CS3000: Algorithms & Data Jonathan Ullman

Lecture 22:

Online Learning

Picking Good Experts

- Suppose you have *N* "experts" making predictions
 - Weather forecasters
 - Financial advisors
 - Recommender systems
 - ...
- Most of them are bad, but one might be good!
- Who's predictions should we trust?

Model
$$f_{1,N}$$
 $f_{2,N}$ $f_{2,N}$

- There are *T* time periods, in each:
 - experts make predictions $f_{t,1}, \dots, f_{t,N} \in \{0,1\}$
 - you have to make a decision $p_t \in \{0,1\}$
 - some outcome $q_t \in \{0,1\}$ is revealed
 - a mistake is when $P_t \neq q_t$
- Goal: minimize mistakes

- . The #of mistakes we make is M
- · The best expert in hindsight makes Ma mistakes

binary atcomes ("ra:n"/"sun")

· Want to ensure that $M \approx M^*$

Level I: The Halving Algorithm (HA)

• Assumption: some expert makes 0 mistakes

Let $C_1 \leftarrow \{1, ..., n\}$ For t = 1, ..., T: Let p_t be the majority vote of experts in C_t Let C_{t+1} be the experts with no mistakes so far

Level I: The Halving Algorithm

M* = 0

 Thm: If some expert makes 0 mistakes then HA makes ≤ log₂ N mistakes.

Measure of progress: $|C_{\ell}|$ Fart: $N = |C_1| \gg |C_2| \gg \dots \gg |C_{\tau}| \gg |C_{\tau}|$

Key Equation:

$$| \leq |C_T| \leq N \cdot 2^{-M}$$

 $\Rightarrow | \leq N \cdot 2^{-M}$
 $2^M \leq N$
 $M \leq \log_2 N$

Level II: Repeated Halving (RHA)

Let
$$C_1 \leftarrow \{1, ..., n\}$$

For $t = 1, ..., T$:
Let p_t be the majority vote of experts in C_t
Let C_{t+1} be the experts with no mistakes so far
If $C_{t+1} = \emptyset$, let $C_{t+1} = \{1, ..., n\}$
 $\log_2 N$ $\left| \log_2 N \right| \log_2 N$ $\left| \log_2 N \right| \log_2 N$
 $t=1$ (M*+1) intevals
Best expert makes Π^* mistakes $\times \frac{\log_2 N}{M = (M^*+1) \log_2 N}$

Level II: Repeated Halving

- Thm: If some expert makes $\leq M$ mistakes then RHA makes $\leq (M + 1)(\log_2 N + 1)$ mistakes.
- · Worse than the best expert by a factor of log_N

Give each expert a weight
$$w_{t,i} \leftarrow 1$$
 $W_t \stackrel{\mathbb{N}}{\underset{i=1}{\rightarrow}} \omega_{t,i}$
For $t = 1, ..., T$:
Let p_t be the weighted majority vote of experts
For $i = 1, ..., N$:
If (expert *i* made a mistake): $w_{t+1,i} \leftarrow \frac{w_{t,i}}{2}$
Else: $w_{t+1,i} \leftarrow w_{t,i}$

 $\sum_{i: f_{t,i}=1}^{U_{t,i}} \sum_{j: f_{t,i}=0}^{U_{t,i}} \sum_{j: f_{t,i}=0}^{U_{t,i}}$

- Thm: If some expert makes $\leq M^*$ mistakes then WM makes $\leq 2.4(M^* + \log_2 N)$ mistakes.
- · Proof: " measure of progress is $W_{t} = \sum_{i=1}^{2} \omega_{t,i}$ · if we make M mittakes, then $W_T \leq N \cdot \left(\frac{3}{4}\right)$ · if the best expertimates Mt mostates, then $W_{\tau} = \sum_{i=1}^{2} \omega_{\tau_{i}i} \quad \Im \quad \omega_{\tau_{i}i} \quad = \left(\frac{1}{2}\right)^{m^{\star}}$ $\Rightarrow \left(\frac{1}{2}\right)^{M^*} \leq \sqrt{1}_{+} \leq N \cdot \left(\frac{3}{4}\right)^{M}$

$$\begin{pmatrix} \frac{1}{2} \end{pmatrix}^{M^{*}} \in \mathbb{N} \cdot \left(\frac{3}{4}\right)^{M} \quad (\text{take } \log_{2} \text{ of both s:des})$$

$$M^{*} \log_{2} \left(\frac{1}{2}\right) \in \mathbb{M} \log_{2} \left(\frac{3}{4}\right) + \log_{2} \mathbb{N}$$

$$- M^{*} \log_{2} 2 \in -\mathbb{M} \log_{2} \left(\frac{4}{3}\right) + \log_{2} \mathbb{N}$$

$$M \leq \frac{M^{*} \log_{2} 2}{\log_{2} \left(\frac{4}{3}\right)}$$

$$M \leq 2.4 (M^* + \log_2 N) \equiv$$

• Thm: If some expert makes $\leq M^*$ mistakes then WM makes $\leq 2.4(M^* + \log_2 N)$ mistakes.

Some expert has ut
$$\Rightarrow 2^{-M^*}$$

Every mintake decreases total ut by a factor of $(\frac{1}{4})$
 $2^{-M^*} \leq W_T \leq N \cdot (\frac{3}{4})^M$
 $-M^* \leq \log_2 N + M \log_2 (\frac{3}{4})$
 $M \leq (M^* + \log_2 N) \frac{-1}{\log_2 (\frac{3}{4})}$
 $= \frac{1}{\log_2 (\frac{4}{3})} \approx 2.4$

• Thm: If some expert makes $\leq M^*$ mistakes then WM makes $\leq 2.4(M + \log_2 N)$ mistakes.

Some expert has ut > (1-2) M* Every mitable deveaxes total ut by a factor of $(1 - \frac{\varepsilon}{2})$ $(1-\varepsilon)^{\mathsf{M}^*} \leq \mathsf{N} \cdot (1-\frac{\varepsilon}{2})^{\mathsf{M}}$ $M^* \cdot \ln(1-\varepsilon) \leq \ln N + M \cdot \ln(1-\frac{\varepsilon}{2})$ $-M^{*} \cdot \ln\left(\frac{1}{1-\varepsilon}\right) \leq \ln N - M \cdot \ln\left(\frac{1}{1-\varepsilon/2}\right)$ $M \leq M^* \cdot \left(\frac{\ln (\gamma_{1-\epsilon})}{\ln (\gamma_{1-\epsilon})} + \frac{\ln N}{\ln (\gamma_{1-\epsilon})} \right)$

- Thm: If some expert makes $\leq M^*$ mistakes then WM makes $\leq 2.4(M^* + \log_2 N)$ mistakes.
- Thm: Any deterministic strategy can be forced to make at least 2M^{*}mistakes

Give each expert a weight $w_{t,i} \leftarrow 1$, $W_t \leftarrow \sum_i w_{t,i}$ For t = 1, ..., T: Choose i with probability $w_{t,i}/W_t$ (Soliting a dollar across) For i = 1, ..., N: If (expert i made a mistake): $w_{t+1,i} \leftarrow (1 - \varepsilon) \cdot w_{t,i}$ Else: $w_{t+1,i} \leftarrow w_{t,i}$, $W_{t+1} \leftarrow \sum_i w_{t+1,i}$

• Thm: If some expert makes $\leq M^*$ mistakes then RWM makes $\leq (1 + \varepsilon) \cdot M^* + \frac{\log_2 N}{\varepsilon}$ mistakes • Set $\varepsilon = \sqrt{\frac{\log_2 N}{\varepsilon}}$

$$M \leq M^* + M^* \sqrt{\frac{\log_2 N}{T}} + \sqrt{T \log_2 N}$$

$$\leq M^* + 2\sqrt{T \log_2 N}$$

$$\frac{M^*}{T} + 2\sqrt{\frac{\log_2 N}{T}}$$

- Thm: If some expert makes $\leq M$ mistakes then RWM makes $\leq (1 + \varepsilon) \cdot M + \frac{\log_2 N}{\varepsilon}$ mistakes Proof:
 - Measure of progress: W_t • $(1-\varepsilon)^{M^*} \leq W_T$
 - Every day we lose $F_t = \sum_{i:f_{t,i} \neq q_t} \omega_{t,i}$ • $W_{t+i} = W_t (1 - \varepsilon F_t)$: $W_T \leq N \cdot \prod_{t>i} (1 - \varepsilon F_t)$

$$(1-\varepsilon)^{M^{*}} \leq W_{T} \leq N \cdot \frac{T}{\Pi} (1-\varepsilon F_{\varepsilon})$$

$$M^{*} \cdot \ln(1-\varepsilon) \leq \ln N + \sum_{t=1}^{T} \ln(1-\varepsilon F_{\varepsilon})$$

$$\leq \ln N - \varepsilon \sum_{t=1}^{T} F_{\varepsilon}$$

$$\ln(1-\varepsilon)$$

$$\leq \ln N - \varepsilon \sum_{t=1}^{T} F_{\varepsilon}$$

$$\int \sum_{t=1}^{T} F_{\varepsilon} \leq -M^{*} \ln(1-\varepsilon) + \ln N$$

$$g = \sum_{t=1}^{T} \int \sum_{t=1}^{T} \frac{1}{\varepsilon} \ln(1-\varepsilon) + \ln N$$

$$= M^{*} \ln(\frac{1}{1-\varepsilon}) + \ln N$$

$$\varepsilon$$

$$\approx M^{*} \ln(1+\varepsilon) + \ln N$$

$$\varepsilon$$

$$\approx M^{*} (\varepsilon + \varepsilon^{2}) + \ln N$$

$$\varepsilon$$

$$= (1+\varepsilon) M^{*} + \frac{\ln N}{\varepsilon}$$

• Thm: If some expert makes $\leq M$ mistakes then RWM makes $\leq (1 + \varepsilon) \cdot M^* + \frac{\log_2 N}{\varepsilon}$ mistakes Let F_{ε} be the fraction of mistakes we nade on day t Want to bound $\sum_{\varepsilon} F_{\varepsilon} \approx F_{\varepsilon} \propto F_{\varepsilon}$ be $f_{\varepsilon} \approx F_{\varepsilon}$

$$(1-\varepsilon)^{M^{*}} \leq W_{T} \leq N \cdot \prod_{t=1}^{T} (1-\varepsilon F_{t})$$

$$M^{*} \cdot \ln(1-\varepsilon) \leq \ln N + \sum_{t=1}^{T} \ln(1-\varepsilon F_{t})$$

$$\leq \ln N - \sum_{t=1}^{T} \varepsilon F_{t}$$

$$T = F_{t} \leq \frac{\ln N}{\varepsilon} + \frac{M^{*}}{\varepsilon \ln(1/1-\varepsilon)}$$

Why I love this algorithm

Endless applications:

- continuous optimization / linear programming
 - including maximum flow!
- machine learning
 - training machine learning models
 - combining weak models into strong models
 - online learning: updating models with more data
- probability theory
- game theory
 - how to play zero-sum games
- theory of computation

Why I care so much about this

- We often teach algorithms as a set of *ad hoc* tricks
 - These algorithms are easier to deploy
 - These algorithms are used often
 - These algorithms came first historically
 - These algorithms require less mathematical background
- Algorithms research today is much more systematic
 - More powerful and unified techniques
 - But requires more mathematical sophistication
 - Randomization / Probability / Statistics
 - Continuous Mathematics / Linear Algebra
 - But beautiful and worth studying!