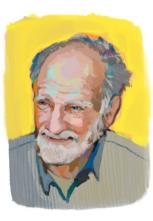
# CS3000: Algorithms & Data Jonathan Ullman

Lecture 2:

• Stable Matching: the Gale-Shapley Algorithm


Sep 11, 2018

#### National Residency Matching Program

- National system for matching US medical school graduates to medical residencies
  - Roughly 40,000 doctors per year
  - Assignment is almost entirely algorithmic



David Gale (1921-2008) PROFESSOR, UC BERKELEY



Lloyd Shapley PROFESSOR EMERITUS, UCLA



Alvin Roth PROFESSOR, STANFORD

#### Labor Markets

- Most labor markets are frustrating
  - Not everyone can get their favorite job
  - The market is decentralized
- Decentralized labor markets are confusing

Nobody has all the information Unotever you do could lead to an unterable

## **Centralized Labor Markets**

What if we could just assign jobs?

- What information would we want?

   List of doctors and hospitals
   Preferences (ranking, or dina) preferences)
   List from each doctor and each hospital
- How would we choose the assignment?



#### Matchings In the real world, doctors only rank $\leq 15$ hospitals • We are given the following information • n doctors $d_1 \dots d_n$ • n hospitals $h_1 \dots h_n$ simplifying assumption • each doctor's ranking of hospitals $d_1 : h_2 > h_3 > h_1$

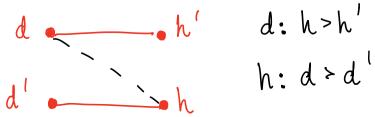
• each hospital's ranking of doctors  $h_1: d_1 > d_3 > d_2$ 

|     | 1st   | 2nd   | 3rd   | 4th   | 5th   |       | 1st | 2nd | 3rd | 4th | 5th |
|-----|-------|-------|-------|-------|-------|-------|-----|-----|-----|-----|-----|
| MGH | Bob   | Alice | Dorit | Ernie | Clara | Alice | СН  | MGH | BW  | MTA | BID |
| BW  | Dorit | Bob   | Alice | Clara | Ernie | Bob   | BID | BW  | MTA | MGH | СН  |
| BID | Bob   | Ernie | Clara | Dorit | Alice | Clara | BW  | BID | MTA | СН  | MGH |
| ΜΤΑ | Alice | Dorit | Clara | Bob   | Ernie | Dorit | MGH | СН  | MTA | BID | BW  |
| СН  | Bob   | Dorit | Alice | Ernie | Clara | Ernie | MTA | BW  | СН  | BID | MGH |

## Matchings

- A matching *M* is a set of doctor-hospital pairs
  - $M = \{ (d_1, h_2), (d_2, h_3) \}$
  - matching: no doctor/hospital appears twice
  - perfect matching: every doctor/hospital appears once
  - "d is matched to h":  $(d, h) \in M$

"d is matched": Jh s.f. (d,h) FM


"d is unmatched"

## **Stable Matchings**

- A matching M is unstable if some doctor-hospital pair prefer one another to their mate in M
- Instabilities
  - 1. d, h such that d is matched to h', h is unmatched, but d : h > h'

h

- 2. d, h such that h is matched to d', d is unmatched, but h : d > d'
- 3. d, h such that d is matched to h', h is matched to d', but d : h > h' and h : d > d'

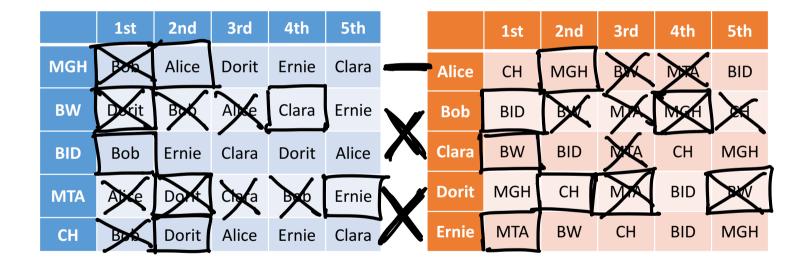


#### Ask the Audience

• Either find a stable matching or convince yourself that there is no stable matching

|     | 1st   | 2nd   | 3rd   |              |       | 1st | 2nd | 3rd   |
|-----|-------|-------|-------|--------------|-------|-----|-----|-------|
| MGH | Alice | Bob   | Clara | $\checkmark$ | Alice | BW  | BID | MGH   |
| BW  | Bob   | Clara | Alice | へ            | Bob   | BID | MGH | W/ Bh |
| BID | Alice | Clara | Bob   | _            | Clara | MGH | BID | BW    |

$$M = \left\{ \left( Alice, BU \right), \left( Bob, MGH \right), \left( Clava, BID \right) \right\}$$
$$M' = \left\{ \left( Alice, BID \right), \left( Bob, MGH \right), \left( Clava, BU \right) \right\}$$
$$M'' = \left\{ \left( Alice, BU \right), \left( Bob, BID \right), \left( Clava, MGH \right) \right\}$$


#### **Gale-Shapley Algorithm**

- Let M be empty
- While (some hospital h is unmatched):
  - If (h has offered a job to everyone): break
  - Else: let d be the highest-ranked doctor to which h has not yet offered a job
  - h makes an offer to d:
    - If (d is unmatched):
      - d accepts, add (d,h) to M
    - ElseIf (d is matched to h' & d: h' > h):
      - d rejects, do nothing
    - ElseIf (d is matched to h' & d: h > h'):
      - d accepts, remove (d,h') from M and add (d,h) to M

• Output M

Age

#### **Gale-Shapley Demo**



#### **Observations**

• Hospitals make offers in descending order

If h made offers to d, d' and d got an offer first, then h: d > d'

- Doctors that get a job never become unemployed If a doctor has ever had a job, they will always have a job.
- Doctors accept offers in ascending order

If a doctor was ever matched to h, then d is never matched to a love ranked hospital than b,

## **Gale-Shapley Algorithm**

- Questions about the Gale-Shapley Algorithm:
  - Will this algorithm terminate?
  - Does it output a perfect matching?
  - Does it output a stable matching? (Does one even exist?)
  - How do we implement this algorithm efficiently?

## **GS** Algorithm: Termination

- Claim: The GS algorithm terminates after  $n^2$  iterations of the main loop
  - There are only n<sup>2</sup> doctor-hospital passs
    Never make the same offer twice
    Alg halts if all offers are made

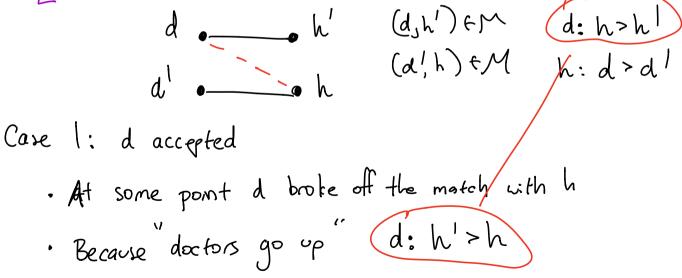
## **GS** Algorithm: Perfect Matching

 Claim: The GS algorithm returns a perfect matching (all doctors/hospitals are matched)

Proof by Contradiction: · Suppose some h is unmatched at the end. · => there is some d that is unmatched · Blc the alg terministed, h has made an offer to d It d rejected d was matched and stays matched : contradiction d was matched and stays matched .: contradicter

# GS Algorithm: Stable Matching

- -> only type of instability b/c M is a perfect matching
- Stability: GS algorithm outputs a stable matching
- Proof by contradiction:
   Suppose there is an instability d, d', h, h'


$$d = h' (d_{sh}) \in M$$
  $d: h > h'$   
 $d' = h' (d', h) \in M$   $h: d > d'$ 

We'll denne the contradiction d: h'>h

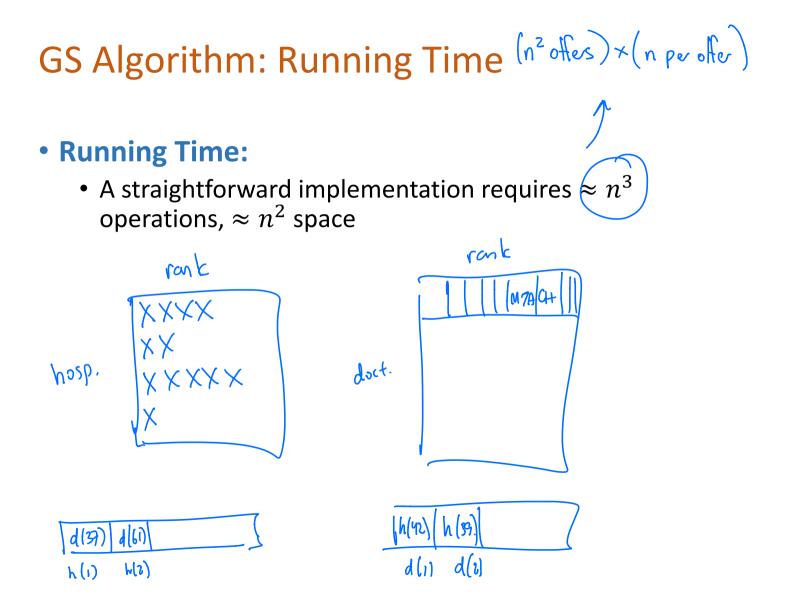
· Because h prefers d, hmade an offer to d before d'

## GS Algorithm: Stable Matching

- -> only type of instability b/c M is a perfect matching
- Stability: GS algorithm outputs a stable matching
- Proof by contradiction:
  - Suppose there is an instability d, d', h, h'



## GS Algorithm: Stable Matching


- -> only type of instability b/c M is a perfect matching
- Stability: GS algorithm outputs a stable matching
- Proof by contradiction:

• Suppose there is an instability d, d', h, h'

(d,h') FM (d: h>h)  $(a',h) \in \mathcal{M}$  h: d > dCase 2: d rejected · The d was matched to some h"s.t.d:h">h · Because "doctors go op" d: h'zh "zh Contradiction.

- Let M be empty
- While (some hospital h is unmatched):
  - If (h has offered a job to everyone): break
  - Else: let d be the highest-ranked doctor to which h has not yet offered a job
  - h makes an offer to d:
    - If (d is unmatched):
      - d accepts, add (d,h) to M
    - ElseIf (d is matched to h' & d: h' > h):
      - d rejects, do nothing
    - ElseIf (d is matched to h' & d: h > h'):
      - d accepts, remove (d,h') from M and
        - add (d,h) to M

• Output M



- Running Time:
  - A careful implementation requires just  $\approx n^2$  time and  $\approx n^2$  space

#### • Running Time:

• A careful implementation requires just  $\approx n^2$  time and  $\approx n^2$  space

|       | 1st | 2nd | 3rd | 4th | 5th |       | MGH             | BW              | BID             | ΜΤΑ             | СН              |
|-------|-----|-----|-----|-----|-----|-------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Alice | СН  | MGH | BW  | MTA | BID | Alice | 2 <sup>nd</sup> | 3 <sup>rd</sup> | 5 <sup>th</sup> | 4 <sup>th</sup> | 1 <sup>st</sup> |
| Bob   | BID | BW  | MTA | MGH | СН  | Bob   | 4 <sup>th</sup> | 2 <sup>nd</sup> | 1 <sup>st</sup> | 3 <sup>rd</sup> | 5 <sup>th</sup> |
| Clara | BW  | BID | MTA | СН  | MGH | Clara | 5 <sup>th</sup> | 1 <sup>st</sup> | 2 <sup>nd</sup> | 3 <sup>rd</sup> | 4 <sup>th</sup> |
| Dorit | MGH | СН  | MTA | BID | BW  | Dorit | 1 <sup>st</sup> | 5 <sup>th</sup> | 4 <sup>th</sup> | 3 <sup>rd</sup> | 2 <sup>nd</sup> |
| Ernie | MTA | BW  | СН  | BID | MGH | Ernie | 5 <sup>th</sup> | 2 <sup>nd</sup> | 4 <sup>th</sup> | 1 <sup>st</sup> | 3 <sup>rd</sup> |

- Running Time:
  - A careful implementation requires just  $\approx n^2$  time and  $\approx n^2$  space

<sup>(1)</sup> Convert the doctors' preferences 
$$n^2 ops$$
  
<sup>(2)</sup> Run GS ( $n^2$  offers) × (loperation)  $n^2 ops$ 

~ n<sup>2</sup> operations

### **Real World Impact**

| Market                          | Stable               | Still in use (halted unraveling)               |  |  |  |  |
|---------------------------------|----------------------|------------------------------------------------|--|--|--|--|
| American medical markets        |                      |                                                |  |  |  |  |
| NRMP                            | yes                  | yes (new design in '98)                        |  |  |  |  |
| Medical Specialties             | yes                  | yes (about 30 markets)                         |  |  |  |  |
| British Regional Medical Marke  | ts                   | •                                              |  |  |  |  |
| Edinburgh ('69)                 | yes                  | yes                                            |  |  |  |  |
| Cardiff                         | yes                  | yes                                            |  |  |  |  |
| Birmingham                      | no                   | no                                             |  |  |  |  |
| Edinburgh ('67)                 | no                   | no                                             |  |  |  |  |
| Newcastle                       | no                   | no                                             |  |  |  |  |
| Sheffield                       | no                   | no                                             |  |  |  |  |
| Cambridge                       | no                   | yes                                            |  |  |  |  |
| London Hospital                 | no                   | yes                                            |  |  |  |  |
| Other healthcare markets        |                      | •                                              |  |  |  |  |
| Dental Residencies              | yes                  | yes                                            |  |  |  |  |
| Osteopaths (<'94)               | no                   | no                                             |  |  |  |  |
| Osteopaths (≥'94)               | yes                  | yes                                            |  |  |  |  |
| Pharmacists                     | yes                  | yes                                            |  |  |  |  |
| Other markets and matching pro- | ocesses              |                                                |  |  |  |  |
| Canadian Lawyers                | yes                  | yes (except in British Columbia<br>since 1996) |  |  |  |  |
| Sororities                      | yes (at equilibrium) | yes                                            |  |  |  |  |

Table 1. Reproduced from Roth (2002, Table 1).

## **Real World Impact**

#### Doctors ↔ Hospitals

- Have to deal with two-body problems
- Have to make sure doctors do not game the system
- Kidneys ↔ Patients
  - Not all matches are feasible (blood types)
  - Certain pairs must be matched
- Students ↔ Public Schools
  - Siblings, walking zones, diversity
- Reform Rabbis ↔ Synagogues
  - No idea, just a fun example

