$ is connected:
- Let $C_{1}, \ldots, C_{k}$ be the connected components of $(V, T)$
- Le $C_{1}, \ldots, e_{k}$ be the safe edge for the cuts $C_{1}, \ldots, C_{k}$

Add $e_{1}, \ldots, e_{k}$ to $T$
Will contain duplicates

- Correctness: every edge we add is safe


## Borůvka's Algorithm

Label Connected Components


## Borůvka's Algorithm Add Safe Edges



Borůvka's Algorithm Label Connected Components


## Borůvka's Algorithm Add Safe Edges



Borůvka's Algorithm Done!


## Borůvka's Algorithm (Running Time)

- Borůvka
- Let $T=\emptyset$
- Repeat until $T$ is connected:
- Let $C_{1}, \ldots, C_{k}$ be the connected components of $(V, T) \quad O(n+m)$
- Let $e_{1}, \ldots, e_{k}$ be the safe edge for the cuts $C_{1}, \ldots, C_{m}$
- Add $e_{1}, \ldots, e_{k}$ to $T$
- Running time

BFS the graph to find components

- How long to find safe edges? Loop through edges keep track of
- How many times through the main loop? min ut edjefor each component

Borůvka's Algorithm (Running Time)

FindSafeEdges ( $G, T$ ) :
find connected components $\boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{\boldsymbol{k}} / / \mathrm{Using}$ BFS/DFS let $L[v]$ be the component of node $v$
Let $S[i]$ be the safe edge of $C_{i} / /$ in,trally $\phi$ for each edge ( $u, v$ ) in $E$ :

If $L[u] \neq L[v]:$
If $w(u, v)<w(S[L[u]]):$
$S[L[u]]=(u, v)$
If $w(u, v)<w(S[L[v]]):$
$S[L[v]]=(u, v)$
$\operatorname{Return}\{S[1], \ldots, S[k]\}$
May have duptrates

Borůvka's Algorithm (Running Time)
at least

- Claim: every iteration of the main loop halves the number of connected components.
- If the claim is true, then \#of iterations $\leq\left\lfloor\log _{2}(n)\right\rfloor$


Borůvka's Algorithm (Running Time)

- Borůvka
- Let $T=\emptyset$
- Repeat until $T$ is connected:
- Let $C_{1}, \ldots, C_{k}$ be the connected components of $(V, T)$
- Let $e_{1}, \ldots, e_{k}$ be the safe edge for the cuts $C_{1}, \ldots, C_{m}$
- Add $e_{1}, \ldots, e_{k}$ to $T$
$(V, E)$ is connected, so $m \geqslant n-1$

$$
n+m \leq 2 m+1=0(n)
$$

- Running Time:
- How long to find safe edges? $O(n+m)$ per iteration
- How many times through the main loop? $O(\log (n))$

$$
\text { Time: } O(m \log (n))
$$

## Prim's Algorithm

- Prim Informal
- Let $T=\varnothing$

- Let $s$ be some arbitrary node and $S=\{s\}$
- Repeat until $S=V$
- Find the cheapest edge $e=(u, v)$ cut by $S$. Add $e$ to $T$ and add $v$ to $S$
- Correctness: every edge we add is safe

Prim's Algorithm


Prim's Algorithm Time:

$$
=O(m \log (n))
$$

$\operatorname{Prim}(G=(V, E))$
let $Q$ be a priority queue storing $V$
value [v] $\leftarrow \infty$, last [v] $\leftarrow \perp$
value [s] $\leftarrow 0$ for some arbitrary $s$
while $(Q \neq \emptyset)$ :
$u \leftarrow$ ExtractMin $(Q) \leftarrow n$ Extract Min
for each edge ( $u, v$ ) in $E$ :
if $v \in Q$ and $w(u, v)<$ value [v]:
$\operatorname{DecreaseKey}(v, w(u, v)) \longleftarrow m$ Decease Key last [v] $\leftarrow u$
$T=\{(1$, last $[1]), \ldots,(n$, last $[n])\}$ (excluding $s)$ return $T$

## Kruskal's Algorithm

## - Kruskal's Informal

- Let $T=\emptyset$
- For each edge e in ascending order of weight:
- If adding $e$ would decrease the number of connected components add $e$ to $T$
- Correctness: every edge we add is safe


## Kruskal's Algorithm



## Implementing Kruskal's Algorithm

- Union-Find: group items into components so that we can efficiently perform two operations:
- Find(u): lookup which component contains u
- Union( $u, v)$ : merge connected components of $u, v$
- Can implement Union-Find so that
- Find takes $O$ (1) time
- Any $k$ Union operations takes $O(k \log k)$ time


## Kruskal's Algorithm (Running Time)

- Kruskal's Informal
- Let $T=\emptyset$
- For each edge e in ascending order of weight:
- If adding $e$ would decrease the number of connected components add $e$ to $T$
- Time to sort:
- Time to test edges:
- Time to add edges:


## Comparison

- Can compute MST in time $\mathbf{O}(\boldsymbol{m} \log m)$
- Boruvka's Algorithm:
- Only algorithm worth implementing
- Low overhead, can be easily parallelized
- Each iteration takes $O(m)$, very few iterations in practice
- Prim's/Kruskal's Algorithms:
- Reveal useful structure of MSTs
- Templates for other algorithms

