CS3000: Algorithms \& Data Jonathan Ullman

Lecture 11:

- Shortest Paths: BFS, Start Dijkstra

Feb 24, 2020

Shortest Paths:
Breadth-First Search

Exploring a Graph

- Problem: Is there a path from s to t ?
- Idea: Explore all nodes reachable from s.
- Two different search techniques:
- Depth-First Search: follow a path until you get stuck, then go back
- Breadth-First Search: explore all nearby nodes before moving on to farther away nodes
- Finds the shortest path from s to t !

Breadth-First Search (BFS)

- Informal Description: start at s, find neighbors of s, find neighbors of neighbors of s, and so on...
- BFS Tree:
- $L_{0}=\{s\}$
- $L_{1}=$ all neighbors of L_{0}
- $L_{2}=$ all neighbors of L_{1} that are not in L_{0}, L_{1}
- $L_{3}=$ all neighbors of L_{2} that are not in L_{0}, L_{1}, L_{2}
-...
- $L_{d}=$ all neighbors of L_{d-1} that are not in L_{0}, \ldots, L_{d-1}
- Stop when L_{d+1} is empty

Example

- BFS this graph from $\boldsymbol{s}=\mathbf{1}$

- Red edger are "tree edges"
- Red edges give paths from s to t
- Blue edger are ether $L_{i} \leftrightarrow L_{i}$ or $L_{i} \leftrightarrow L_{i+1}$

Breadth-First Search Implementation

```
BFS (G = (V,E), s):
```

 Let explored[v] \(\leftarrow\) false \(\forall v\), explored[s] \(\leftarrow\) true
 Let layer[v] \(\leftarrow \infty \not \forall \mathrm{v}\), layer[s] \(\leftarrow 0\)
 Let parent \([\mathrm{v}] \leftarrow \perp \forall \mathrm{v}\)
 Let \(i \leftarrow 0, \mathrm{~L}_{0}=\{\mathrm{s}\}, \mathrm{T} \leftarrow \emptyset\)
 While (\(L_{i}\) is not empty):
 Initialize new layer \(\mathrm{L}_{\mathrm{i}+1}\)
 For (\(u\) in \(L_{i}\)):
 For (\((u, v)\) in \(E)\) :
 If (explored[v] = false):
 explored[v] \(\leftarrow\) true,
 layer[v] \(\leftarrow\) i+1
 parent \([\mathrm{v}] \leftarrow \mathrm{u} \quad(\operatorname{Add}(u, v)\) to \(T)\)
 Add \(v\) to \(\mathrm{L}_{\mathrm{i}+1}\)
 \(i \leftarrow i+1\)
 BFS Running Time (Adjacency List)

```
BFS (G = (V,E), s):
    Let explored[v]}\leftarrow\mathrm{ false }\forallv\mathrm{ , explored[s]}\leftarrow\mathrm{ true}
    Let layer[v] \leftarrow\infty \forallv, layer[s]}\leftarrow
    Let parent[v] \leftarrow\perp \forallv
    Let i}\leftarrow0,\mp@subsup{L}{0}{\prime}={s},T\leftarrow
    While ( }\mp@subsup{L}{i}{}\mathrm{ is not empty):, each node occurs once
        Initialize new layer L
        For (u in LLi): 
        For ((u,v) in E): = { false):] =O(n)+\mp@subsup{\sum}{u\inV}{}(\emptyset(\operatorname{deg}(w))
            explored[v] \leftarrowtrue,
            layer[v] \leftarrowi+1
            parent[v]}\leftarrow
            Add v to Li+1
        i}\leftarrowi+
```


Shortest Paths via BFS

$$
\begin{gathered}
d(s, t) \text { or } d(s \rightarrow t) \\
d, t) \\
d, t(s, t) \text { dot }
\end{gathered}
$$

- Definition: the distance between s, t is the number of edges on the shortest path from s to t. If t not reachable for s then $d(s, t)=\infty$
- Thm: BFS finds distances from s to other nodes
- L_{i} contains all nodes at distance i from s

Shortest Paths via BFS

- Definition: the distance between s, t is the number of edges on the shortest path from s to t
- Thy: BFS finds distances from s to other nodes
${ }_{\forall i} L_{i}$ contains all nodes at distance i from s
Lo is obvious
Base Cases:
L_{1} is obvious (L, contains all ne-ghhles of s)
Induction: If true for $L_{a}, L_{1, \ldots}, L_{i}$ then tree for L_{i+},
Suppose u is such that $d(s, u)=i+1$
(s) $\xrightarrow{\text { i hops }}(v)$ (u)

By mduction, v is in L_{i}. Therefore u is $m L_{i+1}$

Shortest Paths via BFS

- Definition: the distance between s, t is the number of edges on the shortest path from s to t
- Thm: BFS finds distances from s to other nodes and the tree edges give the shortest s to t path
- Can find distances and shortest path tree in time $O(n+m) \ldots$ then can find a shortest path in time $O(n)$
Tree edges give shartest paths

Shortest Paths via BFS

- Definition: the distance between s, t is the number of edges on the shortest path from s to t
- Thm: BFS finds distances from s to other nodes and the tree edges give the shortest s to t path
- Can find distances and shortest path tree in time $O(n+m) \ldots$ then can find a shortest path in time $O(n)$

Shortest Paths: Dijkstra

Navigation

Weighted Graphs

- Definition: A weighted graph $G=(V, E,\{w(e)\})$
- V is the set of vertices
- $E \subseteq V \times V$ is the set of edges
- $w_{e} \in \mathbb{R}$ are edge weights/lengths/capacities
- Can be directed or undirected
- Today:
- Directed graphs (one-way streets)
- Strongly connected (there is always some path)
- Non-negative edge lengths ($\ell(e) \geq 0)$

Shortest Paths

- The length of a path $P=v_{1}-v_{2}-\cdots-v_{k}$ is the sum of the edge lengths

$$
l(p)=\sum_{e \in P} l(e)
$$

- The distance $d(s, t)$ is the length of the shortest path from s to t
- Shortest Path: given nodes $s, t \in V$, find the shortest path from s to t
- Single-Source Shortest Paths: given a node $s \in V$, find the shortest paths from s to every $t \in V$

Structure of Shortest Paths

- If $(u, v) \in E$, then $d(s, v) \leq d(s, u)+\ell(u, v)$ for every node $s \in V$
- If $(u, v) \in E$, and $d(s, v)=d(s, u)+\ell(u, v)$ then there is a shortest $s \leadsto v$-path ending with (u, v)

Dijkstra's Algorithm

- Mantam an upper bound on $d(s, t) \quad \forall t$

$$
d[s]=0 \quad d[t]=\infty \text { for } t \neq s
$$

- Explore neighbors of s
- Find another node [with the smallest $d[u]$ of all mexplored nodes] Explore neighbors of that node
- Repeat until all nodes are explored

Dijkstra’s Algorithm: Demo

Dijkstra's Algorithm: Demo

Dijkstra's Algorithm: Demo

Dijkstra's Algorithm: Demo

Dijkstra's Algorithm: Demo

Dijkstra's Algorithm: Demo

Explore \mathbf{B}

Dijkstra's Algorithm: Demo

Don't need to explore D

	A	B	C	D	E
$d_{0}(u)$	0	∞	∞	∞	∞
$d_{1}(u)$	0	10	3	∞	∞
$d_{2}(u)$	0	7	3	11	5
$d_{3}(u)$	0	7	3	11	5
$d_{4}(u)$	0	7	3	9	5

$$
S=\{A, C, E, B, D\}
$$

Dijkstra's Algorithm: Demo

Correctness of Dijkstra

- Warmup 0: initially, $d_{0}(s)$ is the correct distance
second
- Warmup 1: after exploring the 1 作st node $v, d_{1}(v)$ is the correct distance
If (s, v) is the shortest edge starling at s. Then $d(s, v)=\ell(s, v)$

Any other $s \leadsto v$ path has length $\geqslant 5_{u}$ so its not a shooter path

Correctness of Dijkstra

shortect path welve fourd athe explongy inodes

- Invariant: after we explore the i-th node $d_{i}(v)$ is correct for every $v \in S$
- We just argued the invariant holds after we've explored the $1^{\text {st }}$ and $2^{\text {nd }}$ nodes

Correctness of Dijkstra

- Invariant: after we explore the i-th node, $d_{i}(v)$ is correct for every $v \in S$
- Proof:
 is the shortest path

$$
\left.\left.\begin{array}{c}
l\left(P^{\prime}\right)=l\left(P_{s, x}\right)+l(x \rightarrow y)+\ell\left(P_{y, v}\right) \\
\geqslant l\left(P_{s, x}\right)+l(x \rightarrow y)
\end{array}\right][\ell(e) \geqslant 0]\right] \text { [x is explored] } \begin{array}{ll}
\geqslant d_{i}(x)+l(x \rightarrow y) & {[x \text { is explond }]} \\
\geqslant d_{i}(y) & {[\text { bile l chose } v, \text { not .y }]}
\end{array}
$$

Implementing Dijkstra

Dijkstra(G $=(\mathrm{V}, \mathrm{E},\{\ell(\mathrm{e})\}, \mathrm{s}):$
$d[s] \leftarrow 0, d[u] \leftarrow \infty$ for every $u!=s$ parent[u] $\leftarrow \perp$ for every u
$Q \leftarrow \mathrm{~V} \quad / / \mathrm{Q}$ holds the unexplored nodes While (Q is not empty):
$u \leftarrow \underset{w \in Q}{\operatorname{argmin}} d[w] \quad / / F i n d$ closest unexplored
Remove u from Q
// Update the neighbors of u
For ((u,v) in E):

$$
\begin{aligned}
& \text { If }(d[v]>d[u]+\ell(u, v)): \\
& d[v] \leftarrow d[u]+\ell(u, v) \\
& \text { parent }[v] \leftarrow u
\end{aligned}
$$

Return (d, parent)

Implementing Dijkstra (Naïvely)
(1)

- Need to explore all n nodes
- Each exploration requires:

Finding the unexplored node u with smallest distance Updating the distance for each neighbor of u

$$
\begin{aligned}
& \text { (2a) } O(n) \text { time } \\
& \text { (ab) } O(\operatorname{deg}(u)+1) \\
& \sum_{u \in V} O(n+\operatorname{deg}(u)+1)=O\left(n^{2}+m\right)
\end{aligned}
$$

