CS3000: Algorithms & Data Jonathan Ullman

Lecture 10:

- Graphs
- Graph Traversals: DFS
- Topological Sort

Feb 19, 2020

What's Next

The Structure of Romantic and Sexual Relations at "Jefferson High School"

Each circle represents a student and lines connecting students represent romantic relations occuring within the 6 months preceding the interview. Numbers under the figure count the number of times that pattern was observed (i.e. we found 63 pairs unconnected to anyone else).

What's Next

• Graph Algorithms:

- Graphs: Key Definitions, Properties, Representations
- Exploring Graphs: Breadth/Depth First Search
 - Applications: Connectivity, Bipartiteness, Topological Sorting
- Shortest Paths:
 - Dijkstra
 - Bellman-Ford (Dynamic Programming)
- Minimum Spanning Trees:
 - Borůvka, Prim, Kruskal
- Network Flow:
 - Algorithms
 - Reductions to Network Flow

Graphs

Graphs: Key Definitions

- **Definition:** A directed graph G = (V, E)
 - *V* is the set of nodes/vertices
 - $E \subseteq V \times V$ is the set of edges
 - An edge is an ordered e = (u, v) "from u to v"
- **Definition:** An undirected graph G = (V, E)
 - Edges are unordered e = (u, v) "between u and v"
- Simple Graph:
 - No duplicate edges
 - No self-loops e = (u, u)

Adjacency Matrices

• The adjacency matrix of a graph G = (V, E) with n nodes is the matrix A[1:n, 1:n] where

$$A[i,j] = \begin{cases} 1 & (i,j) \in E \\ 0 & (i,j) \notin E \end{cases}$$

 $\frac{\text{Cost}}{\text{Space: }\Theta(V^2)}$

Lookup: $\Theta(1)$ time List Neighbors: $\Theta(V)$ time

Α	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

Adjacency Lists (Undirected)

- The adjacency list of a vertex $v \in V$ is the list A[v] of all u s.t. $(v, u) \in E$
 - $A[1] = \{2,3\}$ $A[2] = \{1,3\}$ $A[3] = \{1,2,4\}$ $A[4] = \{3\}$

Adjacency Lists (Directed)

- The adjacency list of a vertex $v \in V$ are the lists
 - $A_{out}[v]$ of all u s.t. $(v, u) \in E$
 - $A_{in}[v]$ of all u s.t. $(u, v) \in E$

 $A_{out}[1] = \{2,3\}$ $A_{out}[2] = \{3\}$ $A_{out}[3] = \{\}$ $A_{out}[4] = \{3\}$

 $\begin{array}{l} A_{in}[1] = \{ \} \\ A_{in}[2] = \{ 1 \} \\ A_{in}[3] = \{ 1, 2, 4 \} \\ A_{in}[4] = \{ \} \end{array} \end{array}$

Depth-First Search (DFS)

Depth-First Search

```
G = (V, E) \text{ is a graph} \\ explored[u] = 0 \quad \forall u \\ \\DFS(u): \\ explored[u] = 1 \\ \\for ((u, v) \text{ in } E): \\ \\if (explored[v]=0): \\ \\parent[v] = u \\ \\DFS(v) \\ \\ \end{cases}
```


Depth-First Search

- Fact: The parent-child edges form a (directed) tree
- Each edge has a type:
 - Tree edges: (u, a), (u, b), (b, c)
 - These are the edges that explore new nodes
 - Forward edges: (*u*, *c*)
 - Ancestor to descendant
 - Backward edges: (*a*, *u*)
 - Descendant to ancestor
 - Implies a directed cycle!
 - Cross edges: (*b*, *a*)
 - No ancestral relation

Ask the Audience

- DFS starting from node *a*
 - Search in alphabetical order
 - Label edges with {tree,forward,backward,cross}

Connected Components

Paths/Connectivity

- A path is a sequence of consecutive edges in *E*
 - $P = u w_1 w_2 w_3 \dots w_{k-1} v$
 - The length of the path is the # of edges

- An undirected graph is connected if for every two vertices $u, v \in V$, there is a path from u to v
- A directed graph is strongly connected if for every two vertices $u, v \in V$, there are paths from u to v and from v to u

- **Problem:** Given an undirected graph *G*, split it into connected components
- Input: Undirected graph G = (V, E)
- Output: A labeling of the vertices by their connected component

• Algorithm:

- Pick a node v
- Use DFS to find all nodes reachable from v
- Labels those as one connected component
- Repeat until all nodes are in some component


```
CC(G = (V,E)):
// Initialize an empty array and a counter
let comp[1:n] \leftarrow \perp, c \leftarrow 1
// Iterate through nodes
for (u = 1, ..., n):
  // Ignore this node if it already has a comp.
  // Otherwise, explore it using DFS
  if (comp[u] != \bot):
    run DFS(G,u)
    let comp[v] \leftarrow c for every v found by DFS
    let c \leftarrow c + 1
output comp[1:n]
```

Running Time

- **Problem:** Given an undirected graph *G*, split it into connected components
- Algorithm: Can split a graph into conneted components in time O(n + m) using DFS
- Punchline: Usually assume graphs are connected
 - Implicitly assume that we have already broken the graph into CCs in O(n + m) time

- **Problem:** Given a directed graph *G*, split it into strongly connected components
- Input: Directed graph G = (V, E)
- Output: A labeling of the vertices by their strongly connected component

- **Observation:** SCC(s) is all nodes $v \in V$ such that v is reachable from s and vice versa
 - Can find all nodes reachable from *s* using BFS
 - How do we find all nodes that can reach *s*?

```
SCC (G = (V, E)):
let G<sup>R</sup> be G with all edges "reversed"
// Initialize an array and counter
let comp[1:n] \leftarrow \perp, c \leftarrow 1
for (u = 1, ..., n):
  // If u has not been explored
  if (comp[u] != \bot):
    let S be the nodes found by DFS(G,u)
    let T be the nodes found by DFS(G^{R}, u)
    // S \cap T contains SCC(u)
    label S \cap T with c
    let c \leftarrow c + 1
```

return comp

- **Problem:** Given a directed graph *G*, split it into strongly connected components
- Input: Directed graph G = (V, E)
- Output: A labeling of the vertices by their strongly connected component
- Find SCCs in $O(n^2 + nm)$ time using DFS
- Can find SCCs in O(n + m) time using a more clever version of DFS

Post-Ordering

Post-Ordering

- Maintain a counter **clock**, initially set **clock** = 1
- post-visit(u):

set postorder[u]=clock, clock=clock+1

Example

- Compute the **post-order** of this graph
 - DFS from *a*, search in alphabetical order

Vertex	а	b	С	d	е	f	g	h
Post-Order								

Example

- Compute the **post-order** of this graph
 - DFS from *a*, search in alphabetical order

Vertex	а	b	С	d	е	f	g	h
Post-Order	8	7	5	4	6	1	2	3

Obervation

• **Observation:** if postorder[u] < postorder[v] then (u,v) is a backward edge

Vertex	а	b	С	d	е	f	g	h
Post-Order	8	7	5	4	6	1	2	3

Observation

- Observation: if postorder[u] < postorder[v] then (u,v) is a backward edge
 - DFS(u) can't finish until its children are finished
 - If postorder[u] < postorder[v], then DFS(u) finishes before DFS(v), thus DFS(v) is not called by DFS(u)
 - When we ran DFS(u), we must have had explored[v]=1
 - Thus, DFS(v) started before DFS(u)
 - DFS(v) started before DFS(u) but finished after
 - Can only happen for a backward edge

Topological Ordering

Directed Acyclic Graphs (DAGs)

- DAG: A directed graph with no directed cycles
- Can be much more complex than a forest

Directed Acyclic Graphs (DAGs)

- **DAG:** A directed graph with no directed cycles
- DAGs represent precedence relationships

- A topological ordering of a directed graph is a labeling of the nodes from $v_1, ..., v_n$ so that all edges go "forwards", that is $(v_i, v_j) \in E \Rightarrow j > i$
 - G has a topological ordering \Rightarrow G is a DAG

Directed Acyclic Graphs (DAGs)

- **Problem 1:** given a digraph *G*, is it a DAG?
- **Problem 2:** given a digraph *G*, can it be topologically ordered?
- Thm: G has a topological ordering \Leftrightarrow G is a DAG
 - We will design one algorithm that either outputs a topological ordering or finds a directed cycle

Topological Ordering

• **Observation:** the first node must have no in-edges

• **Observation:** In any DAG, there is always a node with no incoming edges

Topological Ordering

- Fact: In any DAG, there is a node with no incoming edges
- Thm: Every DAG has a topological ordering
- Proof (Induction):

Faster Topological Ordering

Post-Ordering

- Maintain a counter **clock**, initially set **clock** = 1
- post-visit(u):

set postorder[u]=clock, clock=clock+1

Example

- Compute the **post-order** of this graph
 - DFS from *a*, search in alphabetical order

Vertex	а	b	С	d	е	f	g	h
Post-Order								

Example

- Compute the **post-order** of this graph
 - DFS from *a*, search in alphabetical order

Vertex	а	b	С	d	е	f	g	h
Post-Order	8	7	5	4	6	1	2	3

Obervation

• **Observation:** if postorder[u] < postorder[v] then (u,v) is a backward edge

Vertex	а	b	С	d	е	f	g	h
Post-Order	8	7	5	4	6	1	2	3

Observation

- Observation: if postorder[u] < postorder[v] then (u,v) is a backward edge
 - DFS(u) can't finish until its children are finished
 - If postorder[u] < postorder[v], then DFS(u) finishes before DFS(v), thus DFS(v) is not called by DFS(u)
 - When we ran DFS(u), we must have had explored[v]=1
 - Thus, DFS(v) started before DFS(u)
 - DFS(v) started before DFS(u) but finished after
 - Can only happen for a backward edge

Fast Topological Ordering

- Claim: ordering nodes by decreasing postorder gives a topological ordering
- Proof:
 - A DAG has no backward edges
 - Suppose this is **not** a topological ordering
 - That means there exists an edge (u,v) such that postorder[u] < postorder[v]
 - We showed that any such (u,v) is a backward edge
 - But there are no backward edges, contradiction!

Topological Ordering (TO)

- **DAG:** A directed graph with no directed cycles
- Any DAG can be toplogically ordered
 - Label nodes $v_1, ..., v_n$ so that $(v_i, v_j) \in E \implies j > i$

- Can compute a TO in O(n + m) time using DFS
 - Reverse of post-order is a topological order

Breadth-First Search

Exploring a Graph

- **Problem:** Is there a path from *s* to *t*?
- Idea: Explore all nodes reachable from *s*.
- Two different search techniques:
 - Breadth-First Search: explore nearby nodes before moving on to farther away nodes
 - Depth-First Search: follow a path until you get stuck, then go back

Breadth-First Search (BFS)

- Informal Description: start at s, find neighbors of s, find neighbors of neighbors of s, and so on...
- BFS Tree:
 - $L_0 = \{s\}$
 - $L_1 =$ all neighbors of L_0
 - $L_2 = \text{all neighbors of } L_1 \text{ that are not in } L_0, L_1$
 - $L_3 = \text{all neighbors of } L_2$ that are not in L_0, L_1, L_2
 - ...
 - L_d = all neighbors of L_{d-1} that are not in L_0 , ..., L_{d-1}
 - Stop when L_{d+1} is empty

Ask the Audience

• BFS this graph from s = 1

Ask the Audience

• BFS this graph from s = 1

Breadth-First Search (BFS)

- **Definition:** the distance between *s*, *t* is the number of edges on the shortest path from *s* to *t*
- Thm: BFS finds distances from s to other nodes
 - L_i contains all nodes at distance i from s
 - Nodes not in any layer are not reachable from s

Breadth-First Search Implementation

```
BFS(G = (V, E), s):
Let found[v] \leftarrow false \forall v
Let found[s] \leftarrow true
Let layer[v] \leftarrow \infty \forall v, layer[s] \leftarrow 0
Let i \leftarrow 0, L_0 = \{s\}, T \leftarrow \emptyset
While (L_i \text{ is not empty}):
   Initialize new layer L<sub>i+1</sub>
   For (u in L_i):
      For ((u,v) in E):
         If (found[v] = false):
            found[v] \leftarrow true,
            layer[v] \leftarrow i+1
           Add (u,v) to T
           Add v to L_{i+1}
   i \leftarrow i+1
```

BFS Running Time (Adjacency List)

```
BFS(G = (V, E), s):
Let found[v] \leftarrow false \forall v
Let found[s] \leftarrow true
Let layer[v] \leftarrow \infty \forall v, layer[s] \leftarrow 0
Let i \leftarrow 0, L_0 = \{s\}, T \leftarrow \emptyset
While (L_i \text{ is not empty}):
   Initialize new layer L<sub>i+1</sub>
   For (u \text{ in } L_i):
      For ((u,v) in E):
         If (found[v] = false):
            found[v] \leftarrow true,
            layer[v] \leftarrow i+1
            Add (u,v) to T
            Add v to L_{i+1}
   i \leftarrow i+1
```

Bipartiteness / 2-Coloring

2-Coloring

- **Problem:** Tug-of-War Rematch
 - Need to form two teams *R*, *P*
 - Some students are still mad from last time
- Input: Undirected graph G = (V, E)
 - $(u, v) \in E$ means u, v wont be on the same team
- Output: Split V into two sets R, P so that no pair in either set is connected by an edge

2-Coloring (Bipartiteness)

- Equivalent Problem: Is the graph G bipartite?
 - A graph G is bipartite if I can split V into two sets L and R such that all edges $(u, v) \in E$ go between L and R

• Key Fact: If G contains a cycle of odd length, then G is not 2-colorable/bipartite

• Idea for the algorithm:

- BFS the graph, coloring nodes as you find them
- Color nodes in layer *i* **purple** if *i* even, **red** if *i* odd
- See if you have succeeded or failed

- **Claim:** If BFS 2-colored the graph successfully, the graph has been 2-colored successfully
- Key Question: Suppose you have not 2-colored the graph successfully, maybe someone else can do it?

- Claim: If BFS fails, then G contains an odd cycle
 - If G contains an odd cycle then G can't be 2-colored!
 - Example of a phenomenon called duality

