
CS3000:	Algorithms	&	Data
Jonathan	Ullman

Lecture	11:	
• Shortest	Paths:	BFS,	Start	Dijkstra

Feb	24,	2020

 



Shortest	Paths:
Breadth-First	Search



Exploring	a	Graph

• Problem:	Is	there	a	path	from	! to	"?
• Idea: Explore	all	nodes	reachable	from	!.

• Two	different	search	techniques:

• Depth-First	Search: follow	a	path	until	you	get	stuck,	
then	go	back

• Breadth-First	Search: explore	all	nearby	nodes	before	
moving	on	to	farther	away	nodes
• Finds	the	shortest	path	from	! to	"!



Breadth-First	Search	(BFS)

• Informal	Description: start	at	!,	find	neighbors	of	!,	
find	neighbors	of	neighbors	of	!,	and	so	on…

• BFS	Tree:
• #$ = !
• #& = all	neighbors	of	#$
• #' = all	neighbors	of	#& that	are	not	in	#$, #&
• #) = all	neighbors	of	#' that	are	not	in	#$, #&, #'
• …
• #* = all	neighbors	of	#*+& that	are	not	in	#$, … , #*+&
• Stop	when	#*-& is	empty



Example

• BFS	this	graph	from	. = /

Blue edges are ether Li Li

or Li Lie



Breadth-First	Search	Implementation
BFS(G = (V,E), s):
Let explored[v]	←	false ∀v, explored[s]	←	true
Let layer[v]	← ∞ ∀v, layer[s]	←	0
Let parent[v]←⊥ ∀v
Let i	←	0, L0 = {s}, T ← ∅

While (Li is not empty):
Initialize new layer Li+1
For (u in Li):
For ((u,v) in E):
If (explored[v] = false):
explored[v]	←	true,
layer[v]←	i+1
parent[v]←	u
Add v to Li+1

i	←	i+1

g

NULL

Add u u to T



BFS	Running	Time	(Adjacency	List)
BFS(G = (V,E), s):
Let explored[v]	←	false ∀v, explored[s]	←	true
Let layer[v]	← ∞ ∀v, layer[s]	←	0
Let parent[v]←⊥ ∀v
Let i	←	0, L0 = {s}, T ← ∅

While (Li is not empty):
Initialize new layer Li+1
For (u in Li):
For ((u,v) in E):
If (explored[v] = false):
explored[v]	←	true,
layer[v]←	i+1
parent[v]←	u
Add v to Li+1

i	←	i+1

on

y
each nodeoccursonce

degli t.me Ievoldeeg a ti

Ocn Ealocdegh

fOLD peredge



Shortest	Paths	via	BFS

• Definition:	the	distance between	!, " is	the	number	
of	edges	on	the	shortest	path	from	! to	"
• Thm:	BFS	finds	distances	from	! to	other	nodes
• #6 contains	all	nodes	at	distance	7 from	!

d s t or d s e

or dat sie or d it set

If t not reachable
for s ther d se a

L

Lf



Shortest	Paths	via	BFS

• Definition:	the	distance between	!, " is	the	number	
of	edges	on	the	shortest	path	from	! to	"
• Thm:	BFS	finds	distances	from	! to	other	nodes
• #6 contains	all	nodes	at	distance	7 from	!
Hi

Base Cases
to is obvious

L is obvious L contains all neighbors of s

induction tf truefor 40,4 Li ther true for Lit

Suppose u is such that d s a it 1
i hops

By induction v is in Li Therefore u B in Lite



Shortest	Paths	via	BFS

• Definition:	the	distance between	!, " is	the	number	
of	edges	on	the	shortest	path	from	! to	"
• Thm:	BFS	finds	distances	from	! to	other	nodes	and	
the	tree	edges	give	the	shortest	! to	" path
• Can	find	distances	and	shortest	path	tree	in	time	
8 9 +; … then	can	find	a	shortest	path	in	time	8 9
Tree edges giveshortest paths

i r i r n
I l l l Il l

I



Shortest	Paths	via	BFS

• Definition:	the	distance between	!, " is	the	number	
of	edges	on	the	shortest	path	from	! to	"
• Thm:	BFS	finds	distances	from	! to	other	nodes	and	
the	tree	edges	give	the	shortest	! to	" path
• Can	find	distances	and	shortest	path	tree	in	time	
8 9 +; … then	can	find	a	shortest	path	in	time	8 9



Shortest	Paths:
Dijkstra



Navigation

s

3

t

2

6

4

5

23

18

2

9

14

15
5

30

20 16

11

6

19

6

10000



Weighted	Graphs

• Definition:	A	weighted	graph < = =, >, {@(B)}
• = is	the	set	of	vertices
• > ⊆ =×= is	the	set	of	edges
• @G ∈ 	ℝ are	edge	weights/lengths/capacities
• Can	be	directed	or	undirected

• Today:
• Directed	graphs	(one-way	streets)
• Strongly	connected	(there	is	always	some	path)
• Non-negative	edge	lengths	(ℓ(B) ≥ 0)



Shortest	Paths

• The	length of	a	path	M = 	N& − N' −⋯− NQ is	the	
sum	of	the	edge	lengths

• The	distance R !, " is	the	length	of	the	shortest	
path	from	! to	"
• Shortest	Path: given	nodes	!, " ∈ =,	find	the	
shortest	path	from	! to	"
• Single-Source	Shortest	Paths: given	a	node	! ∈ =,	
find	the	shortest	paths	from	! to	every " ∈ =

LIP Eisele



Structure	of	Shortest	Paths

• If	 S, N ∈ >,	then	R !, N ≤ R !, S + ℓ S, N for	
every	node	! ∈ =

• If	 S, N ∈ >,	and	R !, N = R !, S + ℓ(S, N) then	
there	is	a	shortest	! ↝ N-path	ending	with	(S, N)

d e
l dls.ul

iecu.gs

s

dls.r



DijkstraisA gor.hn
Maintain an upper bound on dls 4 htt

d 55 0 DET for t s

Explore neighbors of s

data
Neo uree bands

Find another node with the smallest dew ofall unexplorednodes

Explore neighbors of that node

Repeat until all nodes are explored



A

B D

C E

10

3

1 4 7 98

2

2

Dijkstra’s Algorithm:	Demo



Dijkstra’s Algorithm:	Demo

Initialize

A B C D E
d0(u) 0 ∞ ∞ ∞ ∞

V = {}

A

B D

C E

10

3

1 4 7 98

2

2

0

¥

¥ ¥

¥

set of explorednodes



Dijkstra’s Algorithm:	Demo

A B C D E
d0(u) 0 ∞ ∞ ∞ ∞
d1(u) 0 10 3 ∞ ∞

V = {W}

A

B D

C E

10

3

1 4 7 98

2

2

0

10

3 ¥

¥
Explore	A



Dijkstra’s Algorithm:	Demo

A B C D E
d0(u) 0 ∞ ∞ ∞ ∞
d1(u) 0 10 3 ∞ ∞
d2(u) 0 7 3 11 5

V = {W, X}

A

B D

C E

10

3

1 4 7 98

2

2

0

7

3 5

11
Explore	C



Dijkstra’s Algorithm:	Demo

A B C D E
d0(u) 0 ∞ ∞ ∞ ∞
d1(u) 0 10 3 ∞ ∞
d2(u) 0 7 3 11 5
d3(u) 0 7 3 11 5 V = {W, X, >}

A

B D

C E

10

3

1 4 7 98

2

2

0

7

3 5

11
Explore	E



Dijkstra’s Algorithm:	Demo

A B C D E
d0(u) 0 ∞ ∞ ∞ ∞
d1(u) 0 10 3 ∞ ∞
d2(u) 0 7 3 11 5
d3(u) 0 7 3 11 5
d4(u) 0 7 3 9 5

V = {W, X, >, Y}

A

B D

C E

10

3

1 4 7 98

2

2

0

7

3 5

9
Explore	B



Dijkstra’s Algorithm:	Demo

A B C D E
d0(u) 0 ∞ ∞ ∞ ∞
d1(u) 0 10 3 ∞ ∞
d2(u) 0 7 3 11 5
d3(u) 0 7 3 11 5
d4(u) 0 7 3 9 5

V = {W, X, >, Y, Z}

A

B D

C E

10

3

1 4 7 98

2

2

0

7

3 5

9
Don’t	need	to
explore	D



Dijkstra’s Algorithm:	Demo

A B C D E
d0(u) 0 ∞ ∞ ∞ ∞
d1(u) 0 10 3 ∞ ∞
d2(u) 0 7 3 11 5
d3(u) 0 7 3 11 5
d4(u) 0 7 3 9 5

A

B D

C E

10

3

1 4 7 98

2

2

0

7

3 5

9
Maintain	parent	
pointers	so	we	
can	find	the	
shortest	paths



Correctness	of	Dijkstra

• Warmup	0: initially,	R$ ! is	the	correct	distance

• Warmup	1:	after	exploring	the	first	node	N,	R&(N)
is	the	correct	distance

second
Mmm

If Sir is the shortest edge starting at s Then

dls.ir lls r
s

E
n

35 so its not
ashorterpath



Correctness	of	Dijkstra

• Invariant:	after	we	explore	the	i-th node,	R6(N) is	
correct	for	every	N ∈ V

• We	just	argued	the	invariant	holds	after	we’ve	
explored	the	1st and	2nd nodes

shortestpath we'refond
after exploring i nodes

0



Correctness	of	Dijkstra

[
!

\

N

]

^

S

^′

• Invariant:	after	we	explore	
the	i-th node,	R6(N) is	correct	
for	every	N ∈ V
• Proof: parent u q

nextWant to show that dicer di w teller nodeve
is the shortest path explore

Ilp l Ps x tllx y tl Pym

l Pax 1 lfx y
Cece o

MILI
b

fi dilx7 iecx sylx.se ored7

i dily
x is explored

7 di v
ble Ichoser not.y

up



Implementing	Dijkstra
Dijkstra(G = (V,E,{ℓ(e)}, s):
d[s] ← 0, d[u] ← ∞ for every u != s
parent[u]←⊥ for every u
Q ← V // Q holds the unexplored nodes

While (Q is not empty):
S ← argmin

f∈g
R @ //Find closest unexplored

Remove S from Q

// Update the neighbors of u
For ((u,v) in E):
If (d[v] > d[u] + ℓ(u,v)):
d[v] ← d[u] + ℓ(u,v)
parent[v]←	u

Return (d, parent)



Implementing	Dijkstra (Naïvely)

• Need	to	explore	all	9 nodes
• Each	exploration	requires:
• Finding	the	unexplored	node	S with	smallest	distance
• Updating	the	distance	for	each	neighbor	of	S

Find the node
w mmmmyalue

I

OCD time Decrease the
valueallocated

0 degli 11 with agiven node

u v
Ocn deglutti O n2tm


