CS3000: Algorithms \& Data Jonathan Ullman

Lecture 3:

- Divide and Conquer: Mergesort
- Asymptotic Analysis

Sep 14, 2018

Asymptotic Analysis

Asymptotic Order Of Growth

- Predicting the wall-clock time of an algorithm is nigh impossible.
- What machine will actually run the algorithm?
- Impossible to exactly count "operations"?

Asymptotic Order Of Growth

- Do we really need to worry about this problem?
- Mostly we want to compare algorithms, so we can select the right one for the job
- Mostly we don't care about small inputs, we care about how the algorithm will scale

Asymptotic Order Of Growth

- Asymptotic Analysis: How does the running time grow as the size of the input grows?

Asymptotic Order Of Growth

- "Big-Oh" Notation: $f(n)=O(g(n))$ if there exists $c \in(0, \infty)$ and $n_{0} \in \mathbb{N}$ such that $f(n) \leq c \cdot g(n)$ for every $n \geq n_{0}$.
- Asymptotic version of $f(n) \leq g(n)$
- Roughly equivalent to $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty$

$$
n_{0}=10 \quad c=3
$$

Ask the Audience

- "Big-Oh" Notation: $f(n)=O(g(n))$ if there exists $c \in(0, \infty)$ and $n_{0} \in \mathbb{N}$ such that $f(n) \leq c \cdot g(n)$ for every $n \geq n_{0}$.
- Which of these statements are true?
- $3 n^{2}+n=O\left(n^{2}\right)$

$$
\lim _{n \rightarrow \infty} \frac{n^{3}}{n^{2}}=\infty
$$

- $10 n^{4}=O\left(n^{5}\right)$
- $\log _{2} n=O\left(\log _{16} n\right)$

$$
\log _{16} n=\frac{\log _{2} n}{4}
$$

Clm: $3 n^{2}+n=O\left(n^{2}\right)$

$$
\begin{aligned}
& c=4 \\
& n_{0}=1
\end{aligned}
$$

$$
\forall n \geqslant 1 \quad f(n)=3 n^{2}+n \leqslant 4 n^{2}=c \cdot g(n)
$$

Big-Oh Rules

$$
\begin{aligned}
& \log _{2} n=O\left(n^{e}\right) \\
& \log _{2} n=O\left(n^{\prime 5}\right) \\
& n \log _{2 n} n=O\left(n \times x_{n} s 9\right)
\end{aligned}
$$

- Constant factors can be ignored
- $\forall C>0 \quad C n=O(n)$
$C \cdot g(n)=O(g(n))$
- Smaller exponents are Big-Oh of larger exponents
- $\forall a>b \quad n^{b}=O\left(n^{a}\right)$
- Any logarithm is Big-Oh of any polynomial
- $\forall a, \varepsilon>0 \quad \log _{2}^{a} n=O\left(n^{\varepsilon}\right) \quad \log _{2}^{1000} n=O\left(n^{.001}\right)$
- Any polynomial is Big-Oh of any exponential
$\cdot \forall a>0, b>1 \quad n^{a}=O\left(b^{n}\right) \quad n^{1000}=O\left(1.0001^{n}\right)$
- Lower order terms can be dropped
- $n^{2}+n^{3 / 2}+n=O\left(n^{2}\right)$

$$
f_{1}=O(g) \quad f_{2}=O(g) \Rightarrow f_{1}+f_{2}=O(g)
$$

A Word of Caution
should be $f \in O(g)$

- The notation $f(n)=O(g(n))$ is weird -do not take it too literally

$$
\begin{aligned}
& n=O\left(n^{2}\right) \quad n=O\left(n^{3}\right) \\
& n^{3} \neq O\left(n^{2}\right) \\
& n=\frac{1+\ldots+1}{n \text { times }}=\frac{O(1)+o(1)+\ldots+O(1)}{n \text { times }} \\
&=\frac{O(1)+\ldots+O(1)}{n-1 \text { t. mes }} \\
&=O(1)
\end{aligned}
$$

Asymptotic Order Of Growth ${ }^{\frac{1}{3} n^{2}=\Omega\left(n^{2}\right)}$

- "Big-Omega" Notation: $f(n)=\Omega(g(n))$ if there exists $c \in(0, \infty)$ and $n_{0} \in \mathbb{N}$ s.t. $f(n) \otimes c \cdot g(n)$ for every $n \geq n_{0}$.
- Asymptotic version of $f(n) \geq g(n)$
- Roughly equivalent to $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}>0$
- "Big-Theta" Notation: $f(n)=\theta(g(n))$ if there exists $c_{1} \leq c_{2} \in(0, \infty)$ and $n_{0} \in \mathbb{N}$ such that $\mathrm{c}_{2} \cdot g(n) \geq f(n) \geq c_{1} \cdot g(n)$ for every $n \geq n_{0}$.
- Asymptotic version of $f(n)=g(n) \quad f=O(g)$
- Roughly equivalent to $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} \in(0, \infty) f=\Omega(g)$

Asymptotic Running Times

- We usually write running time as a Big-Theta
- Exact time per operation doesn't appear
- Constant factors do not appear
- Lower order terms do not appear
- Examples:
- $30 \log _{2} n+45=\Theta(\log n)$
- $C n \log _{2} 2 n=\Theta(n \log n)$
- $\sum_{i=1}^{n} i=\Theta\left(n^{2}\right)$

$$
\begin{aligned}
n \log _{2} 2 n & =n \log _{2} n+n \\
& =\theta(n \log n)
\end{aligned}
$$

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}=\frac{n^{2}}{2}+\frac{n}{2}=\theta\left(n^{2}\right)
$$

Asymptotic Order Of Growth

- "Little-Oh" Notation: $f(n)=o(g(n))$ if for every $c>0$ there exists $n_{0} \in \mathbb{N}$ s.t. $f(n)<c \cdot g(n)$ for every $n \geq n_{0}$. $\quad n^{2}=\circ\left(n^{3}\right)$
- Asymptotic version of $f(n)<g(n)$
- Roughly equivalent to $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$
- "Little-Omega" Notation: $f(n)=\omega(g(n))$ if for every $c>0$ there exists $n_{0} \in \mathbb{N}$ such that $f(n)>c \cdot g(n)$ for every $n \geq n_{0}$.
- Asymptotic version of $f(n)>g(n) \quad n^{3}=\omega\left(n^{2}\right)$
- Roughly equivalent to $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$

Ask the Audience!

$$
\begin{aligned}
\log _{2} n & =O(n) \\
n \log _{2 n} n & =O\left(n^{2}\right)
\end{aligned}
$$

$$
\log _{2 n}=O\left(n^{.59}\right)
$$

- Rank the following functions in increasing order of growth (i.e. $f_{1}, f_{2}, f_{3}, f_{4}$ so that $\left.f_{i}=O\left(f_{i+1}\right)\right)$
- $n \log _{2} n$
- n^{2} $100 n, 3^{\log _{2} n}, n \log _{2} n, n^{2}$
- $100 n$
- $3^{\log _{2} n}$

$$
3^{\log _{2} n}, n^{2}, 100 n, n \log _{2} n
$$

$$
\begin{aligned}
& 3^{\log _{2} n} \\
= & 2^{\left(\log _{2} 3\right)\left(\log _{2} n\right)} \\
= & n^{\log _{2} 3}=n^{1.59}
\end{aligned}
$$

$$
100 n, n \log _{2 n}, n^{\log _{2} 3} \approx n^{1.59}, n^{2}
$$

Why Asymptotics Matter

- Exponential time bad / Polynomial time good
- Exponents matter

Divide and Conquer Algorithms

Divide and Conquer Algorithms

- Split your problem into smaller subproblems
- Recursively solve each subproblem
- Combine the solutions to the subprobelms
- For many problems, combining is easier than solving

Divide and Conquer Algorithms

- Examples:
- Mergesort: sorting a list
- Binary Search: search in a sorted list
- Karatsuba's Algorithm: integer multiplication
- Fast Fourier Transform
- ...
- Key Tools:
- Correctness: proof by induction
- Running Time Analysis: recurrences
- Asymptotic Analysis

Sorting

11	3	42	28	17	8	2	15
$A[1]$							$A[n]$

Given a list of n numbers, put them in ascending order
"comparable" items

2	3	8	11	15	17	28	42

A Simple Algorithm : Insertion Sort

repeat n-1 times
Running Time: $\quad n+(n-1)+(n-2)+\ldots+2$

$$
=\left(\sum_{i=1}^{n} i\right)-1=\theta\left(n^{2}\right)
$$

A Simple Algorithm: Insertion Sort

Find the
maximum

11	3	42	28	17	8	2	15

Swap it into place, repeat

11	3	15	28	17	8	2	42

11	3	15	2	17	8	28	42
2	3	8	11	15	17	28	42

A Simple Algorithm: Insertion Sort

Find the maximum

11	3	42	28	17	8	2	15

Swap it into place, repeat | 11 | 3 | 15 | 28 | 17 | 8 | 2 | 42 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | on the rest

Running Time:

Divide and Conquer: Mergesort

Divide and Conquer: Mergesort

- Key Idea: If $\boldsymbol{L}, \boldsymbol{R}$ are sorted lists of length n, then we can merge them into a sorted list A of length $2 n$ in time $O(n)$
- Merging two sorted lists is faster than sorting from scratch

$$
\begin{aligned}
& \downarrow \quad \downarrow \\
& 2 n \text { elements of } A \\
& \times 2 \text { ops per elem } \\
& =O(n)
\end{aligned}
$$

$\begin{array}{lll}2 & 3 & 8\end{array}$
A

Merging

Merge (L, R) :
Let $n \leftarrow \operatorname{len}(L)+\operatorname{len}(R)$
Let A be an array of length n
$j \leftarrow 1, k \leftarrow 1$,
For $\mathrm{i}=1, \ldots, \ln$:
If $(j>\operatorname{len}(L)):$
$\quad A[i] \leftarrow R[k], k \leftarrow k+1$
ElseIf (k > len(R)): //R is empty
$A[i] \leftarrow L[j], j \leftarrow j+1$
ElseIf (L[j] <= R[k]): // L is smallest
$A[i] \leftarrow L[j], j \leftarrow j+1$
Else:
// R is smallest
$\mathbf{A}[\mathrm{i}] \leftarrow \mathrm{R}[\mathrm{k}], \mathrm{k} \leftarrow \mathbf{k}+1$
Return A

Merging

MergeSort (A) :
If (len $(A)=1):$ Return A // Base Case
Let $m \leftarrow\lceil\operatorname{len}(A) / 2\rceil \quad / /$ Split
Let $\mathrm{L} \leftarrow \mathrm{A}[1: \mathrm{m}], \mathrm{R} \leftarrow \mathrm{A}[\mathrm{m}+1: \mathrm{n}]$
Let $\mathrm{L} \leftarrow$ MergeSort (L) // Recurse
Let $\mathrm{R} \leftarrow$ MergeSort (R)
Let $A \leftarrow \operatorname{Merge}(L, R)$
// Merge
Return A

Correctness of Mergesort

- Claim: The algorithm Mergesort is correct
$\forall n \in \mathbb{N} \quad \forall$ list A of n numbers
Merge Sort returns the list sorted.
Inductive Hypothesis:
$H(n): \forall$ lists A of n numbers, Margot is correct,
Base Case: $H(1)$ is true, obviously

Inductive Step:
We will show that $H(1)^{\wedge} H(2) \wedge \ldots \wedge(n) \Rightarrow H(n+1)$
(i) Given any mput A of size $n+1, L$ and R have size $\left\lceil\frac{n+1}{2}\right\rceil \leq n$ and $\left\lfloor\frac{n+1}{2}\right\rfloor \leq n$
(2) By the IH, Mergesolt sorts L, R correctly
(3) Since L, R are sorted, Merge (L, R) will be sorted
(4) Therefore MegeSart returns A in sorted order
Depends on the problem

Running Time of Mergesort
$T(n)$: running time on muts of length n

$$
\begin{aligned}
T(n) & =2 \times T\left(\frac{n}{2}\right)+C_{n} \\
T(1) & =C \\
T(n) & =C n \log _{2} 2 n \\
& =\theta\left(n \log _{n} n\right)
\end{aligned}
$$

MergeSort (A) :

1 If ($\mathrm{n}=1$): Return A
1 Let $m \leftarrow\lceil n / 2\rceil$
S Let $\quad \mathrm{L} \leftarrow \mathrm{A}[1: \mathrm{m}]$
$C n \begin{cases} & \mathrm{R} \leftarrow \mathrm{A}[\mathrm{m}+1: \mathrm{n}]\end{cases}$
$2 \times T\left(\frac{n}{2}\right)\left\{\begin{array}{l}\text { Let } L \leftarrow \operatorname{MergeSort}(L) \\ \text { Let } R \leftarrow \operatorname{MergeSort}(R)\end{array}\right.$
$C_{n} \xi \operatorname{Let} A \leftarrow \operatorname{Merge}(L, R)$
1 K Return A

Mergesort Summary

- Sort a list of n numbers in $C n \log _{2} 2 n$ time
- Can actually sort anything that allows comparisons
- No comparison based algorithm can be (much) faster
- Divide-and-conquer
- Break the list into two halves, sort each one and merge
- Key Fact: Merging is easier than sorting
- Proof of correctness
- Proof by induction
- Analysis of running time
- Recurrences

