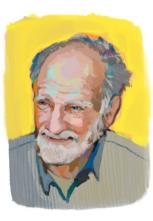
Fri Sep 14 class is moved to 103 Churchill. (only one class)

## CS3000: Algorithms & Data Jonathan Ullman

Lecture 2:

• Stable Matching: the Gale-Shapley Algorithm


Sep 11, 2018

#### National Residency Matching Program

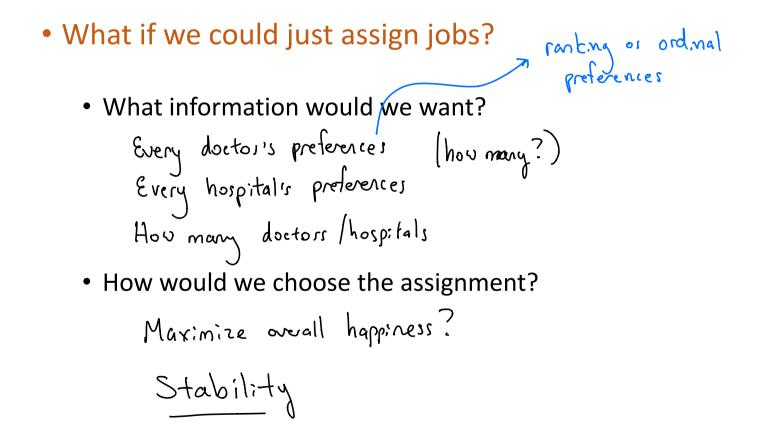
- National system for matching US medical school graduates to medical residencies
  - Roughly 40,000 doctors per year
  - Assignment is almost entirely algorithmic



David Gale (1921-2008) PROFESSOR, UC BERKELEY



Lloyd Shapley PROFESSOR EMERITUS, UCLA




Alvin Roth PROFESSOR, STANFORD

#### Labor Markets

- Most labor markets are frustrating
  - Not everyone can get their favorite job
  - The market is decentralized
- Decentralized labor markets are confusing

#### **Centralized Labor Markets**

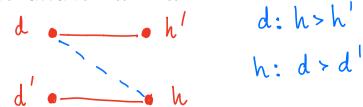


#### Matchings

- We are given the following information
  - $n \operatorname{doctors} d_1 \dots d_n$
  - n hospitals  $h_1 \dots h_n$
  - each doctor's ranking of hospitals  $d_1$  :)  $h_2 > h_3 > h_1$

, d's preferences

• each hospital's ranking of doctors  $h_1: d_1 > d_3 > d_2$ 


|     | 1st   | 2nd   | 3rd   | 4th   | 5th   |       | 1st | 2nd | 3rd | 4th | 5th |
|-----|-------|-------|-------|-------|-------|-------|-----|-----|-----|-----|-----|
| MGH | Bob   | Alice | Dorit | Ernie | Clara | Alice | СН  | MGH | BW  | MTA | BID |
| BW  | Dorit | Bob   | Alice | Clara | Ernie | Bob   | BID | BW  | MTA | MGH | СН  |
| BID | Bob   | Ernie | Clara | Dorit | Alice | Clara | BW  | BID | MTA | СН  | MGH |
| ΜΤΑ | Alice | Dorit | Clara | Bob   | Ernie | Dorit | MGH | СН  | MTA | BID | BW  |
| СН  | Bob   | Dorit | Alice | Ernie | Clara | Ernie | MTA | BW  | СН  | BID | MGH |

#### Matchings

- A matching *M* is a set of doctor-hospital pairs
  - $M = \{ (d_1, h_2), (d_2, h_3) \}$
  - matching: no doctor/hospital appears twice
  - perfect matching: every doctor/hospital appears once
  - "d is matched to h":  $(d, h) \in M$
  - "dis matched": (d,h) EM for some h

#### **Stable Matchings**

- A matching *M* is unstable if some doctor-hospital pair prefer one another to their mate in *M*
- Instabilities
  - 1. d, h such that d is matched to h', h is unmatched, but d : h > h'
  - 2. d, h such that h is matched to d', d is unmatched, but h : d > d'
- $\Rightarrow 3. \quad d, h \text{ such that } d \text{ is matched to } h', h \text{ is matched to } d', \\ \text{but } d : h > h' \text{ and } h : d > d' \end{cases}$



# Ask the Audience

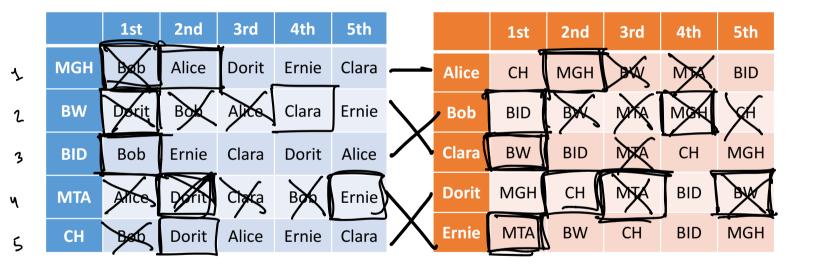
• Either find a stable matching or convince yourself that there is no stable matching

|     | 1st   | 2nd   | 3rd   |              |       | 1st | 2nd | 3rd   |
|-----|-------|-------|-------|--------------|-------|-----|-----|-------|
| MGH | Alice | Bob   | Clara | $\mathbf{V}$ | Alice | BW  | BID | MGH   |
| BW  | Bob   | Clara | Alice | X            | Bob   | BID | MGH | NO BW |
| BID | Alice | Clara | Bob   | $ \land $    | Clara | MGH | BID | BW    |

$$M' = \{(Bob, MGH), (Alice, BW), (Clava, BID)\}$$
  
 $M'' = \{(Alice, BW), (Bob, BID), (Clava, MGH)\}$ 

# Gale-Shapley Algorithm (Deferred Acceptance)

> Initially any hospital


• Let M be empty

#### While (some hospital h is unmatched):

- If (h has offered a job to everyone): break
- Else: let d be the highest-ranked doctor to which h has not yet offered a job
- h makes an offer to d:
  - If (d is unmatched):
    - d accepts, add (d,h) to M
  - ElseIf (d is matched to h' & d: h' > h):
    - d rejects, do nothing
  - ElseIf (d is matched to h' & d: h > h'):
    - d accepts, remove (d,h') from M and add (d,h) to M

• Output M

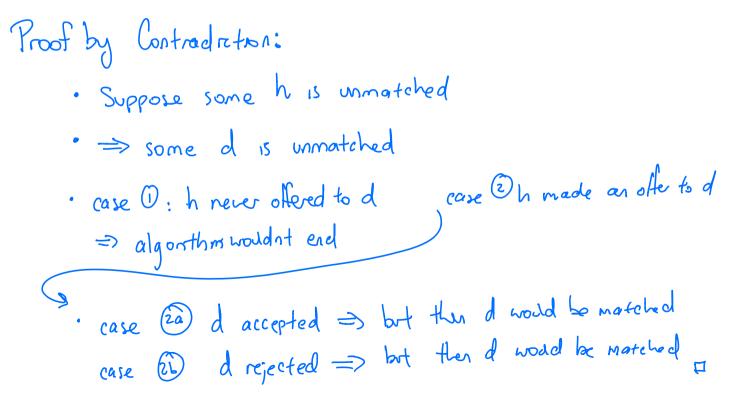
#### **Gale-Shapley Demo**



#### **Observations**

- Hospitals make offers in descending order
  If (h, d) ∈ M at some point. I will never be matched
  to a doctor it likes better.
- Doctors that get a job never become unemployed If d is matched at some point, then it's matched forever.
- Doctors accept offers in ascending order
  If (d,h) FM at some point. dendr up with a hospital it prefers to h.

#### **Gale-Shapley Algorithm**


- Questions about the Gale-Shapley Algorithm:
  - Will this algorithm terminate?
  - Does it output a perfect matching?
  - Does it output a stable matching? (Do stable matchings exist?)
  - How do we implement this algorithm efficiently?

#### **GS** Algorithm: Termination

• Claim: The GS algorithm terminates after  $n^2$  iterations of the main loop  $(n^2 job offes)$ 

#### **GS Algorithm: Perfect Matching**

 Claim: The GS algorithm returns a perfect matching (all doctors/hospitals are matched)



# GS Algorithm: Stable Matching stable matchings palways exist?

- Stability: GS algorithm outputs a stable matching
- Proof by contradiction:
  - Suppose there is an instability d, d', h, h' $d \bullet h' \quad d: h h'$

# GS Algorithm: Stable Matching stable matchings *R* always exist?

- Stability: GS algorithm outputs a stable matching
- Proof by contradiction:
  - Suppose there is an instability d, d', h, h'

d - h' d: h > h'd' - h h: d > d'

case (1): d accepted at the time B/c doctors "go up" d:h'>h

# GS Algorithm: Stable Matching stable matching

- Stability: GS algorithm outputs a stable matching
- Proof by contradiction:
  - Suppose there is an instability d, d', h, h'

d - h' d: h > h'd' - h h: d > d'

case (2): d rejected at the time .d rejected blc d vas matched to some h" and d: h">h ... blc "doctors go up" d: h'>h" therefore d: h'>h

- Running Time:
  - A straightforward implementation requires  $\approx n^3$  operations,  $\approx n^2$  space

• Let M be empty • While (some hospital h is unmatched): • If (h has offered a job to everyone): break • Else: let d be the highest-ranked doctor to which h has not yet offered a job operation • h makes an offer to d: If (d is unmatched):
 · d accepts, add (d,h) to M
 · ElseIf (d is matched to h' & d: h' > h):
 · d rejects, do nothing
 · ElseIf (d is matched to h' & d: h > h'):
 ops to
 · d accepts, remove (d,h') from M and compose
 h.h' add (d,h) to M • Output M

(n² job offers) × (n per offer) = N³ time

- Running Time:
  - A careful implementation requires just  $\approx n^2$  time and  $\approx n^2$  space

- Running Time:
  - A careful implementation requires just  $\approx n^2$  time and  $\approx n^2$  space

| create a an array |     |     |     |     |     | of | doct  | o( ×            | hoj             | p.t a)          | M O             | 2 ops           |
|-------------------|-----|-----|-----|-----|-----|----|-------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                   | 1st | 2nd | 3rd | 4th | 5th |    |       | MGH             | BW              | BID             | ΜΤΑ             | СН              |
| Alice             | СН  | MGH | BW  | MTA | BID |    | Alice | 2 <sup>nd</sup> | 3 <sup>rd</sup> | 5 <sup>th</sup> | 4 <sup>th</sup> | 1 <sup>st</sup> |
| Bob               | BID | BW  | MTA | MGH | СН  |    | Bob   | 4 <sup>th</sup> | 2 <sup>nd</sup> | 1 <sup>st</sup> | 3 <sup>rd</sup> | 5 <sup>th</sup> |
| Clara             | BW  | BID | MTA | СН  | MGH |    | Clara | 5 <sup>th</sup> | 1 <sup>st</sup> | 2 <sup>nd</sup> | 3 <sup>rd</sup> | 4 <sup>th</sup> |
| Dorit             | MGH | СН  | MTA | BID | BW  |    | Dorit | 1 <sup>st</sup> | 5 <sup>th</sup> | 4 <sup>th</sup> | 3 <sup>rd</sup> | 2 <sup>nd</sup> |
| Ernie             | MTA | BW  | СН  | BID | MGH |    | Ernie | 5 <sup>th</sup> | 2 <sup>nd</sup> | 4 <sup>th</sup> | 1 <sup>st</sup> | 3 <sup>rd</sup> |

- Running Time:
  - A careful implementation requires just  $\approx n^2$  time and  $\approx n^2$  space

~ N<sup>2</sup> operations

#### **Real World Impact**

| Market                          | Stable               | Still in use (halted unraveling)               |
|---------------------------------|----------------------|------------------------------------------------|
| American medical markets        |                      |                                                |
| NRMP                            | yes                  | yes (new design in '98)                        |
| Medical Specialties             | yes                  | yes (about 30 markets)                         |
| British Regional Medical Marke  | ts                   | •                                              |
| Edinburgh ('69)                 | yes                  | yes                                            |
| Cardiff                         | yes                  | yes                                            |
| Birmingham                      | no                   | no                                             |
| Edinburgh ('67)                 | no                   | no                                             |
| Newcastle                       | no                   | no                                             |
| Sheffield                       | no                   | no                                             |
| Cambridge                       | no                   | yes                                            |
| London Hospital                 | no                   | yes                                            |
| Other healthcare markets        |                      | •                                              |
| Dental Residencies              | yes                  | yes                                            |
| Osteopaths (<'94)               | no                   | no                                             |
| Osteopaths (≥'94)               | yes                  | yes                                            |
| Pharmacists                     | yes                  | yes                                            |
| Other markets and matching pro- | ocesses              |                                                |
| Canadian Lawyers                | yes                  | yes (except in British Columbia<br>since 1996) |
| Sororities                      | yes (at equilibrium) | yes                                            |

Table 1. Reproduced from Roth (2002, Table 1).

#### **Real World Impact**

#### Doctors ↔ Hospitals

- Have to deal with two-body problems
- Have to make sure doctors do not game the system
- Kidneys ↔ Patients
  - Not all matches are feasible (blood types)
  - Certain pairs must be matched
- Students ↔ Public Schools
  - Siblings, walking zones, diversity
- Reform Rabbis ↔ Synagogues
  - No idea, just a fun example



#### Ask the Audience

• Claim: For every  $n \in \mathbb{N}$ ,  $\sum_{i=0}^{n-1} 2^i = 2^n - 1$ 

• Proof by Induction: