CS3000: Algorithms & Data Jonathan Ullman

Lecture 11:

• Shortest Paths: BFS, Start Dijkstra

Feb 24, 2020

Shortest Paths: Breadth-First Search

Exploring a Graph

- **Problem:** Is there a path from *s* to *t*?
- Idea: Explore all nodes reachable from *s*.
- Two different search techniques:
 - **Depth-First Search:** follow a path until you get stuck, then go back
 - Breadth-First Search: explore all nearby nodes before moving on to farther away nodes
 - Finds the shortest path from *s* to *t*!

Breadth-First Search (BFS)

- Informal Description: start at s, find neighbors of s, find neighbors of neighbors of s, and so on...
- BFS Tree:
 - $L_0 = \{s\}$
 - $L_1 =$ all neighbors of L_0
 - $L_2 =$ all neighbors of L_1 that are not in L_0 , L_1
 - $L_3 =$ all neighbors of L_2 that are not in L_0, L_1, L_2
 - ...
 - L_d = all neighbors of L_{d-1} that are not in L_0 , ..., L_{d-1}
 - Stop when L_{d+1} is empty

Example

• BFS this graph from s = 1

- Red edges are "tree edges"
 Red edges give paths from s to t
- · Blue edger are ether Li => Li or L: +> L:+,

Breadth-First Search Implementation

```
_ ≈ NULL
```

```
BFS(G = (V,E), s):
  Let explored[v] \leftarrow \mathbf{f} also \forall \mathbf{v}, explored[s] \leftarrow true
  Let layer[v] \leftarrow \infty \forall v, layer[s] \leftarrow 0
  Let parent[v] \leftarrow 1 \forall v
  Let i \leftarrow 0, L_0 = \{s\}, T \leftarrow \emptyset
  While (L, is not empty):
      Initialize new layer L<sub>i+1</sub>
     For (u \text{ in } L_i):
        For ((u,v) in E):
            If (explored[v] = false):
              explored[v] \leftarrow true,
              layer[v] \leftarrow i+1
              parent[v] \leftarrow u (Add (u,v) + T)
              Add v to L_{i+1}
     i \leftarrow i+1
```

BFS Running Time (Adjacency List)

```
S(G = (V, E), s):
Let explored[v] \leftarrow false \forall v, explored[s] \leftarrow true O(n)
BFS(G = (V, E), s):
  Let parent[v] \leftarrow \perp \forall v
  Let i \leftarrow 0, L_0 = \{s\}, T \leftarrow \emptyset
  While (L<sub>i</sub> is not empty):, each node occurs once
  Add v to L_{i+1}
     i \leftarrow i+1
```

- $d(s,t) \text{ or } d(s \rightarrow t)$ • **Definition:** the distance between *s*, *t* is the number of edges on the shortest path from *s* to *t* • If *t* not reachable for *s* then $d(s,t) = \infty$
- Thm: BFS finds distances from s to other nodes
 - L_i contains all nodes at distance i from s

- **Definition:** the distance between *s*, *t* is the number of edges on the shortest path from *s* to *t*
- Thm: BFS finds distances from *s* to other nodes

• L_i contains all nodes at distance i from s

Base (ases: Lo is obvious
Li is obvious (Li contains all neighbors of s)
Induction: If there for Los Li, ---, Li then twe for Lit,
Suppose us such that
$$d(s, u) = itt$$

 $(s) \xrightarrow{ihops} (v) \longrightarrow (u)$
By induction, v is in Li. Therefore us is in Liti

- **Definition:** the distance between *s*, *t* is the number of edges on the shortest path from *s* to *t*
- Thm: BFS finds distances from s to other nodes and the tree edges give the shortest s to t path
 - Can find distances and shortest path tree in time O(n + m)... then can find a shortest path in time O(n)

3

5

Tree edges give sharkest paths

3

- **Definition:** the distance between *s*, *t* is the number of edges on the shortest path from *s* to *t*
- Thm: BFS finds distances from s to other nodes and the tree edges give the shortest s to t path
 - Can find distances and shortest path tree in time O(n + m)... then can find a shortest path in time O(n)

Shortest Paths: Dijkstra

Navigation

Weighted Graphs

- **Definition:** A weighted graph $G = (V, E, \{w(e)\})$
 - *V* is the set of vertices
 - $E \subseteq V \times V$ is the set of edges
 - $w_e \in \mathbb{R}$ are edge weights/lengths/capacities
 - Can be directed or undirected
- Today:
 - Directed graphs (one-way streets)
 - Strongly connected (there is always some path)
 - Non-negative edge lengths ($\ell(e) \ge 0$)

Shortest Paths

• The length of a path $P = v_1 - v_2 - \dots - v_k$ is the sum of the edge lengths

- The distance d(s, t) is the length of the shortest path from s to t
- Shortest Path: given nodes $s, t \in V$, find the shortest path from s to t
- Single-Source Shortest Paths: given a node $s \in V$, find the shortest paths from s to every $t \in V$

Structure of Shortest Paths

• If $(u, v) \in E$, then $d(s, v) \le d(s, u) + \ell(u, v)$ for every node $s \in V$

• If $(u, v) \in E$, and $d(s, v) = d(s, u) + \ell(u, v)$ then there is a shortest $s \sim v$ -path ending with (u, v)

$$\frac{d(s,u)}{d(s,v)} \xrightarrow{(u)} \frac{d(u,v)}{v} \xrightarrow{(v)} \frac{d(s,u) + d(u,v)}{v} \xrightarrow{(v)} \frac{d(s,v)}{d(s,v)}$$

Dijkstra's Algorithm
• Maintain an upper bound on
$$d(s, t)$$
 V t
 $d[s]=0$ $d[t]=\infty$ for $t\neq s$

- · Find another node [with the smallert d[u] of all mexplored nodes] Explore neighbors of that node
- · Repeat until all noder are explored

 $S = \{\}$ set of explored nodes

Ехр	lore	e B			$\begin{array}{c} 7 \\ B \\ 2 \\ B \\ 2 \\ 10 \\ A \\ 1 \\ 4 \\ 8 \\ 7 \\ 3 \\ 3 \\ \end{array}$			
	Α	В	С	D	E			
d ₀ (u)	0	∞	∞	∞	∞	3 5		
d ₁ (u)	0	10	3	∞	∞			
d ₂ (u)	0	7	3	11	5			
d ₃ (u)	0	7	3	11	5	$S = \{A, C, E, B\}$		
$d_4(u)$	0	7	3	9	5			

Maintain parent pointers so we can find the shortest paths

	$\begin{array}{c} 7 \\ 10 \\ 4 \\ 1 \\ 3 \\ 6 \\ 7 \\ 8 \\ 7 \\ 7 \\ 8 \\ 7 \\ 7 \\ 8 \\ 7 \\ 7$	2 9 2 0 (7 9 (7 7 9 (7 9 (7 9 (7 9 (7 9 (7 9 (7 9 (7 9 (7 9 (7 9 (7 7 9 (7 7 9 (7 7 9 (7 7 9 (7 7 9 (7 7 9 (7 7 9 (7 7 9 (7 7 9 (7 7 9 (7 7 9 (7 7 9 (7 7 9 (7 7 9 (7 7 9 (7 7 7 9 (7 7 9 (7 7 9 (7 7 9 (7 9 (7 9 (7 9 (7 9 (7 9 (7 9 (7 9 (7 9 (7 9 (7 9 (7 7 9 (7) (7) (7) (7) (7) (7) () () () ()) ()) () ()) ()) ()) ())) ())) ())) ())))) ()))))))))))))
E		2
∞	3	5

	Α	В	С	D	E
d _o (u)	0	∞	∞	∞	∞
d ₁ (u)	0	10	3	∞	∞
d ₂ (u)	0	7	3	11	5
d ₃ (u)	0	7	3	11	5
d ₄ (u)	0	7	3	9	5

Correctness of Dijkstra

• Warmup 0: initially, $d_0(s)$ is the correct distance

• Warmup 1: after exploring the *must* node v, $d_1(v)$ is the correct distance If (s,v) is the shortest edge starting at s. Then d(s,v) = l(s,v)Any other & ~ >v >0 path has length >5, so its not a shorter path

second

Correctness of Dijkstra

shortert path velve fond afle exploring insides

• Invariant: after we explore the i-th node $d_i(v)$ is correct for every $v \in S$

 We just argued the invariant holds after we've explored the 1st and 2nd nodes

Implementing Dijkstra

```
Dijkstra(G = (V,E, {\ell(e)}, s):
  d[s] \leftarrow 0, d[u] \leftarrow \infty for every u \mathrel{!=} s
  parent[u] \leftarrow \perp for every u
  \mathbf{v} \rightarrow \mathbf{v}
                     // Q holds the unexplored nodes
  While (Q is not empty):
     u \leftarrow \operatorname{argmin} d[w] //Find closest unexplored
           w∈0
     Remove u from Q
     // Update the neighbors of u
     For ((u,v) in E):
       If (d[v] > d[u] + \ell(u,v)):
          d[v] \leftarrow d[u] + \ell(u,v)
         parent[v] \leftarrow u
```

```
Return (d, parent)
```

Implementing Dijkstra (Naïvely)

Find the node w/ mmm volve Need to explore all n nodes • Each exploration requires: Finding the unexplored node u with smallest distance Updating the distance for each neighbor of uDecrease the value associated with a given node $\frac{2a}{b} \quad O(n) \quad t;me$ $\frac{b}{b} \quad O(deg(u)+1)$ $\sum_{u \in V} O(n + deg(u) + 1) = O(n^2 + m)$