
CS3000:	Algorithms	&	Data

Jonathan	Ullman

Lecture	3:	

• Divide	and	Conquer:	Mergesort

• Asymptotic	Analysis

Sep	14,	2018

 



Asymptotic	Analysis



• Predicting	the	wall-clock	time	of	an	algorithm	is	

nigh	impossible.

• What	machine	will	actually	run	the	algorithm?

• Impossible	to	exactly	count	“operations”?

Asymptotic	Order	Of	Growth



• Do	we	really	need	to	worry	about	this	problem?

• Mostly	we	want	to	compare	algorithms,	so	we	can	select	

the	right	one	for	the	job

• Mostly	we	don’t	care	about	small	inputs,	we	care	about	

how	the	algorithm	will	scale

Asymptotic	Order	Of	Growth

y n2

y Ion 150



• Asymptotic	Analysis:	How	does	the	running	time	

grow	as	the	size	of	the	input	grows?

Asymptotic	Order	Of	Growth

y
order ofgrowth

f n gcn
exact

runningt.me
ndeeIenrdest

on the machine



• “Big-Oh”	Notation: J ! = K L ! if	there	exists	

M ∈ 0,∞ 	and	!R ∈ 	ℕ such	that	J ! ≤ M ⋅ L !
for	every	! ≥ !R.
• Asymptotic	version	of	J ! ≤ L !

• Roughly	equivalent	to	limI→Y
Z I
[ I

< ∞

Asymptotic	Order	Of	Growth

messy n.ee function

I

2n 0 n

f n 3nZ t n g n NZ

Ctr fln O gcn

PI c 4 no I

H n no 3n2tn E4h23n t n e 3N t n e 4nZ E 4N is



• “Big-Oh”	Notation: J ! = K L ! if	there	exists	

M ∈ 0,∞ 	and	!R ∈ 	ℕ such	that	J ! ≤ M ⋅ L !
for	every	! ≥ !R.

• Which	of	these	statements	are	true?

• 3!B + ! = K !B

• !^ = K !B

• 10!_ = K !`

• logB ! = K logab !

Ask	the	Audience

u
fn.fi
c I no IO

V n 3 no 1On E n 5

logion Yogi tulogan



• Constant	factors	can	be	ignored
• ∀, > 0				,! = K !

• Smaller	exponents	are	Big-Oh	of	larger	exponents
• ∀e > f				!g = K !h

• Any	logarithm	is	Big-Oh	of	any	polynomial	
• ∀e, i > 0			 logBh 	! = K !j

• Any	polynomial	is	Big-Oh	of	any	exponential
• ∀	e > 0, f > 1			!h = K fI

• Lower	order	terms	can	be	dropped
• !B + !^/B + ! = K !B

Big-Oh	Rules

f Ink C gcn f n 0cgCnn

NZ O m2
000 i

log on O n
0001

n
o
Of 1.0001

film fz In and f h 0cg1h11 f 47 01gal
f t fa 0cg



• The	notation	J ! = K L ! is	weird—do	not	

take	it	too	literally

A	Word	of	Caution

n 01h27 n 01ns Not really as sign

Clem n 04
M h

n E I E Oci
i i I

I 04
i 2

in 047 Ofc



• “Big-Omega”	Notation: J ! = Ω L ! if	there	

exists	M ∈ 0,∞ 	and	!R ∈ 	ℕ s.t.	J ! ≥ M ⋅ L !
for	every	! ≥ !R.
• Asymptotic	version	of	J ! ≥ L !

• Roughly	equivalent	to	limI→Y
Z I
[ I

> 0

• “Big-Theta”	Notation: J ! = Ω L ! if	there	

exists	Ma ≤ MB ∈ 0,∞ 	and	!R ∈ 	ℕ such	that						

cB ⋅ L ! ≥ J ! ≥ Ma ⋅ L ! for	every	! ≥ !R.
• Asymptotic	version	of	J ! = L !

• Roughly	equivalent	to	 lim
I→Y

Z I
[ I

∈ 0,∞

Asymptotic	Order	Of	Growth
re n D n

0

fln 0cg ni

D
ft Regen



• We	usually	write	running	time	as	a	Big-Theta
• Exact	time	per	operation	doesn’t	appear

• Constant	factors	do	not	appear
• Lower	order	terms	do	not	appear

• Examples:
• 30 logB ! + 45 = Θ log !
• ,! logB 2! = Θ ! log !
• ∑ CI

Dpa = Θ !B

Asymptotic	Running	Times

logan en
NI z



• “Little-Oh”	Notation: J ! = q L ! if	for	every	

M > 0 there	exists	!R ∈ 	ℕ s.t.	J ! < M ⋅ L ! for	

every	! ≥ !R.
• Asymptotic	version	of	J ! < L !

• Roughly	equivalent	to	limI→Y
Z I
[ I

= 0

• “Little-Omega”	Notation: J ! = r L ! if	for	

every	M > 0 there	exists	!R ∈ 	ℕ such	that													

J ! > M ⋅ L ! for	every	! ≥ !R.
• Asymptotic	version	of	J ! > L !

• Roughly	equivalent	to	 lim
I→Y

Z I
[ I

= ∞

Asymptotic	Order	Of	Growth

NZ o R

p3 m2



• Rank	the	following	functions	in	increasing	order	of	
growth	(i.e.	Ja, JB, Ĵ , J_ so	that	JD = K(JDsa))
• ! logB !
• !B
• 100!
• 3EFGH I

Ask	the	Audience!

100N n Logan NZ 310g n

3105 100N n Logan NZ

Correct Order 100N nlogzn
319 an

59
n



100N us nlogen

100N Ofnlogen c 100
no 2

100 n E 100N logan 0 Inlog n

n login us n

n logan us no n

Oln 0 login
vs Un OC

210gal
n

31092 logis
t

2 logan
bgz3

n logis na1.59

31092 0 n

Hogan
01310g

n



Why	Asymptotics Matter

00 O

polynomials good exponentials bad

logarithms good polynomials bad

different polynomials make a big
difference



Divide	and	Conquer	Algorithms



Divide	and	Conquer	Algorithms

• Split your	problem	into	smaller subproblems

• Recursively	solve	each	subproblem

• Combine the	solutions	to	the	subprobelms

Divide	et	impera!
-Philip	II	of	Macedon

Useful when combining solutions is easier than solving
from sara



• Examples:
• Mergesort:	sorting	a	list

• Binary	Search:	search	in	a	sorted	list
• Karatsuba’s	Algorithm:	integer	multiplication

• Fast	Fourier	Transform
• …

• Key	Tools:
• Correctness:	proof	by	induction
• Running	Time	Analysis:	recurrences

• Asymptotic	Analysis

Divide	and	Conquer	Algorithms



Sorting

11 3 42 28 17 8 2 15

2 3 8 11 15 17 28 42

Given	a	list	of	! numbers,	

put	them	in	ascending	order

"[1] "[!]

any
items that

can be compared



A	Simple	Algorithm

11 3 42 28 17 8 2 15

o Insertion 504

I A
III I

A



A	Simple	Algorithm:	Insertion	Sort

11 3 42 28 17 8 2 15

2 3 8 11 15 17 28 42

11 3 15 28 17 8 2 42

Repeat

! − 1 times.

Find	the	

maximum

Swap	it	into	

place,	repeat

on	the	rest

11 3 15 2 17 8 28 42



A	Simple	Algorithm:	Insertion	Sort

11 3 42 28 17 8 2 15

11 3 15 28 17 8 2 42

Find	the	

maximum

Swap	it	into	

place,	repeat

on	the	rest

Running	Time:
n l

Z n it l
F I

Enzi
nh

I n



Divide	and	Conquer:	Mergesort

11 3 42 28 17 8 2 15Split

11 3 42 28 17 8 2 15

3 11 28 42 2 8 15 17

2 3 8 11 15 17 28 42

Recursively	
Sort

Merge

Recursively	
Sort



• Key	Idea:	If	', ) are	sorted	lists	of	length	!,	then	we	can	
merge	them	into	a	sorted	list	* of	length	2! in	time	,!
• Merging	two	sorted	lists	is	faster	than	sorting	from	scratch

3 11 28 42

2 8 15 17

'

)

Divide	and	Conquer:	Mergesort

*

Alan O n

de de

Mlk

WthrMth
yo t

2 3 8



Merging

Merge(L,R):
Let n ← len(L) + len(R)
Let A be an array of length n
j ← 1, k ← 1, 

For i = 1,…,2n:
If (j > len(L)): // L is empty
A[i] ← R[k], k ← k+1

ElseIf (k > len(R)): // R is empty
A[i] ← L[j], j ← j+1

ElseIf (L[j] <= R[k]): // L is smallest
A[i] ← L[j], j ← j+1

Else: // R is smallest
A[i] ← R[k], k ← k+1 

Return A 



Merging

MergeSort(A):
If (len(A) = 1): Return A // Base Case

Let . ← ⌈len(") 2⁄ ⌉ // Split
Let L ← A[1:m], R ← A[m+1:n]

Let L ← MergeSort(L) // Recurse
Let R ← MergeSort(R) 

Let A ← Merge(L,R) // Merge

Return A



• Claim:	The	algorithm	Mergesort is	correct

Correctness	of	Mergesort

H n E IN A list A with n numbers Megesort

returns A in sorted order

Inductive Hypothesis H n tf Aof size n MergeSo1,3 covert

Base Case Hh is true obviously
Inductive Step Assume HIM Hh are all true We'll

prove HInti



Running	Time	of	Mergesort

MergeSort(A):
If (n = 1): Return A

Let 7 ← ⌈8 9⁄ ⌉
Let L ← A[1:m]

R ← A[m+1:n]

Let L ← MergeSort(L)
Let R ← MergeSort(R)
Let A ← Merge(L,R)

Return A

Correctness

mmmm
Inductive Step

Assume thatMerge504 is

correct for all A of size
E n

M 7 L Jen

L R are correctly
sortedbyMegeSot

3ORaesotedltlDn.e Hln

Mergesort is correctfor lists of size
n 11 H

H Inti



Running	Time	of	Mergesort

MergeSort(A):
If (n = 1): Return A

Let 7 ← ⌈8 9⁄ ⌉
Let L ← A[1:m]

R ← A[m+1:n]

Let L ← MergeSort(L)
Let R ← MergeSort(R)
Let A ← Merge(L,R)

Return A

1 n time to sort a lotof
size n I

Th 2xTfE en
n

TIM e 2x 1171
a

Cn

TIN Olnlogn



• Sort	a	list	of	! numbers	in	,! logB 2! time

• Can	actually	sort	anything	that	allows	comparisons

• No	comparison	based	algorithm	can	be	(much)	faster

• Divide-and-conquer
• Break	the	list	into	two	halves,	sort	each	one	and	merge

• Key	Fact:	Merging	is	easier	than	sorting

• Proof	of	correctness
• Proof	by	induction

• Analysis	of	running	time

• Recurrences

Mergesort	Summary


