CS3000: Algorithms & Data Jonathan Ullman

Lecture 13:

• Minimum Spanning Trees

Mar 9, 2020

Midterm II

• In Class Wednesday March 25th

- Working on a backup plan
- Exactly the same format/rules as Midterm I

Topics: Graph Algorithms

- Key definitions, properties
- Representing graphs
- DFS and topological sort
- Shortest Paths: BFS, Dijkstra, Bellman-Ford
- Minimum spanning trees
- Network flow

this week

Minimum Spanning Trees

Network Design

- Build a cheap, well connected network
- We are given
 - a set of nodes $V = \{v_1, ..., v_n\}$
 - a set of potential edges $E \subseteq V \times V$
- Want to build a network to connect these locations
 - Every v_i , v_j must be well connected
 - Must be as cheap as possible
- Many variants of network design
 - Recall the bus routes problem from HW2

Minimum Spanning Trees (MST) nodes estentral edges

- Input: a weighted graph $G = (V, E, (w_e))$
 - Undirected, connected, weights may be negative
 - All edge weights are distinct (makes life simpler) connected

edge

and acyclic and has n-ledge

- Output: a minimum weight spanning tree $T \subseteq E$
 - A spanning tree of G is a subset of $T \subseteq E$ of the edges such that (V, T) forms a tree
 - Weight of a tree T is the sum of the edge weights $\sum_{e \in T} \omega_e$
 - We'll use T^* to denote "the" minimum spanning tree

Minimum Spanning Trees (MST) 3+ 5+ 6+ 7+ 8+ 9+15 = 53

Minimum Spanning Trees (MST)

MST Algorithms

- There are at least four reasonable MST algorithms
 - Borůvka's Algorithm: start with $T = \emptyset$, in each round add cheapest edge out of each connected component
 - Prim's Algorithm: start with some *s*, at each step add cheapest edge that grows the connected component
 - Kruskal's Algorithm: start with $T = \emptyset$, consider edges in ascending order, adding edges unless they create a cycle
 - Reverse-Kruskal: start with T = E, consider edges in descending order, deleting edges unless it disconnects

Cycles and Cuts

• Cycle: a set of edges $(v_1, v_2), (v_2, v_3), \dots, (v_k, v_1)$

Cycle C = (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)

• Cut: a partition of the nodes into S, \overline{S}

Cut S	= {4, 5, 8}
Cutset	= (5,6), (5,7), (3,4), (3,5), (7,8)

Cycles and Cuts

• Fact: a cycle and a cutset intersect in an even number of edges

Cycles and Cuts

• Fact: removing an edge from a cycle doesn't disconnect any nodes

Properties of MSTs

- Cut Property: Let S be a cut. Let e be the minimum weight edge cut by S. Then the MST T^* contains e
 - We call such an *e* a safe edge
- Cycle Property: Let C be a cycle. Let f be the maximum weight edge in C. Then the MST T* does not contain f.
 - We call such an *f* a useless edge

Proof of Cut Property

• Cut Property: Let *S* be a cut. Let *e* be the minimum weight edge cut by *S*. Then the MST *T*^{*} contains *e*

Proof by contradiction: Assure T is the MST and it doesn't contame. If we add e to There must T^* be a cycle C. Ccontams >2 edges crossing the art serts, w(f)>u(e) If we remove f from T* uses the the total of is lower than T* Tures \$73 is still a tree

Proof of Cycle Property

• Cycle Property: Let *C* be a cycle. Let *f* be the max weight edge in *C*. The MST *T*^{*} does not contain *f*.

Ask the Audience

- Assume G has distinct edge weights
- **True/False?** If *e* is the edge with the smallest weight, then *e* is always in the MST *T*^{*}
- **True/False?** If f is the edge with the largest weight, then f is never in the MST T^*

The "Only" MST Algorithm

• GenericMST:

- Let $T = \emptyset$
- Repeat until *T* is connected:
 - Find one or more safe edges not in T
 - Add safe edges to T
- Theorem: GenericMST outputs an MST

- Borůvka:
 - Let $T = \emptyset$
 - Repeat until T is connected:
 - Let C_1, \ldots, C_k be the connected components of (V, T)
 - Let e_1, \ldots, e_k be the safe edge for the cuts C_1, \ldots, C_k Add e_1, \dots, e_k to T

Vill contain duplicates

• **Correctness:** every edge we add is safe

Borůvka's Algorithm Label Connected Components

Borůvka's Algorithm Add Safe Edges

Borůvka's Algorithm Label Connected Components

Borůvka's Algorithm Add Safe Edges

Borůvka's Algorithm Done!

Borůvka

- Let $T = \emptyset$
- Repeat until T is connected:
 - Let C_1, \ldots, C_k be the connected components of (V, T) O(n+m)
 - Let e_1, \ldots, e_k be the safe edge for the cuts C_1, \ldots, C_m
 - Add e_1, \ldots, e_k to T
- BFS the graph to find components Running time
 - · How long to find safe edges? Loop through edges keep tack of min ut edge for
 - How many times through the main loop?
- each component

FindSafeEdges(G,T):

```
find connected components C_1, ..., C_k // U_{SM_1} BPS / DFS
let L[v] be the component of node v
Let S[i] be the safe edge of C_i Martially \not\sim
for each edge (u,v) in E:
   If L[u] \neq L[v]:
       If w(u,v) < w(S[L[u]]):
          S[L[u]] = (u,v)
       If w(u,v) < w(S[L[v]]):
          S[L[v]] = (u,v)
Return {S[1],...,S[k]}
          May have duptrates
```

• **Claim:** every iteration of the main loop halves the number of connected components.

• Borůvka

- Let $T = \emptyset$
- Repeat until *T* is connected:
 - Let C_1, \ldots, C_k be the connected components of (V, T)
 - Let e_1, \ldots, e_k be the safe edge for the cuts C_1, \ldots, C_m
 - Add e_1, \ldots, e_k to T

- Running Time:
 - How long to find safe edges? O(n+m) per steretion
 - How many times through the main loop? $O(\log(n))$

Time: O(mlog(n))

Prim's Algorithm

- Prim Informal
 - Let $T = \emptyset$
 - Let s be some arbitrary node and $S = \{s\}$
 - Repeat until S = V
 - Find the cheapest edge e = (u, v) cut by S. Add e to T and add v to S
- Correctness: every edge we add is safe

Prim's Algorithm

Prim's Algorithm Tme: O((n+m)log(n)) = O(mlog(n))

```
Prim(G=(V,E))
   let Q be a priority queue storing V
       value[v] \leftarrow \infty, last[v] \leftarrow \bot
       value[s] \leftarrow 0 for some arbitrary s
   while (Q \neq \emptyset):
       u ~ ExtractMin(Q) < n Extract non
       for each edge (u,v) in E:
           if v \in Q and w(u,v) < value[v]:
               Decrease Key (v, w (u, v)) ~ m Devease Key
               last[v] \leftarrow u
```

```
T = {(1,last[1]),...,(n,last[n])} (excluding s)
return T
```

Kruskal's Algorithm

• Kruskal's Informal

- Let $T = \emptyset$
- For each edge e in ascending order of weight:
 - If adding *e* would decrease the number of connected components add *e* to *T*
- Correctness: every edge we add is safe

Kruskal's Algorithm

Implementing Kruskal's Algorithm

- Union-Find: group items into components so that we can efficiently perform two operations:
 - Find(u): lookup which component contains u
 - Union(u,v): merge connected components of u,v
- Can implement **Union-Find** so that
 - Find takes O(1) time
 - Any k Union operations takes $O(k \log k)$ time

Kruskal's Algorithm (Running Time)

• Kruskal's Informal

- Let $T = \emptyset$
- For each edge e in ascending order of weight:
 - If adding *e* would decrease the number of connected components add *e* to *T*
- Time to sort:
- Time to test edges:
- Time to add edges:

Comparison

- Can compute MST in time $O(m \log m)$
- Boruvka's Algorithm:
 - Only algorithm worth implementing
 - Low overhead, can be easily parallelized
 - Each iteration takes O(m), very few iterations in practice
- Prim's/Kruskal's Algorithms:
 - Reveal useful structure of MSTs
 - Templates for other algorithms