CS3000: Algorithms \& Data Jonathan Ullman

Lecture 10:

- Graphs
- Graph Traversals: DFS
- Topological Sort

Feb 19, 2020

What's Next

The Structure of Romantic and Sexual Relations at "Jefferson High School"

Each circle represents a student and lines connecting students represent romantic relations occuring within the 6 months preceding the interview. Numbers under the figure count the number of times that pattern was observed (i.e. we found 63 pairs unconnected to anyone else).

What's Next

- Graph Algorithms:
- Graphs: Key Definitions, Properties, Representations
- Exploring Graphs: Breadth/Depth First Search
- Applications: Connectivity, Bipartiteness, Topological Sorting
- Shortest Paths:
- Dijkstra
- Bellman-Ford (Dynamic Programming)
- Minimum Spanning Trees:
- Borůvka, Prim, Kruskal
- Network Flow:
- Algorithms
- Reductions to Network Flow

Graphs

Graphs: Key Definitions

- Definition: A directed graph $G=(V, E)$
- V is the set of nodes/vertices
- $E \subseteq V \times V$ is the set of edges
- An edge is an ordered $e=(u, v)$ "from u to v "
- Definition: An undirected graph $G=(V, E)$
- Edges are unordered $e=(u, v)$ "between u and v "
- Simple Graph:
- No duplicate edges
- No self-loops $e=(u, u)$

Adjacency Matrices

- The adjacency matrix of a graph $G=(V, E)$ with n nodes is the matrix $A[1: n, 1: n]$ where

$$
A[i, j]= \begin{cases}1 & (i, j) \in E \\ 0 & (i, j) \notin E\end{cases}
$$

A	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

Cost
Space: $\Theta\left(V^{2}\right)$

Lookup: Θ (1) time List Neighbors: $\Theta(V)$ time

Adjacency Lists (Undirected)

- The adjacency list of a vertex $v \in V$ is the list $A[v]$ of all u s.t. $(v, u) \in E$

$$
\begin{aligned}
& A[1]=\{2,3\} \\
& A[2]=\{1,3\} \\
& A[3]=\{1,2,4\} \\
& A[4]=\{3\}
\end{aligned}
$$

Adjacency Lists (Directed)

- The adjacency list of a vertex $v \in V$ are the lists
- $A_{o u t}[v]$ of all u s.t. $(v, u) \in E$
- $A_{\text {in }}[v]$ of all u s.t. $(u, v) \in E$

$$
\begin{array}{ll}
A_{\text {out }}[1]=\{2,3\} & \\
A_{\text {in }}[1]=\{ \} \\
A_{\text {out }}[2]=\{3\} & \\
A_{\text {in }}[2]=\{1\} \\
A_{\text {out }}[3]=\{ \} & \\
A_{\text {out }}[3]=\{3] & =\{1,2,4\} \\
A_{\text {in }}[4]=\{ \}
\end{array}
$$

Depth-First Search (DFS)

Depth-First Search

```
G = (V,E) is a graph
explored[u] = 0 \forallu
DFS (u):
    explored[u] = 1
    for ((u,v) in E):
        if (explored[v]=0):
        parent[v] = u
        DFS (v)
```


Depth-First Search

- Fact: The parent-child edges form a (directed) tree
- Each edge has a type:
- Tree edges: $(u, a),(u, b),(b, c)$
- These are the edges that explore new nodes
- Forward edges: (u, c)
- Ancestor to descendant
- Backward edges: (a, u)
- Descendant to ancestor
- Implies a directed cycle!
- Cross edges: (b, a)
- No ancestral relation

Ask the Audience

- DFS starting from node a
- Search in alphabetical order

- Label edges with \{tree,forward,backward,cross\}

Connected Components

Paths/Connectivity

- A path is a sequence of consecutive edges in E
- $P=u-w_{1}-w_{2}-w_{3}-\cdots-w_{k-1}-v$
- The length of the path is the \# of edges
- An undirected graph is connected if for every two vertices $u, v \in V$, there is a path from u to v
- A directed graph is strongly connected if for every two vertices $u, v \in V$, there are paths from u to v and from v to u

Connected Components (Undirected)

- Problem: Given an undirected graph G, split it into connected components
- Input: Undirected graph $G=(V, E)$
- Output: A labeling of the vertices by their connected component

Connected Components (Undirected)

- Algorithm:
- Pick a node v
- Use DFS to find all nodes reachable from v
- Labels those as one connected component
- Repeat until all nodes are in some component

Connected Components (Undirected)

CC(G = (V,E)):
// Initialize an empty array and a counter let comp[1:n] $\leftarrow \perp, c \leftarrow 1$
// Iterate through nodes for ($u=1, \ldots, n$):
// Ignore this node if it already has a comp.
// Otherwise, explore it using DFS
if (comp[u] != 1):
run $\operatorname{DFS}(G, u)$
let comp $[v] \leftarrow c$ for every v found by DFS
let $c \leftarrow c+1$
output comp[1:n]

Running Time

Connected Components (Undirected)

- Problem: Given an undirected graph G, split it into connected components
- Algorithm: Can split a graph into conneted components in time $O(n+m)$ using DFS
- Punchline: Usually assume graphs are connected
- Implicitly assume that we have already broken the graph into CCs in $O(n+m)$ time

Strong Components (Directed)

- Problem: Given a directed graph G, split it into strongly connected components
- Input: Directed graph $G=(V, E)$
- Output: A labeling of the vertices by their strongly connected component

Strong Components (Directed)

- Observation: $\operatorname{SCC}(s)$ is all nodes $v \in V$ such that v is reachable from s and vice versa
- Can find all nodes reachable from s using BFS
- How do we find all nodes that can reach s ?

Strong Components (Directed)

$\operatorname{SCC}(G=(\mathrm{V}, \mathrm{E})):$
let G^{R} be G with all edges "reversed"
// Initialize an array and counter
let comp[1:n] $\leftarrow \perp, c \leftarrow 1$
for ($u=1, \ldots, n$):
// If u has not been explored
if (comp[u] != 1):
let S be the nodes found by DFS (G, u)
let T be the nodes found by $\operatorname{DFS}\left(G^{R}, u\right)$
// S $\cap \mathrm{T}$ contains SCC (u)
label $S \cap T$ with C
let $c \leftarrow c+1$
return comp

Strong Components (Directed)

- Problem: Given a directed graph G, split it into strongly connected components
- Input: Directed graph $G=(V, E)$
- Output: A labeling of the vertices by their strongly connected component
- Find SCCs in $O\left(n^{2}+n m\right)$ time using DFS
- Can find SCCs in $O(n+m)$ time using a more clever version of DFS

Post-Ordering

Post-Ordering

```
G = (V,E) is a graph
explored[u] = 0 \forallu
```

DFS (u) :

```
explored[u] = 1
    for ((u,v) in E):
        if (explored[v]=0):
        parent[v] = u
        DFS (v)
```


Post-Order
post-visit(u)

- Maintain a counter clock, initially set clock $=1$
- post-visit(u):
set postorder[u]=clock, clock=clock+1

Example

- Compute the post-order of this graph
- DFS from \boldsymbol{a}, search in alphabetical order

Vertex	a	b	c	d	e	f	g	h
Post-Order								

Example

- Compute the post-order of this graph
- DFS from \boldsymbol{a}, search in alphabetical order

Obervation

- Observation: if postorder[u] < postorder[v] then (u, v) is a backward edge

Vertex	a	b	c	d	e	f	g	h
Post-Order	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$

Observation

- Observation: if postorder[u] < postorder[v] then (u, v) is a backward edge
- DFS(u) can't finish until its children are finished
- If postorder[u] < postorder[v], then DFS(u) finishes before DFS(v), thus DFS(v) is not called by DFS(u)
- When we ran DFS(u), we must have had explored[v]=1
- Thus, DFS(v) started before DFS(u)
- DFS(v) started before DFS(u) but finished after
- Can only happen for a backward edge

Topological Ordering

Directed Acyclic Graphs (DAGs)

- DAG: A directed graph with no directed cycles
- Can be much more complex than a forest

Directed Acyclic Graphs (DAGs)

- DAG: A directed graph with no directed cycles
- DAGs represent precedence relationships

- A topological ordering of a directed graph is a labeling of the nodes from v_{1}, \ldots, v_{n} so that all edges go "forwards", that is $\left(v_{i}, v_{j}\right) \in E \Rightarrow j>i$
- G has a topological ordering $\Rightarrow G$ is a DAG

Directed Acyclic Graphs (DAGs)

- Problem 1: given a digraph G, is it a DAG?
- Problem 2: given a digraph G, can it be topologically ordered?
- Thm: G has a topological ordering $\Leftrightarrow G$ is a DAG
- We will design one algorithm that either outputs a topological ordering or finds a directed cycle

Topological Ordering

- Observation: the first node must have no in-edges

- Observation: In any DAG, there is always a node with no incoming edges

Topological Ordering

- Fact: In any DAG, there is a node with no incoming edges
- Thm: Every DAG has a topological ordering
- Proof (Induction):

Faster Topological Ordering

Post-Ordering

```
G = (V,E) is a graph
explored[u] = 0 \forallu
```

DFS (u) :

```
explored[u] = 1
    for ((u,v) in E):
        if (explored[v]=0):
        parent[v] = u
        DFS (v)
```


Post-Order
post-visit(u)

- Maintain a counter clock, initially set clock $=1$
- post-visit(u):
set postorder[u]=clock, clock=clock+1

Example

- Compute the post-order of this graph
- DFS from \boldsymbol{a}, search in alphabetical order

Vertex	a	b	c	d	e	f	g	h
Post-Order								

Example

- Compute the post-order of this graph
- DFS from \boldsymbol{a}, search in alphabetical order

Obervation

- Observation: if postorder[u] < postorder[v] then (u, v) is a backward edge

Vertex	a	b	c	d	e	f	g	h
Post-Order	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$

Observation

- Observation: if postorder[u] < postorder[v] then (u, v) is a backward edge
- DFS(u) can't finish until its children are finished
- If postorder[u] < postorder[v], then DFS(u) finishes before DFS(v), thus DFS(v) is not called by DFS(u)
- When we ran DFS(u), we must have had explored[v]=1
- Thus, DFS(v) started before DFS(u)
- DFS(v) started before DFS(u) but finished after
- Can only happen for a backward edge

Fast Topological Ordering

- Claim: ordering nodes by decreasing postorder gives a topological ordering
- Proof:
- A DAG has no backward edges
- Suppose this is not a topological ordering
- That means there exists an edge (u,v) such that postorder[u] < postorder[v]
- We showed that any such (u, v) is a backward edge
- But there are no backward edges, contradiction!

Topological Ordering (TO)

- DAG: A directed graph with no directed cycles
- Any DAG can be toplogically ordered
- Label nodes v_{1}, \ldots, v_{n} so that $\left(v_{i}, v_{j}\right) \in E \Rightarrow j>i$

- Can compute a TO in $O(n+m)$ time using DFS
- Reverse of post-order is a topological order

Breadth-First Search

Exploring a Graph

- Problem: Is there a path from s to t ?
- Idea: Explore all nodes reachable from s.
- Two different search techniques:
- Breadth-First Search: explore nearby nodes before moving on to farther away nodes
- Depth-First Search: follow a path until you get stuck, then go back

Breadth-First Search (BFS)

- Informal Description: start at s, find neighbors of s, find neighbors of neighbors of s, and so on...
- BFS Tree:
- $L_{0}=\{s\}$
- $L_{1}=$ all neighbors of L_{0}
- $L_{2}=$ all neighbors of L_{1} that are not in L_{0}, L_{1}
- $L_{3}=$ all neighbors of L_{2} that are not in L_{0}, L_{1}, L_{2}
-...
- $L_{d}=$ all neighbors of L_{d-1} that are not in L_{0}, \ldots, L_{d-1}
- Stop when L_{d+1} is empty

Ask the Audience

- BFS this graph from $\boldsymbol{s}=\mathbf{1}$

Ask the Audience

- BFS this graph from $\boldsymbol{s}=\mathbf{1}$

Breadth-First Search (BFS)

- Definition: the distance between s, t is the number of edges on the shortest path from s to t
- Thm: BFS finds distances from s to other nodes
- L_{i} contains all nodes at distance i from s
- Nodes not in any layer are not reachable from s

Breadth-First Search Implementation

```
BFS(G = (V,E), s):
```

Let found[v] \leftarrow false $\forall v$
Let found[s] \leftarrow true
Let layer[v] $\leftarrow \infty \quad \forall \mathrm{v}$, layer[s] $\leftarrow 0$
Let $i \leftarrow 0, L_{0}=\{s\}, T \leftarrow \emptyset$

While (L_{i} is not empty) :
Initialize new layer L_{i+1}
For (u in L_{i}):
For ((u, v) in $E)$:
If (found[v] = false):
found[v] \leftarrow true,
layer[v] $\leftarrow i+1$
Add (u,v) to T
Add v to L_{i+1}
$i \leftarrow i+1$

BFS Running Time (Adjacency List)

$\operatorname{BFS}(G=(V, E), s):$
Let found[v] \leftarrow false $\forall v$
Let found[s] \leftarrow true
Let layer[v] $\leftarrow \infty \quad \forall \mathrm{v}$, layer[s] $\leftarrow 0$
Let $i \leftarrow 0, L_{0}=\{s\}, T \leftarrow \emptyset$

While (L_{i} is not empty):
Initialize new layer $\mathrm{L}_{\mathrm{i}+1}$
For (u in L_{i}):
For ((u, v) in $E)$:
If (found[v] = false):
found[v] \leftarrow true,
layer[v] $\leftarrow i+1$
Add (u,v) to T
Add v to L_{i+1}
$i \leftarrow i+1$

Bipartiteness / 2-Coloring

2-Coloring

- Problem: Tug-of-War Rematch
- Need to form two teams R, P
- Some students are still mad from last time
- Input: Undirected graph $G=(V, E)$
- $(u, v) \in E$ means u, v wont be on the same team
- Output: Split V into two sets $\boldsymbol{R}, \boldsymbol{P}$ so that no pair in either set is connected by an edge

2-Coloring (Bipartiteness)

- Equivalent Problem: Is the graph G bipartite?
- A graph G is bipartite if I can split V into two sets L and R such that all edges $(u, v) \in E$ go between L and R

Designing the Algorithm

- Key Fact: If G contains a cycle of odd length, then G is not 2 -colorable/bipartite

Designing the Algorithm

- Idea for the algorithm:
- BFS the graph, coloring nodes as you find them
- Color nodes in layer i purple if i even, red if i odd
- See if you have succeeded or failed

Designing the Algorithm

- Claim: If BFS 2-colored the graph successfully, the graph has been 2-colored successfully
- Key Question: Suppose you have not 2-colored the graph successfully, maybe someone else can do it?

Designing the Algorithm

- Claim: If BFS fails, then G contains an odd cycle
- If G contains an odd cycle then G can't be 2-colored!
- Example of a phenomenon called duality

