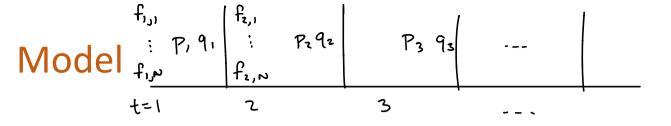
CS3000: Algorithms & Data Jonathan Ullman

Lecture 22:

• Online Learning

Picking Good Experts

- Suppose you have *N* "experts" making predictions
 - Weather forecasters
 - Financial advisors
 - Recommender systems
 - ...
- Most of them are bad, but one might be good!
- Who's predictions should we trust?



- There are *T* time periods, in each:
 - experts make predictions $f_{t,1}, \dots, f_{t,N} \in \{0,1\}$
 - you have to make a decision $p_t \in \{0,1\}$
 - some outcome $q_t \in \{0,1\}$ is revealed (may be adversarial)
- Goal: minimize mistakes (M≈M*)
 - You have a mistate on day t if $P_t \neq 9_t$
 - · Want # of mistakes << T
 - M* is the #of mistakes made by the best expert in hind sight. M is #of mistakes we make

Level I: The Halving Algorithm (HA)

Assumption: some expert makes 0 mistakes
 Ct is the set of experts that have made no mistakes up to day t

Let $C_1 \leftarrow \{1, ..., N\}$ For t = 1, ..., T: Let p_t be the majority vote of experts in C_t Let C_{t+1} be the experts with no mistakes so far

Level I: The Halving Algorithm $M^* = 0 \implies M \leq \log_2 N$

- Thm: If some expert makes 0 mistakes then HA makes ≤ log₂ N mistakes.
- · Key Idea: Use ICel as a "measure of progress"
- $N = |C_1| \ge |C_2| = |C_3| = |C_1| = |C_1|$

$$\begin{array}{c|c|c_{\tau}| \leq N \cdot 2^{-M} & \text{some expert} \\ \hline |C_{\tau}| \leq N \cdot 2^{-M} & \text{some expert} \\ \hline \\ \text{(because if we make a mistake} & \text{mistake} \\ \hline \\ \text{on day t then } |C_{t+1}| \leq |C_t|/2 \end{array}$$

 $\textcircled{b} |C_{\tau}| > |$

$$| \leq |C_{T}| \leq N \cdot 2^{-M}$$

$$\implies | \leq N \cdot 2^{-M}$$

$$\implies 0 \leq \log_{2} N - M$$

$$\implies M \leq \log_{2} N$$

$$\implies$$

Level II: Repeated Halving (RHA)

Let
$$C_1 \leftarrow \{1, ..., n\}$$

For $t = 1, ..., T$:
Let p_t be the majority vote of experts in C_t
Let C_{t+1} be the experts with no mistakes so far
If $C_{t+1} = \emptyset$, let $C_{t+1} = \{1, ..., n\}$

Level II: Repeated Halving

• Thm: If some expert makes $\leq M^*$ mistakes then RHA makes $\leq (M^* + 1)(\log_2 N + 1)$ mistakes.

$$\cdot M \approx M^* \cdot \log_2 N$$

Meaningless unless some expet is correct a $\left(1 - \frac{1}{\log_2 N}\right)$ fraction of the time

Give each expert a weight
$$w_{t,i} \leftarrow 1$$
 $W_t = \sum_{i=1}^{N} \omega_{t,i}$
For $t = 1, ..., T$:
Let p_t be the weighted majority vote of experts
For $i = 1, ..., N$:
If (expert *i* made a mistake): $w_{t+1,i} \leftarrow \frac{w_{t,i}}{2}$ (1-c) $u_{t,i}$
Else: $w_{t+1,i} \leftarrow w_{t,i}$
If we make a mistake
 $\sum_{i: f_{t,i}=1}^{N} \omega_{t,i}$ is $f_{t,i}=0$
The of Hese is at least $\frac{W_t}{2}$

2

• Thm: If some expert makes $\leq M^*$ mistakes then WM makes $\leq 2.4(M^* + \log_2 N)$ mistakes.

-> Want this to be = 1

· Proof: "Measure of progress" Wt

•
$$W_{T} \leq W \cdot \left(\frac{3}{4}\right)^{M}$$

•
$$W_T$$
 >, v_{T_s} ; >, $(\frac{1}{2})^M$
(it is the best expect)

•
$$\left(\frac{1}{2}\right)^{M^*} \leq N \cdot \left(\frac{3}{4}\right)^M$$

$$M^{*} \cdot \log_{2}\left(\frac{1}{2}\right) \leq \log_{2}N + M \cdot \log_{2}\left(\frac{3}{4}\right) = \log\left(\frac{1}{3}\right)$$
$$= -\log\left(x\right)$$
$$M^{*} \cdot \log_{2}(2) \leq \log_{2}N - M \cdot \log_{2}\left(\frac{4}{3}\right)$$
$$M \leq \frac{M^{*} + \log_{2}N}{\log_{2}\left(\frac{4}{3}\right)}$$

• Thm: If some expert makes $\leq M^*$ mistakes then WM makes $\leq 2.4(M + \log_2 N)$ mistakes.

Some expert has ut
$$\Rightarrow 2^{-M^*}$$

Every mintable decreases total ut by a factor of $(\frac{1}{4})$
 $2^{-M^*} \leq W_T \leq N \cdot (\frac{3}{4})^M$
 $-M^* \leq \log_2 N + M \log_2 (\frac{3}{4})$
 $M \leq (M^* + \log_2 N) \frac{-1}{\log_2 (\frac{3}{4})}$
 $= \frac{1}{\log_2 (\frac{4}{3})} \approx 2.4$

• Thm: If some expert makes $\leq M^*$ mistakes then WM makes $\leq 2.4(M + \log_2 N)$ mistakes.

Some expert has ut > (1-2) M* Every mitable deveaxes total ut by a factor of $(1 - \frac{\varepsilon}{2})$ $(1-\varepsilon)^{\mathsf{M}^*} \leq \mathsf{N} \cdot (1-\frac{\varepsilon}{2})^{\mathsf{M}}$ $M^* \cdot \ln(1-\varepsilon) \leq \ln N + M \cdot \ln(1-\frac{\varepsilon}{2})$ $-M^{*} \cdot \ln\left(\frac{1}{1-\varepsilon}\right) \leq \ln N - M \cdot \ln\left(\frac{1}{1-\varepsilon/2}\right)$ $M \leq M^* \cdot \left(\frac{\ln (\gamma_{1-\epsilon})}{\ln (\gamma_{1-\epsilon})} + \frac{\ln N}{\ln (\gamma_{1-\epsilon})} \right)$

- Thm: If some expert makes $\leq M$ mistakes then WM makes $\leq 2.4(M + \log_2 N)$ mistakes.
- Thm: Any deterministic strategy can be forced to make at least 2M^{*} mistakes

Give each expert a weight
$$w_{t,i} \leftarrow 1$$
, $W_t \leftarrow \sum_i w_{t,i}$
For $t = 1, ..., T$:
Choose i with probability $w_{t,i}/W_t$
For $i = 1, ..., N$:
If (expert i made a mistake): $w_{t+1,i} \leftarrow (1 - \varepsilon) \cdot w_{t,i}$
Else: $w_{t+1,i} \leftarrow w_{t,i}, W_{t+1} \leftarrow \sum_i w_{t+1,i}$
On day $t_{-1} \mid lose$
 $F_t = \sum_{i: f_{e,i} \neq q_t} w_{t,i}/W_t$
 $I \geq 2 \leq 2 \leq -2$
N $ln \quad total, \quad lose$
 $M = \sum_{t=1}^{n} F_t$

• Thm: If some expert makes $\leq M^*$ mistakes then RWM makes $\leq (1 + \varepsilon) \cdot M^* + \frac{\log_2 N}{\varepsilon}$ mistakes Set & = V logzN Then $M \leq M^* + M^* \cdot \sqrt{\frac{\log_2 N}{\tau}} + \sqrt{T \log_2 N}$ ^L M^{*} + VTlog2N + VTlog2N = M* + 2, Tlog2N

- Thm: If some expert makes $\leq M$ mistakes then RWM makes $\leq (1 + \varepsilon) \cdot M + \frac{\log_2 N}{\varepsilon}$ mistakes
 - Proof: measure of progress is W_t goal is to bound $\sum_{t=1}^{T} F_t$

•
$$W_{\tau} > (1-\varepsilon)^{M^*}$$

• If I make a mistake on day t
then
$$W_{t+1} = (1 - \varepsilon F_{\varepsilon}) \cdot W_{\varepsilon}$$

• $W_{T} \leq N \cdot TT (1 - \varepsilon F_{\varepsilon})$
 $t_{=1}$

$$(1-\varepsilon)^{M^{*}} \leq N \cdot \frac{\tau}{\Pi} (1-\varepsilon F_{\varepsilon})$$

$$t_{\varepsilon_{1}}$$

$$M^{*} \cdot \ln(1-\varepsilon) \leq \ln(N) + \sum_{t=1}^{\tau} \ln(1-\varepsilon F_{\varepsilon})$$

$$y \leq \ln(N) + \sum_{t=1}^{\tau} \ln(1-\varepsilon F_{\varepsilon})$$

$$y \leq \ln(N) - \varepsilon \sum_{t=1}^{\tau} F_{t}$$

$$\sum_{t=1}^{\tau} F_{t} \leq -\frac{M^{*} \cdot \ln(1-\varepsilon) + \ln(N)}{\varepsilon}$$

$$= M^{*} \left(\frac{-\ln(1-\varepsilon)}{\varepsilon}\right) + \frac{\ln(N)}{\varepsilon}$$

$$\leq M^{*} \left(\frac{\varepsilon + \varepsilon^{2}}{\varepsilon}\right) + \frac{\ln(N)}{\varepsilon}$$

$$= M^{*} \left(1+\varepsilon\right) + \frac{\ln(N)}{\varepsilon}$$

• Thm: If some expert makes $\leq M$ mistakes then RWM makes $\leq (1 + \varepsilon) \cdot M + \frac{\log_2 N}{\varepsilon}$ mistakes Let F_{ε} be the fraction of mistakes we nade on day t Want to bound $\sum_{\varepsilon} F_{\varepsilon} \approx F_{\varepsilon} \propto \sum_{i} \frac{\omega_{\varepsilon} n_{\varepsilon}}{\varepsilon}$

$$(1 - \varepsilon)^{M^{*}} \leq W_{T} \leq N \cdot \overline{T} (1 - \varepsilon F_{\epsilon})$$

$$(1 - \varepsilon)^{K^{*}} \leq W_{T} \leq N \cdot \overline{T} (1 - \varepsilon F_{\epsilon})$$

$$(1 - \varepsilon F_{\epsilon}) \leq \ln N + \overline{T} (1 - \varepsilon F_{\epsilon})$$

$$\leq \ln N - \overline{T} \leq F_{\epsilon}$$

$$\leq \ln N - \overline{T} \leq F_{\epsilon}$$

$$= F_{\epsilon} + \frac{M^{*}}{\epsilon \ln(1/1 - \epsilon)}$$

Why I love this algorithm

Endless applications:

- continuous optimization / linear programming
 - including maximum flow!
- machine learning
 - training machine learning models
 - combining weak models into strong models
 - online learning: updating models with more data
- probability theory
- game theory
 - how to play zero-sum games
- theory of computation

Why I care so much about this

- We often teach algorithms as a set of *ad hoc* tricks
 - These algorithms are easier to deploy
 - These algorithms are used often
 - These algorithms came first historically
 - These algorithms require less mathematical background
- Algorithms research today is much more systematic
 - More powerful and unified techniques
 - But requires more mathematical sophistication
 - Randomization / Probability / Statistics
 - Continuous Mathematics / Linear Algebra
 - But beautiful and worth studying!