
CS3000:	Algorithms	&	Data

Jonathan	Ullman

Lecture	3:	

• Divide	and	Conquer:	Mergesort

• Asymptotic	Analysis

Sep	14,	2018

Asymptotic	Analysis

• Predicting	the	wall-clock	time	of	an	algorithm	is	

nigh	impossible.

• What	machine	will	actually	run	the	algorithm?

• Impossible	to	exactly	count	“operations”?

Asymptotic	Order	Of	Growth

• Do	we	really	need	to	worry	about	this	problem?

• Mostly	we	want	to	compare	algorithms,	so	we	can	select	

the	right	one	for	the	job

• Mostly	we	don’t	care	about	small	inputs,	we	care	about	

how	the	algorithm	will	scale

Asymptotic	Order	Of	Growth

y n

y _Ion
150

• Asymptotic	Analysis:	How	does	the	running	time	

grow	as	the	size	of	the	input	grows?

Asymptotic	Order	Of	Growth

T n exact runningt.me

g n nice function

• “Big-Oh”	Notation: J ! = K L ! if	there	exists	

M ∈ 0,∞ 	and	!R ∈ 	ℕ such	that	J ! ≤ M ⋅ L !
for	every	! ≥ !R.
• Asymptotic	version	of	J ! ≤ L !

• Roughly	equivalent	to	limI→Y
Z I
[I

< ∞

Asymptotic	Order	Of	Growth

Eiti

• “Big-Oh”	Notation: J ! = K L ! if	there	exists	

M ∈ 0,∞ 	and	!R ∈ 	ℕ such	that	J ! ≤ M ⋅ L !
for	every	! ≥ !R.

• Which	of	these	statements	are	true?

• 3!B + ! = K !B

• !^ = K !B

• 10!_ = K !`

• logB ! = K logab !

Ask	the	Audience

t.i.ms I a

I also 1On Oln

logion logy4

Clm 3nZtn O m2 c 4

no I

Am I fh 3ritn I 4h cog n is

• Constant	factors	can	be	ignored
• ∀, > 0				,! = K !

• Smaller	exponents	are	Big-Oh	of	larger	exponents
• ∀e > f				!g = K !h

• Any	logarithm	is	Big-Oh	of	any	polynomial	
• ∀e, i > 0			 logBh 	! = K !j

• Any	polynomial	is	Big-Oh	of	any	exponential
• ∀	e > 0, f > 1			!h = K fI

• Lower	order	terms	can	be	dropped
• !B + !^/B + ! = K !B

Big-Oh	Rules logan 0 ne

Logan n 59

ntogzn OCnxn

59JCogCn7
0CgCnM

logEoon OCn.o

µ1000 1.0001N

f 0cg f g fitfz 0cg

• The	notation	J ! = K L ! is	weird—do	not	

take	it	too	literally

A	Word	of	Caution

j
should be f C 0cg

n O n2 ne 0 n3

n3 O m2

n It t l OCD 10C t OCD
n times n times

OCD t Oci

n T tines

OCD

• “Big-Omega”	Notation: J ! = Ω L ! if	there	

exists	M ∈ 0,∞ 	and	!R ∈ 	ℕ s.t.	J ! ≥ M ⋅ L !
for	every	! ≥ !R.
• Asymptotic	version	of	J ! ≥ L !

• Roughly	equivalent	to	limI→Y
Z I
[I

> 0

• “Big-Theta”	Notation: J ! = Ω L ! if	there	

exists	Ma ≤ MB ∈ 0,∞ 	and	!R ∈ 	ℕ such	that						

cB ⋅ L ! ≥ J ! ≥ Ma ⋅ L ! for	every	! ≥ !R.
• Asymptotic	version	of	J ! = L !

• Roughly	equivalent	to	 lim
I→Y

Z I
[I

∈ 0,∞

Asymptotic	Order	Of	Growth In r n

f O g
f Slg

• We	usually	write	running	time	as	a	Big-Theta
• Exact	time	per	operation	doesn’t	appear

• Constant	factors	do	not	appear
• Lower	order	terms	do	not	appear

• Examples:
• 30 logB ! + 45 = Θ log !
• ,! logB 2! = Θ ! log !
• ∑ CI

Dpa = Θ !B

Asymptotic	Running	Times

nlogin nlogan t n

ofnlogn

i Et I Oki

• “Little-Oh”	Notation: J ! = q L ! if	for	every	

M > 0 there	exists	!R ∈ 	ℕ s.t.	J ! < M ⋅ L ! for	

every	! ≥ !R.
• Asymptotic	version	of	J ! < L !

• Roughly	equivalent	to	limI→Y
Z I
[I

= 0

• “Little-Omega”	Notation: J ! = r L ! if	for	

every	M > 0 there	exists	!R ∈ 	ℕ such	that													

J ! > M ⋅ L ! for	every	! ≥ !R.
• Asymptotic	version	of	J ! > L !

• Roughly	equivalent	to	 lim
I→Y

Z I
[I

= ∞

Asymptotic	Order	Of	Growth

µ2 o n

p3 w m2

• Rank	the	following	functions	in	increasing	order	of	
growth	(i.e.	Ja, JB, Ĵ , J_ so	that	JD = K(JDsa))
• ! logB !
• !B
• 100!
• 3EFGH I

Ask	the	Audience!
logan 0 n

Logan n say
logan na

100N 3109 nlogan N

31092N NZ 100N Hogan

3109 Loon Hogan n 310J

logs3 logan

ntogz3 nl 59
100N n logan 3logan m2

100 h n Logan n0923am
59 nz

Why	Asymptotics Matter

o

Exponential time bad Polynomial t.me good

Exponents matter

Divide	and	Conquer	Algorithms

Divide	and	Conquer	Algorithms

• Split your	problem	into	smaller subproblems

• Recursively	solve	each	subproblem

• Combine the	solutions	to	the	subprobelms

Divide	et	impera!
-Philip	II	of	Macedon

For
many problems combining is

easier than solving

• Examples:
• Mergesort:	sorting	a	list

• Binary	Search:	search	in	a	sorted	list
• Karatsuba’s	Algorithm:	integer	multiplication

• Fast	Fourier	Transform
• …

• Key	Tools:
• Correctness:	proof	by	induction
• Running	Time	Analysis:	recurrences

• Asymptotic	Analysis

Divide	and	Conquer	Algorithms

he

Sorting

11 3 42 28 17 8 2 15

2 3 8 11 15 17 28 42

Given	a	list	of	! numbers,	

put	them	in	ascending	order

"[1] "[!]

Any comparable items

A	Simple	Algorithm

11 3 42 28 17 8 2 15

Insertion Sort
Scan to find

It

largest ett

tkzM4z
repeat n l times

Running Time n n l t n z t t 2

Efi l off

A	Simple	Algorithm:	Insertion	Sort

11 3 42 28 17 8 2 15

2 3 8 11 15 17 28 42

11 3 15 28 17 8 2 42

Repeat

! − 1 times.

Find	the	

maximum

Swap	it	into	

place,	repeat

on	the	rest

11 3 15 2 17 8 28 42

A	Simple	Algorithm:	Insertion	Sort

11 3 42 28 17 8 2 15

11 3 15 28 17 8 2 42

Find	the	

maximum

Swap	it	into	

place,	repeat

on	the	rest

Running	Time:

Divide	and	Conquer:	Mergesort

11 3 42 28 17 8 2 15Split

11 3 42 28 17 8 2 15

3 11 28 42 2 8 15 17

2 3 8 11 15 17 28 42

Recursively	
Sort

Merge

Recursively	
Sort

• Key	Idea:	If	',) are	sorted	lists	of	length	!,	then	we	can	
merge	them	into	a	sorted	list	* of	length	2! in	time	,!
• Merging	two	sorted	lists	is	faster	than	sorting	from	scratch

3 11 28 42

2 8 15 17

'

)

Divide	and	Conquer:	Mergesort

*

Aka Oln

2h elementsof A
f

X 2 ops per elem

n

T A T

2 3 8

Merging

Merge(L,R):
Let n ← len(L) + len(R)
Let A be an array of length n
j ← 1, k ← 1,

For i = 1,…,2n:
If (j > len(L)): // L is empty
A[i] ← R[k], k ← k+1

ElseIf (k > len(R)): // R is empty
A[i] ← L[j], j ← j+1

ElseIf (L[j] <= R[k]): // L is smallest
A[i] ← L[j], j ← j+1

Else: // R is smallest
A[i] ← R[k], k ← k+1

Return A

B

Merging

MergeSort(A):
If (len(A) = 1): Return A // Base Case

Let . ← ⌈len(") 2⁄ ⌉ // Split
Let L ← A[1:m], R ← A[m+1:n]

Let L ← MergeSort(L) // Recurse
Let R ← MergeSort(R)

Let A ← Merge(L,R) // Merge

Return A

• Claim:	The	algorithm	Mergesort is	correct

Correctness	of	Mergesort

V NE IN V list A of n numbers

Merge Sort returns the list sorted

Inductive Hypothesis

H n ht lists A of n numbers Megesot is correct

Base Case H l is true obviously

Inductive Step

We will show that HCl Hh n Hln Hht

Given
anyinput

A of size htt L and R have

size ME En and L Jen

By the IH Mergesort sorts L R correctly

Since L R are sorted Mege Lik will be sorted

Therefore MegeSort returns A in sortedorder

Demos
L

r theproblem

Running	Time	of	Mergesort

MergeSort(A):
If (n = 1): Return A

Let 7 ← ⌈8 9⁄ ⌉
Let L ← A[1:m]

R ← A[m+1:n]

Let L ← MergeSort(L)
Let R ← MergeSort(R)
Let A ← Merge(L,R)

Return A

1 n
running timeonmpitsof y

length n
I

Th 2xTfE en
Cn

1 l C 2xTM

Cn I

TH Cnlogin
t s

o fnlog.nl

• Sort	a	list	of	! numbers	in	,! logB 2! time

• Can	actually	sort	anything	that	allows	comparisons

• No	comparison	based	algorithm	can	be	(much)	faster

• Divide-and-conquer
• Break	the	list	into	two	halves,	sort	each	one	and	merge

• Key	Fact:	Merging	is	easier	than	sorting

• Proof	of	correctness
• Proof	by	induction

• Analysis	of	running	time

• Recurrences

Mergesort	Summary

