CS3000: Algorithms \& Data Jonathan Ullman

Lecture 3:

- Divide and Conquer: Mergesort
- Asymptotic Analysis

Sep 14, 2018

Asymptotic Analysis

Asymptotic Order Of Growth

- Predicting the wall-clock time of an algorithm is nigh impossible.
- What machine will actually run the algorithm?
- Impossible to exactly count "operations"?

Asymptotic Order Of Growth

- Do we really need to worry about this problem?
- Mostly we want to compare algorithms, so we can select the right one for the job
- Mostly we don't care about small inputs, we care about how the algorithm will scale

$$
y=n^{2}
$$

Asymptotic Order Of Growth

- Asymptotic Analysis: How does the running time grow as the size of the input grows? order of growth

$$
f(n) \Longrightarrow g(n)
$$

exact wrung time (les send $\left.\begin{array}{l}\text { non on the machme }\end{array}\right)$

Asymptotic Order Of Growth

- "Big-Oh" Notation: $f(n)=O(g(n))$ if there exists $c \in(0, \infty)$ and $n_{0} \in \mathbb{N}$ such that $f(n) \leq c \cdot g(n)$ for every $n \geq n_{0}$.
- Asymptotic version of $f(n) \leq g(n) \quad 2_{n}=O(n)$
- Roughly equivalent to $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty$

$$
f(n)=3 n^{2}+n \quad g(n)=n^{2}
$$

SIm: $f(n)=O(g(n))$
Pf: $c=4 \quad n_{0}=1$

$$
\begin{array}{ll}
\forall n \geqslant n_{0} \quad & 3 n^{2}+n \leq 4 n^{2} \\
& 3 n^{2}+n \leq 3 n^{2}+n^{2} \leq 4 n^{2} \leq 4 n^{2}
\end{array}
$$

B

Ask the Audience

- "Big-Oh" Notation: $f(n)=O(g(n))$ if there exists $c \in(0, \infty)$ and $n_{0} \in \mathbb{N}$ such that $f(n) \leq c \cdot g(n)$ for every $n \geq n_{0}$.
$\lim _{n \rightarrow \infty} \frac{n^{3}}{n^{2}}=\infty$
- Which of these statements are true? $n \rightarrow \infty$
- $3 n^{2}+n=O\left(n^{2}\right)$
- $n^{3}=O\left(n^{2}\right)$

$$
\forall n \geqslant n_{0} \quad 10 n^{4} \leq n^{5}
$$

- $\log _{2} n=O\left(\log _{16} n\right) \longrightarrow$

$$
\log _{16} n=\frac{\log _{2} n}{\log _{2} 16}=\frac{1}{4} \log _{2} n
$$

Big-Oh Rules

- Constant factors can be ignored
- $\forall C>0 \quad C n=O(n) \quad f(n)=C \cdot g(n) \Rightarrow f(n)=O(g(n))$
- Smaller exponents are Big-Oh of larger exponents
- $\forall a>b \quad n^{b}=O\left(n^{a}\right) \quad n^{2}=O\left(n^{2.0001}\right)$
- Any logarithm is Big-Oh of any polynomial
- $\forall a, \varepsilon>0 \quad \log _{2}^{a} n=O\left(n^{\varepsilon}\right) \quad \log _{2}^{1000} n=O\left(n^{.0001}\right)$
- Any polynomial is Big-Oh of any exponential
- $\forall a>0, b>1 \quad n^{a}=O\left(b^{n}\right) \quad n^{1000}=O\left(1.0001^{n}\right)$
- Lower order terms can be dropped
- $n^{2}+n^{3 / 2}+n=O\left(n^{2}\right)$

$$
\begin{aligned}
& f_{1}(n)+f_{2}(n) \text { and } f_{1}(n)=O(g(n)), f_{2}(n)=O(g(n)) \\
& \Rightarrow f_{1}+f_{2}=O(g)
\end{aligned}
$$

A Word of Caution

- The notation $f(n)=O(g(n))$ is weird -do not take it too literally

$$
n=O\left(n^{2}\right) \quad n=O\left(n^{3}\right) \quad\left(\text { Not really an }{ }^{4}={ }^{\prime} \operatorname{sign}\right)
$$

Clam: $\quad n=O(1)$

$$
\begin{aligned}
n=\sum_{i=1}^{n} 1 & =\sum_{i=1}^{n} o(i) \\
& =\sum_{i=2}^{n} o(() \\
& =\sum_{i=n}^{n} o(i)=O(1)
\end{aligned}
$$

Asymptotic Order Of Growth ${ }^{\frac{1}{3} n^{2}-n=\Omega\left(n^{2}\right)}$

- "Big-Omega" Notation: $f(n)=\Omega(g(n))$ if there exists $c \in(0, \infty)$ and $n_{0} \in \mathbb{N}$ s.t. $f(n) \geq c \cdot g(n)$ for every $n \geq n_{0}$.
- Asymptotic version of $f(n) \geq g(n)$
- Roughly equivalent to $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}>0$

$$
\begin{aligned}
& f(n)=O(g(n)) \\
& f(\rho)=\Omega(g(n))
\end{aligned}
$$

- "Big-Theta" Notation: $f(n)=(g(n))$ if there exists $c_{1} \leq c_{2} \in(0, \infty)$ and $n_{0} \in \mathbb{N}$ such that $\mathrm{c}_{2} \cdot g(n) \geq f(n) \geq c_{1} \cdot g(n)$ for every $n \geq n_{0}$.
- Asymptotic version of $f(n)=g(n)$
- Roughly equivalent to $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} \in(0, \infty)$

Asymptotic Running Times

- We usually write running time as a Big-Theta
- Exact time per operation doesn't appear
- Constant factors do not appear
- Lower order terms do not appear
- Examples:
- $30 \log _{2} n+45=\Theta(\log n)$
- $C n \log _{2} 2 n=\Theta(n \log n)$
- $\sum_{i=1}^{n} i=\Theta\left(n^{2}\right)$

$C_{n} \log _{2} n+C_{n}$

Asymptotic Order Of Growth

- "Little-Oh" Notation: $f(n)=o(g(n))$ if for every $c>0$ there exists $n_{0} \in \mathbb{N}$ s.t. $f(n)<c \cdot g(n)$ for every $n \geq n_{0}$.

$$
n^{2}=o\left(n^{3}\right)
$$

- Asymptotic version of $f(n)<g(n)$
- Roughly equivalent to $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$
- "Little-Omega" Notation: $f(n)=\omega(g(n))$ if for every $c>0$ there exists $n_{0} \in \mathbb{N}$ such that $f(n)>c \cdot g(n)$ for every $n \geq n_{0}$.
- Asymptotic version of $f(n)>g(n)$

$$
n^{3}=\omega\left(n^{2}\right)
$$

- Roughly equivalent to $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$

Ask the Audience!

- Rank the following functions in increasing order of growth (i.e. $f_{1}, f_{2}, f_{3}, f_{4}$ so that $\left.f_{i}=O\left(f_{i+1}\right)\right)$
- $n \log _{2} n$
- n^{2}
- $100 n$
- $3^{\log _{2} n}$

$$
3^{\log _{2} n}, 100 n, n \log _{2} n, n^{2}
$$

Correct Order: $100 n, n \log _{2} n, 3^{\log _{2} n} \approx n^{1.59}, n^{2}$
$100 n$ vs. $n \log _{2} n$

$$
\begin{aligned}
100 n=O\left(n \log _{2} n\right) \quad & c=100 \\
& n_{0}=2 \\
100 n \leqslant 100 n \log _{2} n & =0(n \log n)
\end{aligned}
$$

$n \log _{2} n$ vs, n^{2}

$$
\begin{aligned}
& n \cdot \log _{2} n \quad \text { vs. } \quad n \cdot n \\
& O(n) \cdot O(\log n) \text { vs. } O(n) \cdot O(n)
\end{aligned}
$$

$$
\begin{aligned}
2^{\log _{2} n}=n \quad 3^{\log _{2} n} & =\left(2^{\log _{2} 3}\right)^{\log _{2} n} \\
& =\left(2^{\log _{2} n}\right)^{\log _{2} 3} \\
& =n^{\log _{2} 3}=n^{\approx 1.59} \\
3^{\log _{2} n} & =O\left(n^{2}\right) \\
n \log _{2} n & =O\left(3^{\log _{2} n}\right)
\end{aligned}
$$

Why Asymptotics Matter

	n	$\left(n \log _{2} n\right.$	n^{2}	n^{3}	$\left.1.5^{n}\right)$	2^{n}	$n!$
$n=10$	$<1 \mathrm{sec}$	4 sec					
$n=30$	$<1 \mathrm{sec}$	18 min	10^{25} years				
$n=50$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	11 min	36 years	very long
$n=100$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	12,892 years	10^{17} years	very long
$n=1,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	18 min	very long	very long	very long
$n=10,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	2 min	12 days	very long	very long	very long
$n=100,000$	$<1 \mathrm{sec}$	2 sec	3 hours	32 years	very long	very long	very long
$n=1,000,000$	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

- polynomials good / exporentials bad
- logarithms good / polynomials bad
- different polynomials make a big difference

Divide and Conquer Algorithms

Divide and Conquer Algorithms

- Split your problem into smaller subproblems
- Recursively solve each subproblem
- Combine the solutions to the subprobelms

Useful when combining solutions is easier than solung from scratch

Divide and Conquer Algorithms

- Examples:
\rightarrow • Mergesort: sorting a list
\rightarrow • Binary Search: search in a sorted list
- Karatsuba's Algorithm: integer multiplication
\rightarrow • Fast Fourier Transform
- ...
- Key Tools:
- Correctness: proof by induction
- Running Time Analysis: recurrences
- Asymptotic Analysis

Sorting

2	3	8	11	15	17	28	42

A Simple Algorithm: Insertion Sort

Find the maximum													
11 3 42 28 17 8 2													
Pot it at the end													
11													
3								15	28	17	8	2	42

A Simple Algorithm: Insertion Sort

Find the
maximum

11	3	42	28	17	8	2	15

Swap it into place, repeat

11	3	15	28	17	8	2	42

11	3	15	2	17	8	28	42
2	3	8	11	15	17	28	42

A Simple Algorithm: Insertion Sort

Find the
maximum

11	3	42	28	17	8	2	15

Swap it into place, repeat

| 11 | 3 | 15 | 28 | 17 | 8 | 2 | 42 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | on the rest

Running Time: $\sum_{i=1}^{n-1} n-i+1$

$$
=\sum_{i=2}^{n} i=\frac{n(n+1)}{2}-1=\theta\left(n^{2}\right)
$$

Divide and Conquer: Mergesort

Divide and Conquer: Mergesort

- Key Idea: If $\boldsymbol{L}, \boldsymbol{R}$ are sorted lists of length n, then we can merge them into a sorted list \boldsymbol{A} of length $2 n$ in time $O(n)$
- Merging two sorted lists is faster than sorting from scratch

Merging

Merge (L, R) :
Let $n \leftarrow \operatorname{len}(L)+\operatorname{len}(R)$
Let A be an array of length n
$j \leftarrow 1, k \leftarrow 1$,
For $i=1, \ldots, 1 n:$

$$
\begin{array}{ll}
\text { If }(j>\operatorname{len}(L)): & / / L \text { is empty } \\
\text { A }[i] \leftarrow R[k], k \leftarrow k+1 & \\
\text { ElseIf }(k>\operatorname{len}(R)): & / / R \text { is empty } \\
A[i] \leftarrow L[j], j \leftarrow j+1 & \\
\text { ElseIf }(L[j]<=R[k]): & / / \text { L is smallest } \\
A[i] \leftarrow L[j], j \leftarrow j+1 & \\
\text { Else }: & \\
A[i] \leftarrow R[k], k \leftarrow k+1 &
\end{array}
$$

Return A

Merging

MergeSort(A):

$$
\begin{aligned}
& \text { If }(\operatorname{len}(A)=1): \text { Return } A \quad / / \text { Base Case } \\
& \text { Let } m \leftarrow\lceil\operatorname{len}(A) / 2\rceil \\
& \text { Let } L \leftarrow A[1: m], R \leftarrow A[m+1: n] \\
& \text { Let } L \leftarrow \text { MergeSort }(L) \quad / / \text { Relit } \\
& \text { Let } R \leftarrow \text { MergeSort }(R) \\
& \text { Let } A \leftarrow \text { Merge }(L, R) \\
& \text { Return } A
\end{aligned}
$$

Correctness of Mergesort

- Claim: The algorithm Mergesort is correct $\forall n \in \mathbb{N} \quad \forall$ list A with n numbers Mergesort returns A in sorted order

Inductive Hypothesis: $H(n)=\forall$ A of size n Merge Sot is correct
Base Case: $H(1)$ is true, obviously Inductive Step: Assume $H(1), \ldots, H(n)$ are all true. We'll prove $H(n+1)$.

Correctness

Inductive Step:
Assume that Merge Sort is correct for all A of size $\leq n$.
(1) $\left\lceil\frac{n+1}{2}\right\rceil,\left\lfloor\frac{n+1}{2}\right\rfloor \leq n$
(2) L, R are correctly sorted by MergeSort
(3) L, R are sorted $\Rightarrow A$ is sorted
(4) Meregsort is correct for lists of size $n+1$

MergeSort (A) :
If ($\mathrm{n}=1$): Return A
Let $m \leftarrow\lceil n / 2\rceil$
Let $\quad \mathrm{L} \leftarrow \mathrm{A}[1: \mathrm{m}]$
$\mathrm{R} \leftarrow \mathrm{A}[\mathrm{m}+1: \mathrm{n}]$
Let $\mathrm{L} \leftarrow$ MergeSort(L)
Let $R \leftarrow \operatorname{MergeSort}(\mathrm{R})$
Let $A \leftarrow \operatorname{Merge}(L, R)$
Return A

$$
H(1)^{\wedge} \ldots \wedge H(1)
$$

\Downarrow
$H(n+1)$

Running Time of Mergesort
$T(n)=$ time to sort a list of size n

$$
\begin{aligned}
& T(n)=2 \times T\left(\frac{n}{2}\right)+C_{n} \\
& T(1)=c
\end{aligned}
$$

$$
T(n)=O(n \log n)
$$

MergeSort (A) :
If ($n=1$): Return A
1
n
$\{$ Let $m \leftarrow\lceil n / 2\rceil$
Let $\mathrm{L} \leftarrow \mathrm{A}[1: \mathrm{m}]$
$\mathrm{R} \leftarrow \mathrm{A}[\mathrm{m}+1: \mathrm{n}]$
Set $L \leftarrow$ MergeSort(L)
$2 \times T\left(\frac{n}{2}\right)$
ln

Let $R \leftarrow$ MergeSort (R)
ξ Let $A \leftarrow$ Merge (L, R)
Return A

Mergesort Summary

- Sort a list of n numbers in $C n \log _{2} 2 n$ time
- Can actually sort anything that allows comparisons
- No comparison based algorithm can be (much) faster
- Divide-and-conquer
- Break the list into two halves, sort each one and merge
- Key Fact: Merging is easier than sorting
- Proof of correctness
- Proof by induction
- Analysis of running time
- Recurrences

