CS3000: Algorithms & Data
Jonathan Ullman

Lecture 10:
* Graphs
 Graph Traversals: DFS
 Topological Sort

Feb 19, 2020

What’s Next

The Structure of Romantic and Sexual Relations at "JefTerson High School"

eto
q \:}’.—
LY b’ & ?
“.; ¥s ’0’, /
- g kl ‘. .

= o_;_-f.‘“?..: -
278 N 4
v i >~ “'}x\
" ‘*"’.’_.:‘ - .
‘ R, T
5 éy °T SuBals 1

\ 63
- { el = ® Male

Female

Each circle represents a student and lines connecting students represent romantic relations occuring within the 6 months

preceding the interview. Numbers under the figure count the number of times that pattern was observed (1.¢. we found 63
pairs unconnected to anyone ¢lse)

What’s Next

* Graph Algorithms:
* Graphs: Key Definitions, Properties, Representations
Exploring Graphs: Breadth/Depth First Search

* Applications: Connectivity, Bipartiteness, Topological Sorting
Shortest Paths:

e Dijkstra

e Bellman-Ford (Dynamic Programming)
Minimum Spanning Trees:

e Boruvka, Prim, Kruskal
Network Flow:

e Algorithms
 Reductions to Network Flow

Graphs

Graphs: Key Definitions

 Definition: A directed graph ¢ = (V/, E)
* I/ is the set of nodes/vertices
| € VXV is the set of edges
* An edge is an ordered e = (u, v) “from u to v”

 Definition: An undirected graph ¢ = (I/, E)

* Edges are unordered ¢ = (1, v) “between u and v”

OBNOENOENC
 Simple Graph: @‘9
* No duplicate edges .'
* No self-loops e = (u, u) ()—C) » w© (9

Adjacency Matrices

* The adjacency matrix of agraph G = (V,E) withn
nodes is the matrix A[1:n,1:n] where

Al1l2]3]4
o W o 1 1 o
' 0 (i,j)¢E o 0o o0 o0
0o 0 1 0

Cost
Space: O(V?)

Lookup: ©(1) time ‘
List Neighbors: O(V) time e °

Adjacency Lists (Undirected)

* The adjacency list of a vertex v € I is the list A[V]
ofallus.t. (v,u) € E

1] =12,3;}
2] =113}
3] =11,24}
4] =13}

0'0

N S N N

Adjacency Lists (Directed)

* The adjacency list of a vertex v € V are the lists
* Ayyi[v]ofallust. (v,u) €EE
e A [v] ofallust. (u,v) EE

Aout 1] ={2,3} Ain:l: ={}

Apal21 =3} 4,02 = (1) Q,G
Aout 3] =1} Ain 3] =1{1,2,4}

Aout 4 — {3} Ain 4 — {} e °

Depth-First Search (DFS)

Depth-First Search

G = (V,E) is a graph
explored[u] = 0 Vu

DFS (u) :
exploredu] =1

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DF'S (v)

Depth-First Search

* Fact: The parent-child edges form a (directed) tree

* Each edge has a type:
* Tree edges: (u,a), (u, b), (b, c)
* These are the edges that explore new nodes

* Forward edges: (u, ¢)
* Ancestor to descendant
* Backward edges: (a, u)
 Descendant to ancestor
* Implies a directed cycle!
* Cross edges: (b, a)

* No ancestral relation

MANBE WE CAN EVENTUALLY MAKE
. VERRING WEIRDS \ LANGUAGE A COMPLETE MPEDIMENT
A S k th e A u d | e n C e LANGUAGE . TO UNDERSTANDING.

* DFS starting from node a
e Search in alphabetical order

* Label edges with
{tree,forward,backward,cross}

Connected Components

Paths/Connectivity

* A path is a sequence of consecutive edges in E
e P = uUu—-—-wi =Wy — W3 —+—Wg_q1— UV
* The length of the path is the # of edges

* An undirected graph is connected if for every two
vertices u, v € V, there is a path from u to v

e A directed graph is strongly connected if for every
two vertices u, v € V, there are paths fromu tov
and fromvtou

Connected Components (Undirected)

* Problem: Given an undirected graph G, split it into
connected components

* Input: Undirected graph G = (V,E)

* Output: A labeling of the vertices by their
connected component

Connected Components (Undirected)

 Algorithm:
* Pick a node v
* Use DFS to find all nodes reachable from v
* Labels those as one connected component
e Repeat until all nodes are in some component

O——
‘0

Connected Components (Undirected)

CC(G = (V,E)):
// Initialize an empty array and a counter
let comp[l:n] <1, ¢ « 1

// Iterate through nodes
for (u=1,.,n):
// Ignore this node if it already has a comp.
// Otherwise, explore it using DFS
if (comp[u] !'= 1):
run DFS (G, u)
let comp[v] < ¢ for every v found by DFS
let c <« c +1

output comp[l:n]

Running Time

Connected Components (Undirected)

* Problem: Given an undirected graph G, split it into
connected components

* Algorithm: Can split a graph into conneted
components in time O(n + m) using DFS

* Punchline: Usually assume graphs are connected

* Implicitly assume that we have already broken the graph
into CCs in O(n + m) time

Strong Components (Directed)

* Problem: Given a directed graph G, split it into
strongly connected components

* Input: Directed graph G = (V,E)

* Output: A labeling of the vertices by their strongly
connected component

Strong Components (Directed)

* Observation: SCC(s) is all nodes v € IV such that v
is reachable from s and vice versa
e Can find all nodes reachable from s using BFS
* How do we find all nodes that can reach s?

Strong Components (Directed)

SCC(G = (V,E)):
let GR be G with all edges “reversed”

// Initialize an array and counter
let comp[l:n] <1, ¢ « 1

for (u=1,.,n):

// If u has not been explored

if (comp[u] !'= 1):
let S be the nodes found by DFS(G,u)
let T be the nodes found by DFS (GR,u)
// S N T contains SCC (u)
label S N T with c
let ¢c <« c + 1

return comp

Strong Components (Directed)

* Problem: Given a directed graph G, split it into
strongly connected components

* Input: Directed graph G = (V,E)

* Output: A labeling of the vertices by their strongly
connected component

* Find SCCs in O(n? + nm) time using DFS

* Can find SCCs in O(n + m) time using a more
clever version of DFS

Post-Ordering

Post-Ordering ° °

G = (V,E) is a graph
explored[u] = 0 Vu

DFS (u) : e °

exploredu] =1

for ((u,v) in E):

if (explored[v]=0):
parent[v] = u
DF'S (v)

post-visit (u)

* Maintain a counter clock, initially set clock = 1
* post-visit(u):
set postorder[u]=clock, clock=clock+1l

Example

* Compute the post-order of this graph
* DFS from a, search in alphabetical order

Post-Order

Example

* Compute the post-order of this graph
* DFS from a, search in alphabetical order

Post-Order 8 7 5 4 6 1 2

Obervation

* Observation: if postorder[u] < postorder[v] then
(u,v) is a backward edge

Post-Order 8 7 5 4 6 1 2 3

Observation

* Observation: if postorder[u] < postorder[v] then
(u,v) is a backward edge
* DFS(u) can’t finish until its children are finished

* If postorder[u] < postorder[v], then DFS(u) finishes
before DFS(v), thus DFS(v) is not called by DFS(u)

 When we ran DFS(u), we must have had explored[v]=1
* Thus, DFS(v) started before DFS(u)
e DFS(v) started before DFS(u) but finished after

e Can only happen for a backward edge

Topological Ordering

Directed Acyclic Graphs (DAGS)

* DAG: A directed graph with no directed cycles
e Can be much more complex than a forest

Directed Acyclic Graphs (DAGS)

* DAG: A directed graph with no directed cycles
* DAGs represent precedence relationships

& Q-

e A topological ordering of a directed graph is a
labeling of the nodes from vy, ..., v, so that all

edges go “forwards”, that is (vi, vj) EE=>j>1
* (has a topological ordering = (G is a DAG

Directed Acyclic Graphs (DAGS)

* Problem 1: given a digraph G, is it a DAG?

* Problem 2: given a digraph G, can it be
topologically ordered?

* Thm: G has a topological ordering & G is a DAG

* We will design one algorithm that either outputs a
topological ordering or finds a directed cycle

Topological Ordering

e Observation: the first node must have no in-edges
S RO

* Observation: In any DAG, there is always a node
with no incoming edges

Topological Ordering

* Fact: In any DAG, there is a hode with no incoming
edges

* Thm: Every DAG has a topological ordering
* Proof (Induction):

Faster Topological Ordering

Post-Ordering ° °

G = (V,E) is a graph
explored[u] = 0 Vu

DFS (u) : e °

exploredu] =1

for ((u,v) in E):

if (explored[v]=0):
parent[v] = u
DF'S (v)

post-visit (u)

* Maintain a counter clock, initially set clock = 1
* post-visit(u):
set postorder[u]=clock, clock=clock+1l

Example

* Compute the post-order of this graph
* DFS from a, search in alphabetical order

Post-Order

Example

* Compute the post-order of this graph
* DFS from a, search in alphabetical order

Post-Order 8 7 5 4 6 1 2

Obervation

* Observation: if postorder[u] < postorder[v] then
(u,v) is a backward edge

Post-Order 8 7 5 4 6 1 2 3

Observation

* Observation: if postorder[u] < postorder[v] then
(u,v) is a backward edge
* DFS(u) can’t finish until its children are finished

* If postorder[u] < postorder[v], then DFS(u) finishes
before DFS(v), thus DFS(v) is not called by DFS(u)

 When we ran DFS(u), we must have had explored[v]=1
* Thus, DFS(v) started before DFS(u)
e DFS(v) started before DFS(u) but finished after

e Can only happen for a backward edge

Fast Topological Ordering

* Claim: ordering nodes by decreasing postorder
gives a topological ordering

* Proof:
* A DAG has no backward edges
e Suppose this is not a topological ordering

* That means there exists an edge (u,v) such that
postorder[u] < postorder[v]

* We showed that any such (u,v) is a backward edge

* But there are no backward edges, contradiction!

Topological Ordering (TO)

* DAG: A directed graph with no directed cycles

* Any DAG can be toplogically ordered
* Label nodes vy, ..., v, so that (vi,vj) EE=j]>I

e Can compute a TO in O(n + m) time using DFS
* Reverse of post-order is a topological order

Breadth-First Search

Exploring a Graph

* Problem: Is there a path from s to t?
* ldea: Explore all nodes reachable from s.

* Two different search techniques:

* Breadth-First Search: explore nearby nodes before
moving on to farther away nodes

* Depth-First Search: follow a path until you get stuck,
then go back

Breadth-First Search (BFS)

* Informal Description: start at s, find neighbors of s,
find neighbors of neighbors of s, and so on...

* BFS Tree:
* Lo ={s}
* L = all neighbors of L,
* L, = all neighbors of L; that are notin L, L4
* L; = all neighbors of L, thatare notin Ly, L4, L,

* L, = all neighbors of L;_; thatarenotin Ly, ...,L 4
* Stop when L, 1 is empty

Ask the Audience

* BFS this graph froms =1

MAYBE WE CAN ENENTUALLY MAKE
LANGUAGE A COMPLETE (MPEDIMENT
TO UNDERSTANDING.

VERBING WEIRDS
LANGUAGE ,

BENPULS 50U IESIOAUN AQ PRNQASQ/UOSIONEM D661 ©

f
U
:

Ask the Audience

* BFS this graph froms =1

Breadth-First Search (BFS)

* Definition: the distance between s, £ is the number
of edges on the shortest path from s to ¢

 Thm: BFS finds distances from s to other nodes
* L; contains all nodes at distance i from s
* Nodes not in any layer are not reachable from s

Breadth-First Search Implementation

BFS(G = (V,E), s):
Let found[v] « false Vv
Let found[s] « true
Let layer([v] «< o Vv, layer[s] <0
Let i< 0, L, = {s}, T «0

While (L; is not empty):
Initialize new layer L.,
For (u in L;):

For ((u,v) in E):

If (found[v] = false):
found[v] « true,
layer([v] « 1+1
Add (u,v) to T
Add v to L,

11+l

BFS Running Time (Adjacency List)

BFS(G = (V,E), s):
Let found[v] « false Vv
Let found[s] « true
Let layer([v] «< o Vv, layer[s] <0
Let i< 0, L, = {s}, T «0

While (L; is not empty):
Initialize new layer L.,
For (u in L;):

For ((u,v) in E):

If (found[v] = false):
found[v] « true,
layer([v] « 1+1
Add (u,v) to T
Add v to L,

1<i+l

Bipartiteness / 2-Coloring

2-Coloring

* Problem: Tug-of-War Rematch
* Need to form two teams R, P
* Some students are still mad from last time
* Input: Undirected graph G = (V,E)
* (u,v) € E means u, v wont be on the same team

* Output: Split V into two sets R, P so that no pair in
either set is connected by an edge

2-Coloring (Bipartiteness)

* Equivalent Problem: Is the graph G bipartite?

* A graph G is bipartite if | can split V into two sets L and
R such that all edges (u, v) € E go between L and R

L R

Designing the Algorithm

* Key Fact: If G contains a cycle of odd length, then G
is not 2-colorable/bipartite

Designing the Algorithm

* Idea for the algorithm:
* BFS the graph, coloring nodes as you find them
* Color nodes in layer i purple if i even, red if i odd
e See if you have succeeded or failed

Designing the Algorithm

e Claim: If BFS 2-colored the graph successfully, the
graph has been 2-colored successfully

* Key Question: Suppose you have not 2-colored the
graph successfully, maybe someone else can do it?

Designing the Algorithm

e Claim: If BFS fails, then G contains an odd cycle
* |If G contains an odd cycle then G can’t be 2-colored!
 Example of a phenomenon called duality

