
CS3000:	Algorithms	&	Data
Jonathan	Ullman

Lecture	10:	
• Graphs
• Graph	Traversals:	DFS
• Topological	Sort

Feb	19,	2020



What’s	Next



What’s	Next

• Graph	Algorithms:
• Graphs: Key	Definitions,	Properties,	Representations
• Exploring	Graphs: Breadth/Depth	First	Search

• Applications:	Connectivity,	Bipartiteness,	Topological	Sorting

• Shortest	Paths:
• Dijkstra

• Bellman-Ford	(Dynamic	Programming)

• Minimum	Spanning	Trees:
• Borůvka,	Prim,	Kruskal

• Network	Flow:
• Algorithms

• Reductions	to	Network	Flow



Graphs



Graphs:	Key	Definitions

• Definition:	A	directed	graph ! = #, %

• # is	the	set	of	nodes/vertices

• % ⊆ #×# is	the	set	of	edges

• An	edge	is	an	ordered	( = ), * “from	) to	*”

• Definition: An	undirected	graph ! = #, %

• Edges	are	unordered	( = ), * “between	) and	*”

• Simple	Graph:
• No	duplicate	edges
• No	self-loops	( = ), )



Adjacency	Matrices

• The	adjacency	matrix of	a	graph	! = #, % with	+
nodes	is	the	matrix	, 1: +	, 1: + where

, 0, 1 = 	 2

1					 0, 1 ∈ %

	0					 0, 1 ∉ %

A 1 2 3 4

1 0 1 1 0

2 0 0 1 0

3 0 0 0 0

4 0 0 1 0

Cost

Space:	Θ #
7

Lookup:	Θ 1 time

List	Neighbors:	Θ # time

2 1

3 4



Adjacency	Lists	(Undirected)

• The	adjacency	list of	a	vertex	* ∈ # is	the	list	,[*]
of	all	) s.t.	 *, ) ∈ %

2 1

3 4

, 1 = 2,3

, 2 = 1,3

, 3 = 1,2,4

, 4 = 3



Adjacency	Lists	(Directed)

• The	adjacency	list of	a	vertex	* ∈ # are	the	lists

• ,
=>?
[*] of	all	) s.t.	 *, ) ∈ %

• ,
@A
[*] of	all	) s.t.	 ), * ∈ %

2 1

3 4

,
=>?

1 = 2,3

,
=>?

2 = 3

,
=>?

3 = 	

,
=>?

4 = 3

,
@A
1 = 	

,
@A
2 = 1

,
@A
3 = 1,2,4

,
@A
4 = 	



Depth-First	Search	(DFS)



Depth-First	Search

G = (V,E) is a graph
explored[u] = 0 �u

DFS(u):
explored[u] = 1

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DFS(v)

u c

a b



Depth-First	Search

u c

a b

• Fact: The	parent-child	edges	form	a	(directed)	tree

• Each	edge	has	a	type:
• Tree	edges:	(), C), (), E), (E, F)

• These	are	the	edges	that	explore	new	nodes

• Forward	edges:	(), F)
• Ancestor	to	descendant

• Backward	edges:	 C, )
• Descendant	to	ancestor

• Implies	a	directed	cycle!

• Cross	edges:	(E, C)
• No	ancestral	relation



Ask	the	Audience

a b

e f

• DFS	starting	from	node	C

• Search	in	alphabetical	order
• Label	edges	with	
{tree,forward,backward,cross}

c d

g h



Connected	Components



Paths/Connectivity

• A	path is	a	sequence	of	consecutive	edges	in	%
• G = ) − I

J
− I

7
− I

K
−⋯−I

MNJ
− *

• The	length of	the	path	is	the	#	of	edges

• An	undirected graph	is	connected if	for	every	two	
vertices	), * ∈ #,	there	is	a	path	from	) to	*

• A	directed graph	is	strongly	connected if	for	every	
two	vertices	), * ∈ #,	there	are	paths	from	) to	*
and	from	* to	)



Connected	Components	(Undirected)

• Problem:	Given	an	undirected	graph	!,	split	it	into	
connected	components

• Input:	Undirected	graph	! = #, %

• Output: A	labeling	of	the	vertices	by	their	
connected	component

2 1

3 4 5



Connected	Components	(Undirected)

• Algorithm:
• Pick	a	node	v
• Use	DFS	to	find	all	nodes	reachable	from	v

• Labels	those	as	one	connected	component

• Repeat	until	all	nodes	are	in	some	component

1 2

4 5 6

3



Connected	Components	(Undirected)

CC(G = (V,E)):
// Initialize an empty array and a counter
let comp[1:n]←	⊥, c ← 1

// Iterate through nodes
for (u = 1,…,n):
// Ignore this node if it already has a comp.
// Otherwise, explore it using DFS
if (comp[u] != ⊥): 
run DFS(G,u)
let comp[v]← c for every v found by DFS
let c ← c + 1

output comp[1:n]



Running	Time



Connected	Components	(Undirected)

• Problem:	Given	an	undirected	graph	!,	split	it	into	
connected	components

• Algorithm:	Can	split	a	graph	into	conneted	
components	in	time	Q + +S using	DFS

• Punchline:	Usually	assume	graphs	are	connected

• Implicitly	assume	that	we	have	already	broken	the	graph	
into	CCs	in	Q + +S time



Strong	Components	(Directed)

• Problem:	Given	a	directed	graph	!,	split	it	into	
strongly	connected	components

• Input:	Directed	graph	! = #, %

• Output: A	labeling	of	the	vertices	by	their	strongly	
connected	component

2 1

3 4 5



Strong	Components	(Directed)

• Observation:	SCC(V) is	all	nodes	* ∈ # such	that	*
is	reachable	from	V and	vice	versa

• Can	find	all	nodes	reachable	from	V using	BFS

• How	do	we	find	all	nodes	that	can	reach	V?



Strong	Components	(Directed)

SCC(G = (V,E)):
let GR be G with all edges “reversed”

// Initialize an array and counter
let comp[1:n]←	⊥, c ← 1

for (u = 1,…,n):
// If u has not been explored
if (comp[u] != ⊥):
let S be the nodes found by DFS(G,u)
let T be the nodes found by DFS(GR,u)
// S ∩ T contains SCC(u)
label S ∩ T with c
let c ← c + 1

return comp



Strong	Components	(Directed)

• Problem:	Given	a	directed	graph	!,	split	it	into	
strongly	connected	components

• Input:	Directed	graph	! = #, %

• Output: A	labeling	of	the	vertices	by	their	strongly	
connected	component

• Find	SCCs	in	Q +
7
+ +S time	using	DFS

• Can	find	SCCs	in	W(X +Y) time using	a	more	
clever	version	of	DFS



Post-Ordering



Post-Ordering

G = (V,E) is a graph
explored[u] = 0 �u

DFS(u):
explored[u] = 1

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DFS(v)

post-visit(u)

u c

a b

• Maintain	a	counter	clock,	initially	set	clock = 1
• post-visit(u):

set postorder[u]=clock, clock=clock+1

Vertex Post-Order



Example

a b

e f

• Compute	the	post-order of	this	graph
• DFS	from	Z,	search	in	alphabetical	order

c d

g h

Vertex a b c d e f g h

Post-Order



Example

a b

e f

• Compute	the	post-order of	this	graph
• DFS	from	Z,	search	in	alphabetical	order

c d

g h

Vertex a b c d e f g h

Post-Order 8 7 5 4 6 1 2 3



Obervation

a b

e f

• Observation:	if	postorder[u]	<	postorder[v]	then	
(u,v)	is	a	backward	edge

c d

g h

Vertex a b c d e f g h

Post-Order 8 7 5 4 6 1 2 3



Observation

• Observation:	if	postorder[u]	<	postorder[v]	then	
(u,v)	is	a	backward	edge

• DFS(u)	can’t	finish	until	its	children	are	finished
• If	postorder[u]	<	postorder[v],	then	DFS(u)	finishes	
before	DFS(v),	thus	DFS(v)	is	not	called	by	DFS(u)

• When	we	ran	DFS(u),	we	must	have	had	explored[v]=1

• Thus,	DFS(v)	started	before	DFS(u)

• DFS(v)	started	before	DFS(u)	but	finished	after
• Can	only	happen	for	a	backward	edge



Topological	Ordering



Directed	Acyclic	Graphs	(DAGs)

• DAG:	A	directed graph	with	no	directed	cycles
• Can	be	much	more	complex	than	a	forest



Directed	Acyclic	Graphs	(DAGs)

• DAG:	A	directed	graph	with	no	directed	cycles
• DAGs	represent	precedence relationships

• A	topological	ordering of	a	directed	graph	is	a	
labeling	of	the	nodes	from	*

J
, … , *

A
so	that	all	

edges	go	“forwards”,	that	is	 *
@
, *
\
∈ % ⇒ 1 > 0

• ! has	a	topological	ordering	⇒! is	a	DAG



Directed	Acyclic	Graphs	(DAGs)

• Problem	1:	given	a	digraph	!,	is	it	a	DAG?
• Problem	2: given	a	digraph	!,	can	it	be	
topologically	ordered?

• Thm: ! has	a	topological	ordering	⟺! is	a	DAG

• We	will	design	one	algorithm	that	either	outputs	a	
topological	ordering	or	finds	a	directed	cycle



Topological	Ordering

• Observation:	the	first	node	must	have	no	in-edges

• Observation: In	any	DAG,	there	is	always	a	node	
with	no	incoming	edges



Topological	Ordering

• Fact: In	any	DAG,	there	is	a	node	with	no	incoming	
edges

• Thm: Every	DAG	has	a	topological	ordering
• Proof	(Induction):



Faster	Topological	Ordering



Post-Ordering

G = (V,E) is a graph
explored[u] = 0 �u

DFS(u):
explored[u] = 1

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DFS(v)

post-visit(u)

u c

a b

• Maintain	a	counter	clock,	initially	set	clock = 1
• post-visit(u):

set postorder[u]=clock, clock=clock+1

Vertex Post-Order



Example

a b

e f

• Compute	the	post-order of	this	graph
• DFS	from	Z,	search	in	alphabetical	order

c d

g h

Vertex a b c d e f g h

Post-Order



Example

a b

e f

• Compute	the	post-order of	this	graph
• DFS	from	Z,	search	in	alphabetical	order

c d

g h

Vertex a b c d e f g h

Post-Order 8 7 5 4 6 1 2 3



Obervation

a b

e f

• Observation:	if	postorder[u]	<	postorder[v]	then	
(u,v)	is	a	backward	edge

c d

g h

Vertex a b c d e f g h

Post-Order 8 7 5 4 6 1 2 3



Observation

• Observation:	if	postorder[u]	<	postorder[v]	then	
(u,v)	is	a	backward	edge

• DFS(u)	can’t	finish	until	its	children	are	finished
• If	postorder[u]	<	postorder[v],	then	DFS(u)	finishes	
before	DFS(v),	thus	DFS(v)	is	not	called	by	DFS(u)

• When	we	ran	DFS(u),	we	must	have	had	explored[v]=1

• Thus,	DFS(v)	started	before	DFS(u)

• DFS(v)	started	before	DFS(u)	but	finished	after
• Can	only	happen	for	a	backward	edge



Fast	Topological	Ordering

• Claim:	ordering	nodes	by	decreasing	postorder	
gives	a	topological	ordering

• Proof:
• A	DAG	has	no	backward	edges
• Suppose	this	is	not a	topological	ordering
• That	means	there	exists	an	edge	(u,v)	such	that	
postorder[u]	<	postorder[v]

• We	showed	that	any	such	(u,v)	is	a	backward	edge

• But	there	are	no	backward	edges,	contradiction!



Topological	Ordering	(TO)

• DAG:	A	directed	graph	with	no	directed	cycles
• Any	DAG	can	be	toplogically ordered
• Label	nodes	*

J
, … , *

A
so	that	 *

@
, *
\
∈ % ⟹ 1 > 0

• Can	compute	a	TO	in	Q + +S time	using	DFS

• Reverse	of	post-order	is	a	topological	order



Breadth-First	Search



Exploring	a	Graph

• Problem:	Is	there	a	path	from	V to	a?

• Idea: Explore	all	nodes	reachable	from	V.

• Two	different	search	techniques:
• Breadth-First	Search: explore	nearby	nodes	before	
moving	on	to	farther	away	nodes

• Depth-First	Search: follow	a	path	until	you	get	stuck,	
then	go	back



Breadth-First	Search	(BFS)

• Informal	Description: start	at	V,	find	neighbors	of	V,	
find	neighbors	of	neighbors	of	V,	and	so	on…

• BFS	Tree:
• b

c
= V

• b
J
= all	neighbors	of	b

c

• b
7
= all	neighbors	of	b

J
that	are	not	in	b

c
, b
J

• b
K
= all	neighbors	of	b

7
that	are	not	in	b

c
, b
J
, b
7

• …
• b

d
= all	neighbors	of	b

dNJ
that	are	not	in	b

c
, … , b

dNJ

• Stop	when	b
deJ

is	empty



Ask	the	Audience

• BFS	this	graph	from	f = g



Ask	the	Audience

• BFS	this	graph	from	f = g



Breadth-First	Search	(BFS)

• Definition:	the	distance between	V, a is	the	number	
of	edges	on	the	shortest	path	from	V to	a

• Thm:	BFS	finds	distances	from	V to	other	nodes

• b
@
contains	all	nodes	at	distance	0 from	V

• Nodes	not	in	any	layer	are	not	reachable	from	V



Breadth-First	Search	Implementation

BFS(G = (V,E), s):
Let found[v]	←	false ∀v
Let found[s]	←	true
Let layer[v]	← ∞ ∀v, layer[s]	←	0
Let i	←	0, L0 = {s}, T ← ∅

While (Li is not empty):
Initialize new layer Li+1
For (u in Li):
For ((u,v) in E):
If (found[v] = false):
found[v]	←	true,
layer[v]←	i+1
Add (u,v) to T 
Add v to Li+1

i	←	i+1



BFS	Running	Time	(Adjacency	List)

BFS(G = (V,E), s):
Let found[v]	←	false ∀v
Let found[s]	←	true
Let layer[v]	← ∞ ∀v, layer[s]	←	0
Let i	←	0, L0 = {s}, T ← ∅

While (Li is not empty):
Initialize new layer Li+1
For (u in Li):
For ((u,v) in E):
If (found[v] = false):
found[v]	←	true,
layer[v]←	i+1
Add (u,v) to T 
Add v to Li+1

i	←	i+1



Bipartiteness	/	2-Coloring



2-Coloring

• Problem:	Tug-of-War	Rematch

• Need	to	form	two	teams	k,l

• Some	students	are	still	mad	from	last	time

• Input:	Undirected	graph	! = #, %

• ), * ∈ % means	), * wont	be	on	the	same	team

• Output: Split	# into	two	sets	k,l so	that	no	pair	in	
either	set	is	connected	by	an	edge



2-Coloring	(Bipartiteness)

• Equivalent	Problem:	Is	the	graph	! bipartite?

• A	graph	! is	bipartite if	I	can	split	# into	two	sets	b and	
m such	that	all	edges	 ), * ∈ % go	between	b and	m

2 1

3 4

L R

5



Designing	the	Algorithm

• Key	Fact:	If	! contains	a	cycle	of	odd	length,	then	!
is	not	2-colorable/bipartite



Designing	the	Algorithm

• Idea	for	the	algorithm:	
• BFS	the	graph,	coloring	nodes	as	you	find	them
• Color	nodes	in	layer	0 purple if	0 even,	red if	0 odd

• See	if	you	have	succeeded	or	failed



Designing	the	Algorithm

• Claim:	If	BFS	2-colored	the	graph	successfully,	the	
graph	has	been	2-colored	successfully

• Key	Question: Suppose	you	have	not	2-colored	the	
graph	successfully,	maybe	someone	else	can	do	it?



Designing	the	Algorithm

• Claim: If	BFS	fails,	then	G	contains	an	odd	cycle
• If	G	contains	an	odd	cycle	then	G	can’t	be	2-colored!
• Example	of	a	phenomenon	called	duality


