CS3000: Algorithms \& Data Jonathan Ullman

Lecture 21:
More Applications of Network Flow

Nov 30, 2018

Image Segmentation

Image Segmentation

- Separate image into foreground and background
- We have some idea of:
- whether pixel i is in the foreground or background
- whether pair (i, j) are likely to go together

Image Segmentation

- Input:

- a directed graph $G=(V, E) ; V=$ "pixels", $E=$ "pairs"
- likelihoods $a_{i}, b_{i} \geq 0$ for every $i \in V$
- separation penalty $p_{i j} \geq 0$ for every $(i, j) \in E$
- Output:
- a partition of V into (A, B) that maximizes

$$
q(A, B)=\sum_{i \in A} a_{i}+\sum_{j \in B} b_{j}-\sum_{\substack{(i, j) \in E \\ \text { from } A \text { to } B}} p_{i j}
$$

"quality"

Reduction to MinCut

- Differences between SEG and MINCUT:
- SEG asks us to maximize, MINCUT asks us to minimize

$$
\begin{gathered}
\max _{\substack{A, B}} \underline{\max _{A, B} \sum_{i \in A} a_{i}+\sum_{j \in B} b_{j}-\sum_{\substack{(i, j) \in E \\
\text { from } A \text { to } B}} p_{i j}} \Rightarrow \min _{A, B} \sum_{i \in A} b_{i}+\sum_{j \in B} a_{j}+\sum_{\substack{(i, j) \in E \\
\text { from } A \text { to } B}} p_{i j} \\
\hline
\end{gathered}
$$

- SEG allows any partition, MINCUT requires $s \in A, t \in B$ mincut: graph has nodes $V_{0}\{s, t\}$

$$
\min _{A, B \text { partitioning }} v \quad \operatorname{cap}(A \cup\{s\}, B \cup\{\in\})
$$

- Add two nodes sst

Reduction to MinCut

- How should the reduction work?
- capacity of the cut should correspond to the function we're trying to minimize

$$
\min _{A, B} \sum_{i \in A} b_{i}+\sum_{j \in B} a_{j}+\sum_{\substack{(i, j) \in E \\ \text { from } A \text { to } B}} p_{i j}
$$

\min
A, B

$$
\sum_{(i, j \in E} \operatorname{cap}(i, j)
$$

Reduction to MinCut

$$
\begin{aligned}
& \forall A, B \quad \operatorname{cap}(A \cup\{s\}, B \cup\{+3) \\
& =\sum_{i \in A} b_{i}+\sum_{j \in B} a_{j}+\sum_{(i, j) \in E} P_{i j}
\end{aligned}
$$

- How should the reduction work?
- capacity of the cut should correspond to the function we're trying to minimize

Assume G only has nodes $\{i, j\}$
$\min _{A, B} \sum_{i \in A} b_{i}+\sum_{j \in B} a_{j}+\sum_{\substack{(i, j) \in E \\ \text { from } A \text { to } B}} p_{i j}$

Reduction to MinCut

- How should the reduction work?
- capacity of the cut should correspond to the function we're trying to minimize

Step 1: Transform the Input

Step 2: Receive the Output

Step 3: Transform the Output

Reduction to MinCut

- correctness? $\max _{A, B} q(A, B)$

$$
\begin{aligned}
& =\min _{A, B}-q(A, B) \\
& =\min _{A, B} \operatorname{cap}(A \cup\{s\}, B \cup\{t\})
\end{aligned}
$$

- running time?

$$
\begin{aligned}
& {\left[\begin{array}{c}
\text { transform } \\
\text { input }
\end{array}\right]+\left[\begin{array}{c}
\text { solve } \\
\text { monocot }
\end{array}\right]+\left[\begin{array}{c}
\text { transform } \\
\text { out put }
\end{array}\right] } \\
= & O(n+m)+O(n m)+O(n) \\
= & O(n m)
\end{aligned}
$$

Densest Subgraph

- Want to identify communities in a network
- "Community": a set of nodes that have a lot of connections inside and few outside

Densest Subgraph

- Input:
- an undirected graph $G=(V, E)$
- Output: Find (A, B)
- a subset of nodes $A \subseteq V$ that maximizes $\frac{2|E(A, A)|}{|A|}$
- $E(A, B)=\{(u, v) \in E: u \in A, v \in B\}$
- Why not $\max _{A} \frac{|E(A, A)|}{\binom{|A|}{2}}$? (Maximized by are edge)

Reduction to MinCut

- Different objectives

We will solve the yes/no question: is there a community with density $\geqslant \delta$?

- find (A, B) to maximize $\frac{2|E(A, A)|}{|A|}$
- find (A, B) to minimize $|E(A, B)| \quad$ (Mi nCut if $c(e) \equiv 1$)
- Suppose $\frac{2|E(A, A)|}{|A|} \sum_{i \in A} a_{i}+\sum_{j \in B} b_{j}+\sum_{(i, j) \in E(A, B)} c_{i}$
- Suppose $\frac{2|E(A, A)|}{|A|} \geq \delta$ and see what that implies

$$
\begin{aligned}
& \Leftrightarrow 2|E(A, A)| \geq \delta|A| \\
& \Leftrightarrow \Sigma_{v \in A} \operatorname{deg}(v)-|E(A, B)| \geq \delta|A| \\
& \Leftrightarrow \Sigma_{v \in V} \operatorname{deg}(v)-\Sigma_{v \in B} \operatorname{deg}(v)-|E(A, B)| \geq \delta|A| \\
& \Leftrightarrow 2|E|-\Sigma_{v \in B} \operatorname{deg}(v)-|E(A, B)| \geq \delta|A| \\
& \Leftrightarrow \Sigma_{v \in B} \operatorname{deg}(v)+\delta|A|+|E(A, B)| \leq 2|E|
\end{aligned}
$$

Reduction to MinCut \rightarrow We will solve the yes/no question: is there a community

- Different objectives with density $\geqslant \delta$?
- find (A, B) to maximize $\frac{2|E(A, A)|}{|A|}$
- find (A, B) to minimize $|E(A, B)| \quad$ (Mi nCut if $c(e) \equiv 1$)

$$
\sum_{i \in A} a_{i}+\sum_{j \in B} b_{j}+\sum_{(i, j) \in E(A, B)} c_{i j}
$$

- Suppose $\frac{2|E(A, A)|}{|A|} \geq \delta$ and see what that implies

$$
\begin{aligned}
& \Leftrightarrow 2|E(A, A)| \geq \delta|A| \\
& \Leftrightarrow \Sigma_{v \in A} \operatorname{deg}(v)-|E(A, B)| \geq \delta|A| \\
& \Leftrightarrow \Sigma_{v \in V} \operatorname{deg}(v)-\Sigma_{v \in B} \operatorname{deg}(v)-|E(A, B)| \geq \delta|A| \\
& \Leftrightarrow 2|E|-\Sigma_{v \in B} \operatorname{deg}(v)-|E(A, B)| \geq \delta|A| \quad \sum_{v \in A} \operatorname{deg}(v) \\
& \Leftrightarrow \Sigma_{v \in B} \operatorname{deg}(v)+\delta|A|+|E(A, B)| \leq 2|E| \\
&
\end{aligned}
$$

Reduction to MinCut \rightarrow We will solve the yes/no question: is there a community

- Different objectives with density $\geqslant \delta$?
- find (A, B) to maximize $\frac{2|E(A, A)|}{|A|}$
- find (A, B) to minimize $|E(A, B)| \quad$ (Mi nCut if $c(e) \equiv 1$)
- Suppose $\frac{2|E(A, A)|}{|A|} \geq \delta$ and see what that implies

$$
\begin{aligned}
\Leftrightarrow & 2|E(A, A)| \geq \delta|A| \\
\Leftrightarrow & \Sigma_{v \in A} \operatorname{deg}(v)-|E(A, B)| \geq \delta|A| \\
\Leftrightarrow & \Sigma_{v \in V} \operatorname{deg}(v)-\Sigma_{v \in B} \operatorname{deg}(v)-|E(A, B)| \geq \delta|A| \\
\Leftrightarrow & 2|E|-\Sigma_{v \in B} \operatorname{deg}(v)-|E(A, B)| \geq \delta|A| \\
\Leftrightarrow & \Sigma_{v \in B} \operatorname{deg}(v)+\delta|A|+|E(A, B)| \leq 2|E| \\
& \sum_{v \in B} \operatorname{deg}(v)+\sum_{v \in A} \delta+\sum_{(i, j) \in E(A, B)} 1
\end{aligned}
$$

Reduction to MinCut

Reduction to MinCut

$$
\sum_{v \in B} \operatorname{deg}(v)+\delta|A|+|E(A, B)| \leq 2|E|
$$

Edge-Disjoint Paths

(Edge) Disjoint Paths

- Input: directed graph $G=(V, E, s, t)$
- Output: a largest set of edge-disjoint s-t paths
- A set of s-t paths P_{1}, \ldots, P_{k} is edge disjoint if the paths do not share any edges

A large set of disjoint paths means we can tolerate edge failures.

Bipartite Matching

- There is a reduction that uses integer maximum s-t flow to solve edge disjoint paths.

Step 1: Transform the Input

Input G for EDP

Step 2: Receive the Output

Red arrow means $f(e)=1$ Black means $f(e)=0$

Step 3: Transform the Output

Correctness

- Easy Direction: If there are k edge disjoint paths then there is a flow of value k

Correctness

- Harder Direction: If there is a flow of value k, then there are k edge disjoint paths

Running Time

- Need to analyze the time for:
- (1) Producing G' given G
- (2) Finding a maximum flow in G^{\prime}
- (3) Producing M given G'

Summary

Solving maximum s-t flow in a graph with n nodes and m edges and $c(e)=1$ in time T

Solving edge disjoint paths in a graph with n nodes and m edges in time $T+O(m n)$

- Can solve edge disjoint paths in time $O(n m)$ using Ford-Fulkerson

(Node) Disjoint Paths

- Input: directed graph $G=(V, E, s, t)$
- Output: a largest set of node-disjoint s-t paths
- A set of s-t paths P_{1}, \ldots, P_{k} is node-disjoint if the paths do not share any nodes

A large set of disjoint paths means we can tolerate edge failures.

Step 1: Transform the Input

Input G for NDP

