CS3000: Algorithms & Data Jonathan Ullman

Lecture 21: More Applications of Network Flow

Nov 30, 2018

Image Segmentation

Image Segmentation

- Separate image into foreground and background
- We have some idea of:
 - whether pixel i is in the foreground or background
 - whether pair (i,j) are likely to go together

Image Segmentation

- Input:
 - a directed graph G = (V, E); V = "pixels", E = "pairs"
 - likelihoods $a_i, b_i \ge 0$ for every $i \in V$
 - separation penalty $p_{ij} \ge 0$ for every $(i, j) \in E$ "foregrand" "background"
- Output:
 - a partition of V into (A, B) that maximizes

$$q(A,B) = \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{\substack{(i,j) \in E \\ \text{from } A \text{ to } B}} p_{ij}$$

Reduction to MinCut

- Differences between SEG and MINCUT:
 - SEG asks us to maximize, MINCUT asks us to minimize

• SEG allows any partition, MINCUT requires $s \in A, t \in B$ mm cut: graph has noder $V \cup \S s, t \S$ mm A, B partitioning V• Add two nodes s, t

Reduction to MinCut

- How should the reduction work?
 - capacity of the cut should correspond to the function we're trying to minimize

$$\min_{A,B} \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{\substack{(i,j) \in E \\ \text{from } A \text{ to } B}} p_{ij}$$

min
$$\sum_{(i,j)\in E} cap(i,j)$$

A, B from A to B

Reduction to MinCut $\forall A_{3}B = cap(A_{0}SS_{3}, B_{0}St_{3})$ = $\sum_{i \in A} b_{i} + \sum_{j \in B} a_{j} + \sum_{(i,j) \in E} P_{ij}$

- How should the reduction work?
 - capacity of the cut should correspond to the function we're trying to minimize

from AtoR

Reduction to MinCut

- How should the reduction work?
 - capacity of the cut should correspond to the function we're trying to minimize

Step 1: Transform the Input

Step 2: Receive the Output

Step 3: Transform the Output

Reduction to MinCut

Densest Subgraph

- Want to identify communities in a network
 - "Community": a set of nodes that have a lot of connections inside and few outside

Densest Subgraph

- Input:
 - an undirected graph G = (V, E)
- **•** a subset of nodes $A \subseteq V$ that maximizes $\frac{2|E(A,A)|}{|A|}$ • Output:

•
$$E(A_B) = \{(u,v) \in E : u \in A_v \in B\}$$

· Why not max
$$\frac{|E(A,A)|}{\binom{|A|}{2}}$$
? (Maximized by are edge)

Reduction to MinCut
• Different objectives
• find
$$(A, B)$$
 to maximize $\frac{2|E(A,A)|}{|A|}$
• find (A, B) to minimize $|E(A, B)|$ (Min Cut if $c(e) \equiv 1$)
• Suppose $\frac{2|E(A,A)|}{|A|} \ge \delta$ and see what that implies
 $\Leftrightarrow 2|E(A,A)| \ge \delta|A|$
 $\Leftrightarrow \sum_{v \in A} \deg(v) - |E(A,B)| \ge \delta|A|$
 $\Leftrightarrow \sum_{v \in B} \deg(v) - \sum_{v \in B} \deg(v) - |E(A,B)| \ge \delta|A|$
 $\Leftrightarrow \sum_{v \in B} \deg(v) + \delta|A| + |E(A,B)| \le 2|E|$

Reduction to MinCut
• Different objectives
• find
$$(A, B)$$
 to maximize $\frac{Z[E(A,A)]}{|A|}$
• find (A, B) to minimize $|E(A, B)|$ (Min Cut if $c(e) \equiv 1$)
• find (A, B) to minimize $|E(A, B)|$ (Min Cut if $c(e) \equiv 1$)
 $\sum_{i \in A} \alpha_i + \sum_{j \in B} b_j + \sum_{i \in J} c_{i,j}$
• Suppose $\frac{2|E(A,A)|}{|A|} \ge \delta$ and see what that implies
 $\Leftrightarrow 2|E(A,A)| \ge \delta|A|$
 $\Leftrightarrow \sum_{v \in A} \deg(v) - |E(A,B)| \ge \delta|A|$
 $\Leftrightarrow \sum_{v \in B} \deg(v) - \sum_{v \in B} \deg(v) - |E(A,B)| \ge \delta|A|$
 $\Leftrightarrow 2|E| - \sum_{v \in B} \deg(v) - |E(A,B)| \ge \delta|A|$
 $\Leftrightarrow \sum_{v \in B} \deg(v) + \delta|A| + |E(A,B)| \le 2|E|$
 $\sum_{v \in B} deg(v) + \delta|A| + |E(A,B)| \le 2|E|$
 $\sum_{v \in B} deg(v) + \sum_{v \in A} \delta + \sum_{(i,j) \in E(A,B)} 1$

Reduction to MinCut

Reduction to MinCut

$$\sum_{v \in B} deg(v) + \delta|A| + |E(A,B)| \leq 2|E|$$

Edge-Disjoint Paths

(Edge) Disjoint Paths

- Input: directed graph G = (V, E, s, t)
- Output: a largest set of edge-disjoint s-t paths
 - A set of s-t paths P_1, \ldots, P_k is edge disjoint if the paths do not share any edges

A large set of disjoint paths means we can tolerate edge failures.

Bipartite Matching

• There is a reduction that uses integer maximum s-t flow to solve edge disjoint paths.

Step 1: Transform the Input

Step 2: Receive the Output

Red arrow means f(e)=1 Black means f(e) = 0

Step 3: Transform the Output

Correctness

• Easy Direction: If there are k edge disjoint paths then there is a flow of value k

Correctness

• Harder Direction: If there is a flow of value k, then there are k edge disjoint paths

Running Time

- Need to analyze the time for:
 - (1) Producing G' given G
 - (2) Finding a maximum flow in G'
 - (3) Producing M given G'

Summary

Solving maximum s-t flow in a graph with n nodes and m edges and c(e)=1 in time T

Solving edge disjoint paths in a graph with n nodes and m edges in time T + O(mn)

 Can solve edge disjoint paths in time O(nm) using Ford-Fulkerson

(Node) Disjoint Paths

- Input: directed graph G = (V, E, s, t)
- Output: a largest set of node-disjoint s-t paths
 - A set of s-t paths P_1, \ldots, P_k is node-disjoint if the paths do not share any nodes

A large set of disjoint paths means we can tolerate edge failures.

Step 1: Transform the Input

