CS3000: Algorithms & Data Jonathan Ullman

Lecture 3:

- Divide and Conquer: Mergesort
- Asymptotic Analysis

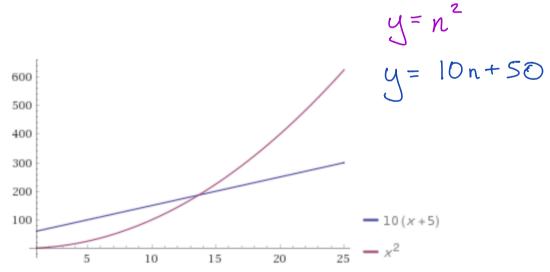
Sep 14, 2018

Asymptotic Analysis

- Predicting the wall-clock time of an algorithm is nigh impossible.
 - What machine will actually run the algorithm?
 - Impossible to exactly count "operations"?

• Do we really need to worry about this problem?

- Mostly we want to compare algorithms, so we can select the right one for the job
- Mostly we don't care about small inputs, we care about how the algorithm will scale



 Asymptotic Analysis: How does the running time orde of growth grow as the size of the input grows? $f(n) \Longrightarrow g(n)$ exact running time (nessy dependent on the machine) 600 500 400 300 200 100 10(x+5) $-x^{2}$ 25 5 1520 10

messy

- "Big-Oh" Notation: f(n) = O(g(n)) if there exists $c \in (0, \infty)$ and $n_0 \in \mathbb{N}$ such that $f(n) \leq c \cdot g(n)$ for every $n \geq n_0$.
 - Asymptotic version of $f(n) \le g(n)$ 2n = O(n)

• Roughly equivalent to $\lim_{n\to\infty} \frac{f(n)}{q(n)} < \infty$

$$f(n) = 3n^{2} + n$$
 $g(n) = n^{2}$

$$(\underline{lm}: f(n) = O(g(n))$$

$$\frac{Pf:}{Y n > n_{o}} = 1$$

$$\frac{Y n > n_{o}}{3n^{2} + n} \leq 4n^{2}$$

$$\frac{3n^{2} + n}{3n^{2} + n} \leq 3n^{2} + n^{2} \leq 4n^{2} \leq 4n^{2}$$

Ω

Ask the Audience

- "Big-Oh" Notation: f(n) = O(g(n)) if there exists $c \in (0,\infty)$ and $n_0 \in \mathbb{N}$ such that $f(n) \leq c \cdot g(n)$ for every $n \ge n_0$.
- Which of these statements are true: $\int_{n \to \infty}^{n^3} \lim_{n \to \infty} \frac{n^3}{n^2} = \infty$ $3n^2 + n = O(n^2)$ > c= | no= 10 • $n^3 = O(n^2)$ • $10n^4 = O(n^5)$
 - Vnzna lon"Ens
 - $\log_2 n = O(\log_{16} n)$ $\log_{16} n = \frac{\log_2 n}{\log_2 16} = \frac{1}{4} \log_2 n$

Big-Oh Rules

- Constant factors can be ignored
 - $\forall C > 0$ Cn = O(n) $f(n) = C \cdot g(n) \Longrightarrow f(n) = O(g(n))$
- Smaller exponents are Big-Oh of larger exponents
 - $\forall a > b$ $n^b = O(n^a)$ $\eta^2 = O(\eta^{2 \cdot \circ \circ \circ \cdot})$
- Any logarithm is Big-Oh of any polynomial
 - $\forall a, \varepsilon > 0$ $\log_2^a n = O(n^{\varepsilon})$ $\log_2^{1000} n = O(n^{000})$
- Any polynomial is Big-Oh of any exponential
 - $\forall a > 0, b > 1$ $n^a = O(b^n)$ $n^{1000} = O(1.0001^n)$
- Lower order terms can be dropped

$$n^{2} + n^{3/2} + n = O(n^{2})$$

$$f_{1}(n) + f_{2}(n) \text{ and } f_{1}(n) = O(g(h)), f_{2}(n) = O(g(h))$$

$$= f_{1} + f_{2} = O(g)$$

A Word of Caution

• The notation f(n) = O(g(n)) is weird—do not take it too literally

 $n = O(n^2)$ $n = O(n^3)$ (Not really as "="sign)

$$(I_{m}: n = O(1))$$

$$n = \sum_{i=1}^{n} 1 = \sum_{i=1}^{n} O(i)$$

$$= \sum_{i=2}^{n} O(i)$$

$$\vdots$$

$$= \sum_{i=n}^{n} O(i) = O(i)$$

$\frac{1}{3}n^2 - n = \int 2(n^2)$ Asymptotic Order Of Growth

- "Big-Omega" Notation: $f(n) = \Omega(g(n))$ if there exists $c \in (0, \infty)$ and $n_0 \in \mathbb{N}$ s.t. $f(n) \geq c \cdot g(n)$ for every $n \ge n_0$.
 - Asymptotic version of $f(n) \ge g(n)$
 - f(n) = O(g(n))f(n) = JZ(g(n))• Roughly equivalent to $\lim_{n\to\infty} \frac{f(n)}{a(n)} > 0$
- "Big-Theta" Notation: $f(n) = \Theta(g(n))$ if there exists $c_1 \leq c_2 \in (0,\infty)$ and $n_0 \in \mathbb{N}$ such that $c_2 \cdot g(n) \ge f(n) \ge c_1 \cdot g(n)$ for every $n \ge n_0$.
 - Asymptotic version of f(n) = g(n)
 - Roughly equivalent to $\lim_{n\to\infty} \frac{f(n)}{g(n)} \in (0,\infty)$

Asymptotic Running Times

We usually write running time as a Big-Theta

 $= \frac{n(n+1)}{2} = \frac{n^2}{2} + \frac{n}{2}$

- Exact time per operation doesn't appear
- Constant factors do not appear
- Lower order terms do not appear

• Examples:

- $30 \log_2 n + 45 = \Theta(\log n)$
- $Cn \log_2 2n = \Theta(n \log n)$ $\sum_{i=1}^n i = \Theta(n^2)$

Cnlogzn + Cn

- "Little-Oh" Notation: f(n) = o(g(n)) if for every c > 0 there exists $n_0 \in \mathbb{N}$ s.t. $f(n) < c \cdot g(n)$ for every $n \ge n_0$.
 - Asymptotic version of f(n) < g(n)
 - Roughly equivalent to $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$
- "Little-Omega" Notation: $f(n) = \omega(g(n))$ if for every c > 0 there exists $n_0 \in \mathbb{N}$ such that $f(n) > c \cdot g(n)$ for every $n \ge n_0$.
 - Asymptotic version of f(n) > g(n)
 - Roughly equivalent to $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$

Ask the Audience!

- Rank the following functions in increasing order of growth (i.e. f_1, f_2, f_3, f_4 so that $f_i = O(f_{i+1})$)
 - $n \log_2 n$
 - *n*²
 - 100*n*
 - $3^{\log_2 n}$

$$100n \quad vs. \quad n \log_2 n$$

$$100n = O(n \log_2 n) \qquad c = 100$$

$$n_0 = 2$$

$$100n \leq 100n \log_2 n = O(n \log_2 n)$$

nlogzn vs. n²
n·logzn vs. n·n

$$O(n) \cdot O(\log n)$$
 vs. $O(n) \cdot O(n)$
.
 $2^{\log 2^{n}} = n$
 $3^{\log 2^{n}} = (2^{\log 2^{3}})^{\log 2^{n}}$
 $= (2^{\log 2^{n}})^{\log 2^{3}}$
 $= n^{\log 2^{3}} = n^{\approx 1.59}$

$$3^{\log_2 n} = O(n^2)$$

$$n\log_2 n = O(3^{\log_2 n})$$

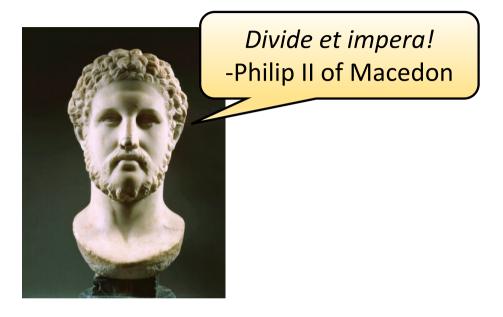
Why Asymptotics Matter

	п	$n \log_2 n$	n^2	n ³	1.5 ⁿ	2 ⁿ	<i>n</i> !
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
<i>n</i> = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
<i>n</i> = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long
				,			

- · logarithms good / polynomials bad
- · different polynomials make a big difference

Divide and Conquer Algorithms

Divide and Conquer Algorithms



- Split your problem into smaller subproblems
- Recursively solve each subproblem
- Combine the solutions to the subprobelms

Useful when combining solutions is easier than solving from scratch

Divide and Conquer Algorithms

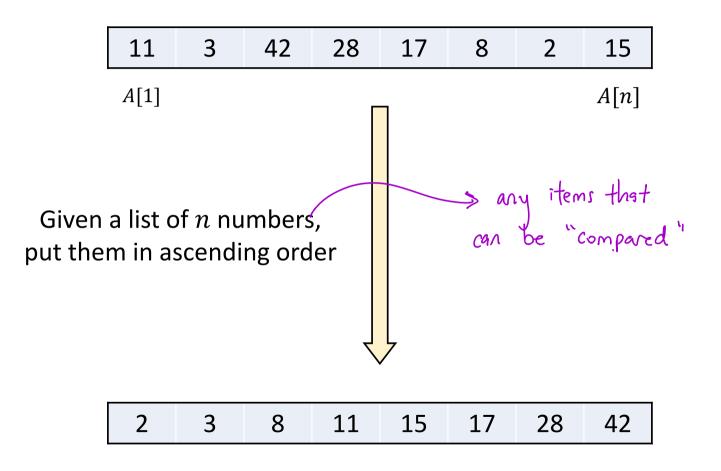
• Examples:

- Mergesort: sorting a list
- Binary Search: search in a sorted list
 - Karatsuba's Algorithm: integer multiplication
- → Fast Fourier Transform
 - ...

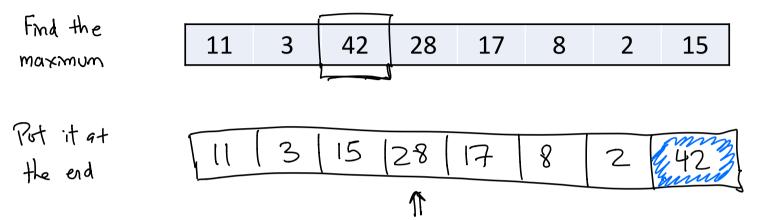
• Key Tools:

- Correctness: proof by induction
- Running Time Analysis: recurrences
- Asymptotic Analysis

Sorting



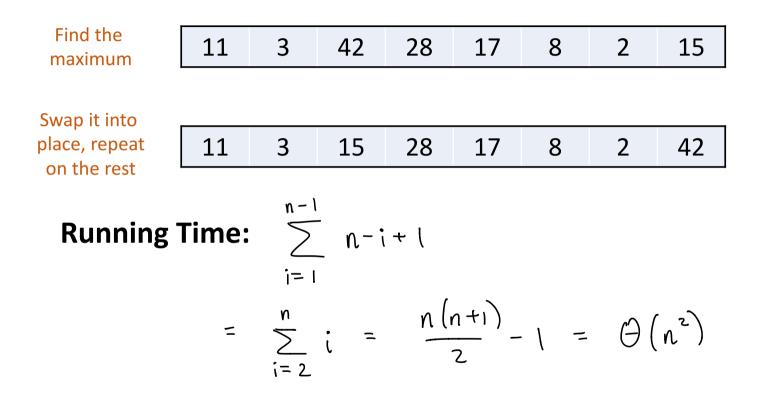
A Simple Algorithm: Insertion Sort



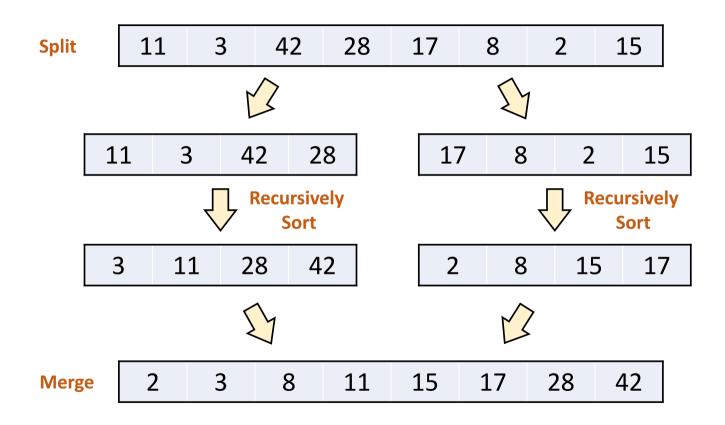
A Simple Algorithm: Insertion Sort



A Simple Algorithm: Insertion Sort

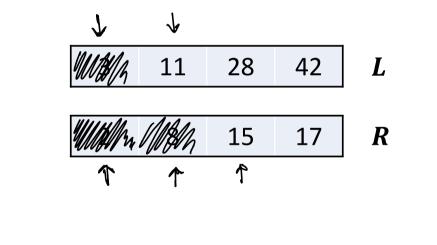


Divide and Conquer: Mergesort



Divide and Conquer: Mergesort

- Key Idea: If L, R are sorted lists of length n, then we can merge them into a sorted list A of length 2n in time $\mathcal{M}(n)$
 - Merging two sorted lists is faster than sorting from scratch



2 3 8 A

Merging

```
Merge(L,R):
  Let n \leftarrow len(L) + len(R)
  Let A be an array of length n
  j \leftarrow 1, k \leftarrow 1,
  For i = 1, ..., 
                                        // L is empty
    If (j > len(L)):
      A[i] \leftarrow R[k], k \leftarrow k+1
    ElseIf (k > len(R)): // R is empty
      A[i] \leftarrow L[j], j \leftarrow j+1
    ElseIf (L[j] \leq R[k]):
                                       // L is smallest
      A[i] \leftarrow L[j], j \leftarrow j+1
                                        // R is smallest
    Else:
      A[i] \leftarrow R[k], k \leftarrow k+1
```

Return A

Merging

```
MergeSort(A):
  If (len(A) = 1): Return A // Base Case
  Let m \leftarrow [\operatorname{len}(A)/2]
                                        // Split
  Let L \leftarrow A[1:m], R \leftarrow A[m+1:n]
                                        // Recurse
  Let L \leftarrow MergeSort(L)
  Let R \leftarrow MergeSort(R)
                                        // Merge
  Let A \leftarrow Merge(L,R)
  Return A
```

Correctness of Mergesort

• Claim: The algorithm Mergesort is correct

YnEN Y list A with n numbers Megesort
returns A m soited order
Inductive Hypothesis:
$$H(n) = Y A \text{ of size n MergeSofis convert}Base Gase: $H(1)$ is two, obviously
Inductive Step: Assume $H(1), ..., H(n)$ are all true. We'll
prove $H(nti)$.$$

Correctness hning Time of Mergesort

Inductive Step:

Assume that Mege Sort is correct for all A of size $\leq n$.

○ [n+1], [n+1] ≤ n
② L, R are correctly sorted by MegeSort
③ L, R are sorted ⇒ A is sorted
④ Mergesort is correct for lists of size n+1

MergeSort(A): If (n = 1): Return A Let $m \leftarrow \lfloor n/2 \rfloor$ Let $L \leftarrow A[1:m]$ $R \leftarrow A[m+1:n]$ Let $L \leftarrow MergeSort(L)$ Let $R \leftarrow MergeSort(R)$ Let $A \leftarrow Merge(L,R)$ Return A $H(1)^{-1} + H(n)$ HINTI

Running Time of Mergesort

$$T(n) = time to sort a list of$$
size n
$$T(n) = 2 \times T(\frac{n}{2}) + Cn$$

$$T(n) = 0 (n \log n)$$

$$MergeSort(A) :$$
If $(n = 1)$: Return A
$$I \leftarrow A[1:m]$$

$$R \leftarrow A[m+1:n]$$
Let $L \leftarrow MergeSort(L)$
Let $R \leftarrow MergeSort(L)$
Let $A \leftarrow Merge(L,R)$

$$Cn$$
Return A

Mergesort Summary

- Sort a list of n numbers in $Cn \log_2 2n$ time
 - Can actually sort anything that allows comparisons
 - No comparison based algorithm can be (much) faster
- Divide-and-conquer
 - Break the list into two halves, sort each one and merge
 - Key Fact: Merging is easier than sorting
- Proof of correctness
 - Proof by induction
- Analysis of running time
 - Recurrences